

Agilent X-Series Signal Analyzer

This manual provides documentation for the following X-Series Analyzers:

MXA Signal Analyzer N9020A
EXA Signal Analyzer N9010A

N6149A iDEN/WiDEN/
MotoTalk Analyzer Measurement Application User's and Programmer's Reference

Notices

© Agilent Technologies, Inc. 2008-2010
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgements

Microsoft ${ }^{\circledR}$ is a U.S. registered trademark of Microsoft Corporation.

Windows ${ }^{\circledR}$ and MS Windows ${ }^{\circledR}$ are U.S. registered trademarks of Microsoft Corporation.

Adobe Reader ${ }^{\circledR}$ is a U.S. registered trademark of Adobe System Incorporated.

Java ${ }^{\text {TM }}$ is a U.S. trademark of Sun Microsystems, Inc.

MATLAB ${ }^{\circledR}$ is a U.S. registered trademark of Math Works, Inc.

Norton Ghost ${ }^{\text {TM }}$ is a U.S. trademark of Symantec Corporation.

Manual Part Number

N6149-90001
Supersedes: February 2009

Print Date

November 2010
Printed in USA
Agilent Technologies, Inc. 1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and
licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.22714 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Warranty

This Agilent technologies instrument product is warranted against defects in material and workmanship for a period of one year from the date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about this analyzer, including firmware upgrades, application information, and product information, see the following URLs:
http://www.agilent.com/find/mxa
http://www.agilent.com/find/exa
To receive the latest updates by email, subscribe to Agilent Email Updates:
http://www.agilent.com/find/emailupdates
Information on preventing analyzer damage can be found at:
http://www.agilent.com/find/tips

Contents

1. Using Help
Locating Other Help Resources 82
Viewing Help on a separate Computer 83
Copying the HTML Help (CHM) Files 83
Copying the Acrobat (PDF) Files 84
How Help is Organized. 86
Help Contents Listing 86
System Functions 86
Key Descriptions for Each Measurement 87
Key Information for Softkeys 87
Common Measurement Functions 88
Front Panel Keys used by the Help System 89
Navigating Windows HTML Help (CHM) Files 90
HTML Help Window Components 90
The Help Window Navigation Pane 91
The Help Window Topic Pane 91
Basic Help Window Operations 91
Opening Help 91
Getting Help for a Specific Key 91
Closing the Help Window 92
Viewing Help on How to Use Help 92
Exiting Help on How to Use Help 92
Navigating the Help Window 92
Navigating the Help Window with a Mouse 92
Searching for a Help Topic 93
Navigating the Help Window Without a Mouse 94
To Toggle the Focus between the Navigation Pane and the Topic Pane 94
To Switch the Active Tab within the Navigation Pane 94
To Scroll up or down the list of Topics within the Contents or Index Tabs of the Navigation Pane 9 95
To Expand or Collapse a selected topic within the Contents Tab of the Navigation Pane 95
To Display a selected Help topic in the Topic Pane from the Contents Tab of the Navigation Pane 95
To Display a Help topic in the Topic Pane from the Index Tab of the Navigation Pane 95
To Scroll up or down within a topic in the Topic Pane 95
To Go to the Next or Previous Page in the Topic Pane 96
To Go Back or Forward: display the Previously-viewed or Next-viewed Topic in the Topic Pane 96
To Scroll horizontally or vertically within the Contents Tab of the Navigation Pane 97
To Print the topic currently displayed 97
Functions that cannot be used without a Mouse and Keyboard. 97
Navigating Acrobat (PDF) Files 98
Adobe Reader Window 98
Navigating the Acrobat Reader Window 99
Printing Acrobat Files 99
Terms Used in This Documentation 101
Terms used in Key Parameter Tables 101
Context Sensitive Help not Available 103
Finding a Topic without a Mouse and Keyboard 103
Selecting a Hyperlink without a Mouse 104

Contents

2. About the Analyzer
Installing Application Software 106
Viewing a License Key 106
Obtaining and Installing a License Key 106
Missing and Old Measurement Application Software 107
X-Series Options and Accessories 108
Front-Panel Features. 109
Overview of key types 112
Display Annotations 115
Rear-Panel Features 117
Window Control Keys 120
Multi-Window 120
Zoom 120
Next Window 121
Selected Window 121
Navigating Windows 121
Mouse and Keyboard Control 122
Right-Click 122
PC Keyboard. 123
Instrument Security \& Memory Volatility 127
3. About the iDEN/WiDEN/MotoTalk Analyzer Measurement Application
What Does the Agilent N6149A iDEN/WiDEN/MotoTalk Analyzer Measurement Application Do? 130
Installing Application Software 131
Viewing a License Key 131
Obtaining and Installing a License Key 131
Missing and Old Measurement Application Software 132
4. Programming the Analyzer
What Programming Information is Available? 134
IEEE Common GPIB Commands 135
Calibration Query 135
Clear Status 135
Standard Event Status Enable 135
Standard Event Status Register Query 136
Identification Query 136
Instrument Model Number 137
Operation Complete 137
Query Instrument Options 137
Recall Instrument State 138
Save Instrument State 138
Service Request Enable 139
Status Byte Query 139
Trigger 139
Self Test Query 140
Wait-to-Continue 140

5. System Functions

Contents

File 142
File Explorer 142
Page Setup 143
Print 144
Maximize/Restore Down 144
Maximize 144
Restore Down 144
Minimize 145
Exit 145
Preset. 146
Mode Preset 146
Restore Mode Defaults 148
*RST (Remote Command Only) 148
Print 149
Quick Save 150
Recall 152
State. 152
Register 1 thru Register 6 153
From File\ File Open 154
Open 154
Trace (+State) 156
Register 1 thru Register 5 157
To Trace 157
Open 158
Open 158
Data (Import) 159
Trace 160
Trace 1, 2, 3, 4, 5, 6 161
Display in Selected Trace. 162
Capture Buffer 162
Mask 162
Zone map 164
Recorded Data 164
Open. 165
Open 165
File Open Dialog and Menu 165
Open 166
File/Folder List 166
Sort 166
By Date 166
By Name 166
By Extension 167
By Size 167
Ascending 167
Descending 167
Files Of Type 167
Up One Level 168
Cancel 168
Save 169

Contents

State 169
Register 1 thru Register 6 169
To File 171
Save As 171
Save 172
Trace (+State) 172
Register 1 thru Register 5 173
From Trace 174
Save As 174
Save 175
Data (Export) 176
Trace 176
Trace selection 177
Include Header. 177
Measurement Results 178
Capture Buffer 178
Zone map 179
Recorded Data. 179
Save As 179
Save 180
Screen Image 180
Themes 182
3D Color 182
3D Monochrome 182
Flat Color 183
Flat Monochrome 183
Save As. 183
Save 183
Save As 184
Save. 184
File/Folder List 185
File Name 185
Save As Type 185
Up One Level 186
Create New Folder 186
Cancel 186
Mass Storage Catalog (Remote Command Only) 187
Mass Storage Change Directory (Remote Command Only). 187
Mass Storage Copy (Remote Command Only) 187
Mass Storage Delete (Remote Command Only). 188
Mass Storage Data (Remote Command Only) 188
Mass Storage Make Directory (Remote Command Only). 189
Mass Storage Move (Remote Command Only) 189
Mass Storage Remove Directory (Remote Command Only) 189
System 190
Show 190
Errors 190
Next Page 191
Previous Page 191

Contents

History 192
Status 192
Verbose SCPI On/Off 192
Refresh 192
Clear Error Queue 192
System 193
Hardware 193
LXI 194
LXI Event Log 194
Power On. 198
Mode and Input/Output Defaults. 198
User Preset. 199
Last State 199
Power On Application 200
Configure Applications 200
Select All 202
Deselect All 202
Move Up 202
Move Down 202
Select/Deselect 203
Save Changes and Exit. 203
Exit Without Saving. 204
Configure Applications - Instrument boot-up 204
Configure Applications - Windows desktop 204
Configure Applications - Remote Commands 204
Configuration list (Remote Command Only). 204
Configuration Memory Available (Remote Command Only) 205
Configuration Memory Total (Remote Command Only). 205
Configuration Memory Used (Remote Command Only) 205
Configuration Application Memory (Remote Command Only) 206
Restore Power On Defaults 206
Alignments 206
Auto Align 207
Normal 207
Partial 208
Off 209
All but RF 209
Alert 210
Align Now 213
All. 213
All but RF 215
RF 216
Show Alignment Statistics 217
Restore Align Defaults 221
Backup and Restore Alignment Data 222
Backup or Restore Align Data 222
Advanced. 228
Characterize Preselector (Only with Option 507, 508, 513, or 526) 228
Timebase DAC 230

Contents

Calibrated 230
User 230
I/O Config 231
GPIB 232
GPIB Address 232
GPIB Controller 232
SCPI LAN 233
SCPI Telnet 234
SCPI Socket 234
SCPI Socket Control Port (Remote Command Only) 235
SICL Server 235
Reset Web Password 236
LXI 237
LAN Reset 237
LXI Domain 237
LXI Output LAN Events 237
System IDN Response 245
Factory 246
User 246
Query USB Connection (Remote Command Only) 246
USB Connection Status (Remote Command Only) 247
USB Packet Count (Remote Command Only) 247
IEEE 1588 Time (Remote Command Only). 248
Time. 248
Precision Time Protocol. 253
Grand Master 258
Master 259
Servo Algorithm (Remote Command Only) 259
Instrument Status Events 268
LXI State Recall 269
Restore Defaults 274
Restore Input/Output Defaults 275
Restore Power On Defaults 275
Restore Align Defaults 276
Restore Misc Defaults. 276
Restore Mode Defaults (All Modes). 278
All 278
Control Panel. 279
Licensing 280
Security 283
USB. 283
Read-Write 283
Read only 283
Diagnostics 284
Show Hardware Statistics 284
SCPI for Show Hardware Statistics (Remote Commands Only) 285
Advanced 286
Service 287
Internet Explorer 287

Contents

System Remote Commands (Remote Commands Only) 287
System Powerdown (Remote Command Only) 288
List installed Options (Remote Command Only). 288
Lock the Front-panel keys (Remote Command Only) 288
List SCPI Commands (Remote Command Only) 289
SCPI Version Query (Remote Command Only) 289
Date (Remote Command Only). 289
Time (Remote Command Only) 290
User Preset 291
User Preset. 291
User Preset All Modes 292
Save User Preset 293
6. Vector Analysis Measurement
AMPTD Y Scale 296
Auto Couple 297
BW 298
FREQ Channel 299
Marker. 300
Marker Function 301
Marker To 302
Meas Setup 303
Output 304
Peak Search 305
Source 306
SPAN X Scale 307
Sweep/Control 308
Trace/Detector 309
Data 309
Trigger. 311
View/Display 312
Preset View: Spectrum/Time. 312
Preset View: Statistics 313
7. Monitor Spectrum Measurement
AMPTD Y Scale 316
Ref Value 316
Attenuation 316
Scale/Div 317
Presel Center 317
Presel Adjust 317
$\mu \mathrm{W}$ Path Control 317
Internal Preamp 318
Ref Position 318
Auto Scaling 318
Auto Couple 320
BW 321
Res BW 321

Contents

Video BW 323
VBW:3dB RBW 325
Span:3dB RBW 325
Cont 327
FREQ Channel 328
Input/Output 329
Marker 330
Select Marker 330
Marker Type 330
Marker X Axis Value (Remote Command only) 331
Marker X Axis Position (Remote Command only) 331
Marker Y Axis Value (Remote Command only) 332
Properties 332
Select Marker 332
Relative To 333
Marker Trace 333
Couple Markers 334
All Markers Off. 334
Marker Function 335
Select Marker 335
Marker Function Type. 335
Band Adjust 335
Band/Interval Span for Frequency Domain 336
Band/Interval Left for Frequency Domain 336
Band/Interval Right for Frequency Domain 337
Marker To 338
Meas 339
Meas Setup 340
Avg/Hold Num 340
Avg Mode 340
Meas Preset 341
Mode. 342
Mode Setup 343
Peak Search 344
Recall 345
Restart 346
Save 347
Single 348
Source 349
Span X Scale 350
Span 350
Full Span 351
Last Span. 351
Sweep/Control 353
Sweep Time 353
Pause 353
Gate 354
Points 354
Trace/Detector 355

Contents

Select Trace 355
Trace Type 355
Update 356
Display 356
Detector 357
Auto. 358
Clear Trace 359
Clear All Traces 359
Trigger. 360
View/Display 361
Display 362
8. iDEN Power Measurement
AMPTD Y Scale 366
Auto Couple 367
BW 368
Cont 369
Frequency Channel 370
Input/Output 371
Marker. 372
Marker Function 373
Marker To 374
Meas 375
Meas Setup 376
Test Selection 376
OBW 376
ACP. 377
Test Preset 377
Power Calc Uses 378
Modulation 378
Full Signal 379
ACP Setup 379
Carrier Meas Noise BW 380
Offsets 381
Offset Freq 381
Offset Meas Noise BW 381
Offset Relative Limit 382
OBW Centroid -> CF 382
Avg Number 382
Average Mode 382
Average Setup 383
Average Type. 383
RMS 383
Time 383
Max 383
Fast Average 383
Update Rate 384
OBW \% Power 384
OBW Limit 384

Contents

Mode 386
Mode Setup 387
Peak Search 388
Recall 389
Restart 390
Save 391
Single 392
Source 393
SPAN X Scale. 394
Span 394
Sweep/Control 396
Trace/Detector 397
Trigger 398
Hardware Trigger 398
Video (IF Envelope) 398
Trigger Level 398
Trig Delay 398
Trig Holdoff 398
View/Display 399
Display 399
Layout 399
Preset View: Test Standard 399
Preset View: ACP 400
Preset View: ACP \& OBW 400
Preset View: OBW \& Burst 400
Measurement Views 401
Preset View: Test Standard 401
Preset View: ACP 401
Preset View: OBW \& ACP 402
Preset View: ACP \& Burst 403
Front Panel Results 404
9. iDEN Demod Measurement
AMPTD Y Scale 413
Auto Couple 414
BW 415
Cont 416
FREQ Channel 417
Input/Output 418
Marker 419
Marker Function 420
Marker To 421
Meas 422
Meas Setup 423
Test Selection 423
EVM 423
PvT 424
BER. 424
Test Preset 425

Contents

EVM Setup 426
Analysis Subchannel 426
0 (LO). 426
1 (LI) 426
2 (RI) 427
3 (RO) 427
WiDEN Carrier 427
EVM Test Limit 427
BER Setup. 428
BER Slots 428
BER Test Limit 429
Search Length 429
Analysis Slot 430
Avg Number 431
Average Mode 431
Average Setup 431
Average Type. 431
RMS 432
Time 432
Max 432
Fast Average 432
Update Rate 432
Extend Freq Lock Range 433
Normalize 433
Advanced 434
Filter Alpha 434
Time Scale Factor 434
Sync/Pilot Symbols 435
Droop. 435
Pilot Tracking 436
Mode. 437
Mode Setup 438
Peak Search. 439
Recall 440
Restart 441
Save. 442
Single 443
Source 444
SPAN X Scale 445
Span. 445
Sweep/Control 446
Trace/Detector. 447
Data 447
Pre Demod. 448
Spectrum 448
Inst Spectrum 448
Search Time 449
Time 449
Raw Main Time 449

Contents

PvT 449
PvT Time 449
PvT Summary 449
WiDEN Carr0 PvT Time 450
WiDEN Carr1 PvT Time 450
WiDEN Carr2 PvT Time 450
WiDEN Carr3 PvT Time 450
BER. 450
BER Overall Summary 451
BER Slot Summary 451
Overlaid Demod 451
Overlaid IQ Meas Time 451
Overlaid IQ Ref Time 451
Overlaid Error Vector Time 451
Overlaid Error Vector Spectrum 452
Overlaid IQ Mag Error 452
Overlaid IQ Phase Error 452
Subchannel Demod 452
Subchannel IQ Meas Time 452
Subchannel IQ Ref Time 453
Subchannel Error Vector Time 453
Subchannel IQ Mag Error 453
Subchannel IQ Phase Error 453
Tables 453
Composite Error Summary 453
Composite Symbols 454
Subchannel Error Summary 454
MQAM Summary 454
ACP. 454
OBW 454
Register 455
No Data 455
Trigger 456
View / Display 457
Display 457
Layout 457
Preset View: Test Standard 457
Preset View: PvT Rise \& Fall 458
Preset View: EVM (Quad) 458
Preset View: EVM \& Symbols 459
Preset View: WiDEN PvT. 459
Measurement Results and Views 459
Front Panel Results 459
Result Views 460
View - Preset View: Test Standard 460
View - Preset View: PvT Rise \& Fall 461
View - Preset View: EVM (Quad). 462
View - Preset View: EVM \& Symbols 463
View - Preset View: WiDEN PvT 464

Contents

10. MotoTalk Measurement
AMPTD Y Scale 471
Auto Couple 472
BW 473
Cont 474
Frequency Channel 475
Input/Output 476
Marker. 477
Marker Function 478
Marker To 479
Meas 480
Meas Setup 481
Test Preset 481
Search Length 481
Analysis Slot 482
Avg Number 482
Average Mode 482
Average Setup 483
Average Type 483
RMS 483
Time 483
Max 483
Fast Average 484
Update Rate 484
Normalize 484
Advanced 485
Gaussian BT 485
Symbol Rate 485
Burst Search 486
Mode 487
Mode Setup 488
Peak Search 489
Recall 490
Restart 491
Save. 492
Single 493
Source 494
SPAN X Scale 495
Span. 495
Sweep/Control 496
Trace/Detector. 497
Data 497
Pre Demod. 497
Spectrum 497
Inst Spectrum 498
Search Time 498
Time 498
Raw Main Time 498
Error Vector Time 498

Contents

Slot Error Vector Time 499
Error Summary 499
Slot Error Summary 499
Trigger 501
View/Display 502
Display 502
Layout 502
Preset View: Test Standard 502
Preset View: Slot. 502
Measurement Views 503
Front Panel Results 504
11. Common Measurement Functions
Auto Couple 507
AMPTD Y Scale. 509
Reference Level 509
Attenuation 510
(Mech) Atten 512
Enable Elec Atten 514
Elec Atten 516
Adjust Atten for Min Clip 516
Pre-Adjust for Min Clip 517
(Mech) Atten Step 518
Max Mixer Level 518
Range 519
Range Auto/Man. 519
I Range 520
Q Range 522
Q Same as I 522
Q Range Value 522
I/Q Gain Ranges 524
1 V Peak. 524
0.5 V Peak 524
0.25 V Peak 524
0.125 V Peak 524
Scale / Div. 524
Scale Type 525
Presel Center 525
Preselector Adjust 527
Y Axis Unit 528
dBm. 530
dBmV 530
dBmA 530
W. 531
V 531
A 531
dBmV 531
dBmA 532
dBmV/m 532

Contents

dBmA/m 532
dBpT 533
dBG 533
Reference Level Offset 533
$\mu \mathrm{W}$ Path Control 534
Standard Path 536
Low Noise Path Enable 536
$\mu \mathrm{W}$ Preselector Bypass 538
Internal Preamp 539
Off 540
Low Band 540
Full Range 540
Cont (Continuous Measurement/Sweep) 543
BW 545
Res BW 545
Video BW 547
VBW:3dB RBW 549
Span:3dB RBW 551
RBW Control. 552
Filter Type 552
Gaussian 553
Flattop 553
Filter BW 553
-3 dB (Normal) 555
-6 dB 556
Noise 556
Impulse 556
Frequency Channel (FREQ Channel) 557
Input/Output 559
RF Input. 560
Input Z Correction 560
RF Coupling 561
RF Input Port 562
I/Q 562
I/Q Path 565
I+jQ 566
I Only 566
Q Only 566
Independent I and Q 566
I Setup 567
I Differential Input 567
I Input Z 568
I Skew 569
I Probe 569
Combined Differential/Input Z (Remote Command Only) 569
Q Setup 570
Q Same as I 570
Q Differential Input 571
Q Input Z 572

Contents

Q Skew 573
Q Probe 573
I/Q Probe Setup 573
Attenuation 574
Offset 575
Coupling 575
Calibrate. 576
Clear Calibration 577
Reference Z. 577
I/Q Cable Calibrate 578
RF Calibrator 578
50 MHz 579
4.8 GHz 579
Off. 579
External Gain 580
Ext Preamp 580
MS 581
BTS 582
I Ext Gain 583
Q Ext Gain 584
Restore Input/Output Defaults 584
Data Source 585
Inputs 586
Capture Buffer 586
Recorded Data. 586
Current Meas -> Capture Buffer 587
Record Data Now 587
Record Length. 588
Corrections 589
Select Correction. 590
Correction On/Off. 590
Properties 591
Select Correction 591
Antenna Unit 591
Frequency Interpolation. 593
Description. 595
Comment 596
Edit 596
Navigate 597
Frequency 597
Amplitude 597
Insert Point Below 597
Delete Point 598
Scale X Axis 598
Delete Correction 598
Apply Corrections. 598
Delete All Corrections 599
Remote Correction Data Set Commands 599
Set (Replace) Data (Remote Command Only) 599

Contents

Merge Correction Data (Remote Command Only) 600
Freq Ref In 600
Sense 602
Internal 602
External 602
Ext Ref Freq 602
External Reference Lock BW 603
External Ref Coupling. 604
Output Config 605
Trig Out (1 and 2) 606
Polarity 606
Sweeping (HSWP) 607
Measuring 607
Main Trigger 607
Gate Trigger 607
Gate 608
Odd/Even Trace Point 608
Off 608
Analog Out 608
Auto 609
Off 610
Screen Video 610
Log Video (RF Envelope, Ref=Mixer Level) 611
Linear Video (RF Envelope, Ref=Ref Level) 612
Demod Audio. 613
I/Q Cal Out 614
1 kHz Square Wave 614
250 kHz Square Wave 614
Off 615
Digital Out 615
Digital Bus (Narrowband) 615
Aux IF Out 616
Second IF 616
Arbitrary IF 617
Fast Log Video 618
Off 618
I/Q Guided Calibration 618
I/Q Isolation Calibration 618
Next 619
Exit 619
I/Q Isolation Calibration Time (Remote Command Only) 619
I/Q Cable Calibrate. 619
I Port. 620
I-bar Port 621
Q Port 622
Q-bar Port 623
I/Q Cable Calibration Time (Remote Command Only) 624
I/Q Probe Calibration 624
I Port. 625

Contents

I-bar Port 626
Q Port. 627
Q-bar Port 629
Show Adapter Screen 630
I/Q Probe Calibration Time (Remote Command Only) 630
Exit Confirmation 630
Marker 631
Select Marker 635
Normal 635
Delta 636
Fixed 636
Off 638
Properties 638
Select Marker 638
Relative To 639
X Axis Scale (formerly Readout) 639
Auto 640
Frequency 641
Period 641
Time 641
Inverse Time 642
Marker Trace 642
Lines 645
Marker Z 645
Marker Table 646
Marker Count 646
Counter 646
Gate Time 649
Couple Markers 650
All Markers Off 651
Marker Function 653
Select Marker 654
Marker Noise 654
Band/Interval Power 656
Band/Interval Density 656
Marker Function Off. 658
Band Adjust 658
Band/Interval Span 658
Band/Interval Left 659
Band/Interval Right 660
Measure at Marker 662
Measure at Marker 662
Meas at Marker Window. 665
Window 666
Position 666
Detectors 666
Detector 1 667
Detector 2 668
Detector 3 668

Contents

Detector 1 Dwell Time 669
Detector 2 Dwell Time 669
Detector 3 Dwell Time 670
BW \& Avg Type 670
Center Presel On/Off 671
Marker To 673
Mkr->CF 673
Mkr->CF Step 674
Mkr->Start. 674
Mkr->Stop 675
Mkr->Ref Lvl 675
Mkr -> Zoom Center 676
Mkr -> Zone Center. 676
MkrD->Span 677
MkrD->CF. 677
Meas 679
Remote Measurement Functions 679
Measurement Group of Commands 680
Current Measurement Query (Remote Command Only) 683
Limit Test Current Results (Remote Command Only) 684
Data Query (Remote Command Only) 684
Calculate/Compress Trace Data Query (Remote Command Only) 684
Calculate Peaks of Trace Data (Remote Command Only) 689
Format Data: Numeric Data (Remote Command Only) 691
Format Data: Byte Order (Remote Command Only) 693
Meas Setup 695
Average/Hold Number 695
Average Type 696
Auto. 698
Log-Pwr Avg (Video) 698
Pwr Avg (RMS) 699
Voltage Avg 699
Limits 699
Select Limit 700
Limit 700
Properties. 701
Select Limit 701
Test Trace 702
Type 702
Interpolation 703
Fixed / Relative 704
Description 706
Comment 706
Margin 707
Edit 708
Navigate 708
Frequency 708
Amplitude 709
Insert Point Below 709

Contents

Delete Point 709
Copy from Limit 709
Build from Trace 709
Offset 710
Scale X Axis 711
Delete Limit 712
Test Limits 712
X-Axis Unit. 713
Delete All Limits 714
Limit Line Data (Remote Command Only, Backwards Compatibility) 714
Limit Line Fail? (Remote Command Only) 715
Limit State (Remote Command Only, SCPI standard compatibility). 715
Limit Line Control (Remote Command Only, SCPI standard compatibility) 715
Limit Line Upper / Lower (Remote Command Only, SCPI standard compatibility) 716
Limit Fail? (Remote Command Only, SCPI standard Compatibility) 717
Limit Clear (Remote Command Only, SCPI standard Compatibility) 718
Trace Fail? (Remote Command Only) 718
Fixed / Relative Limit (Remote Command Only, Backwards Compatibility) 718
Merge Limit Line Data 719
N dB Points 719
PhNoise Opt 723
Auto 724
Best Close-in Phase Noise 724
Best Wide-offset Phase Noise. 725
Fast Tuning 725
ADC Dither 726
Auto 727
High (Best Log Accy) 727
Medium (Log Accy) 728
Off (Best Noise) 728
Swept IF Gain 728
Auto 729
Low Gain (Best for Large Signals). 729
High Gain (Best Noise Level) 730
FFT IF Gain 730
Auto 730
Autorange (Slower - Follows Signals) 731
Low Gain (Best for Large Signals) 731
High Gain (Best Noise Level) 731
Analog Demod Tune \& Listen 732
AM 732
Channel BW (AM Demod) 732
FM. 733
Channel BW (FM Demod) 733
De-emphasis (FM Demod only) 734
Off 735
$25 \mu \mathrm{~s}$ 735
$50 \mu \mathrm{~s}$ 735
$75 \mu \mathrm{~s}$ 735

Contents

$750 \mu \mathrm{~s}$ 735
PM 736
Channel BW (PM Demod) 736
Off 737
Demod Time 737
Demod State (Remote Command Only) 737
Noise Source 738
State 739
SNS Attached (Remote Command Only) 739
Meas Preset 740
Mode 741
Application Mode Number Selection (Remote Command Only) 743
Application Mode Catalog Query (Remote Command Only) 744
Application Identification (Remote Commands Only) 744
Current Application Model 745
Current Application Revision 745
Current Application Options 745
Application Identification Catalog (Remote Commands Only) 746
Application Catalog number of entries 746
Application Catalog Model Numbers 746
Application Catalog Revision 747
Application Catalog Options 747
Detailed List of Modes 747
Spectrum Analyzer 747
EMI Receiver 748
IQ Analyzer (Basic) 748
W-CDMA with HSDPA/HSUPA 748
GSM/EDGE/EDGE Evo 749
802.16 OFDMA (WiMAX/WiBro) 749
Vector Signal Analyzer (VXA) 749
Phase Noise 750
Noise Figure 750
Analog Demod 750
Bluetooth 751
TD-SCDMA with HSPA/8PSK 751
cdma2000 751
1xEV-DO 752
LTE 752
LTE TDD. 752
DVB-T/H with T2 752
DTMB (CTTB) 753
ACATV 753
Digital Cable TV 753
ISDB-T 754
CMMB 754
Combined WLAN 754
Combined Fixed WiMAX 755
802.16 OFDM (Fixed WiMAX) 755
iDEN/WiDEN/MOTOTalk 755

Contents

Remote Language Compatibility 755
SCPI Language Compatibility 756
89601 VSA 756
EMI Receiver Aliases (Remote Command Only) 757
Global Settings 757
Global Center Freq 758
Restore Defaults 759
Mode Setup 761
Spectrum 761
Fixed Equalization 761
Fixed EQ Mode 761
Freq Response Register 762
Fixed Equalization Mapping. 762
Radio Standards 763
MQAM Format 763
M4QAM 764
M16QAM 764
M64QAM 764
Slot Format 764
Full Slot Reserved (Inbound) 765
Random Access (Inbound) 765
New 6:1 Reserved Pseudo (Inbound) 765
New 6:1 Reserved Training (Inbound) 766
Full Slot Enhanced 6:1 (Inbound) 766
WiDEN (Inbound) 766
Full Slot Reserved (Outbound) 766
New 6:1 Reserved (Outbound) 766
Color Code 766
Carrier Config 767
25 kHz 767
50 kHz 767
50 kHz Outer 768
75 kHz 768
100 kHz 768
Peak Search 769
Next Peak 769
Next Pk Right 770
Next Pk Left 770
Marker Delta 771
Mkr->CF 771
Mkr->Ref Lvl 771
Peak Criteria 772
"Peak Search" Criteria 772
Highest Peak 773
Same as "Next Peak" Criteria 773
"Next Peak" Criteria 773
Pk Excursion 773
Pk Threshold 774
Pk Threshold Line 775

Contents

Peak Table 776
Peak Table On/Off 776
Peak Sort 777
Peak Readout 777
All. 779
Above Display Line 779
Below Display Line 779
Continuous Peak Search 780
Pk-Pk Search 781
Min Search 782
Peak Data Query (RemoteCommand Only) 782
Recall 783
Amplitude Correction 783
Amplitude Correction 1, 2, 3, 4 784
Restart 787
Save 789
Amplitude Correction 789
Amplitude Correction 1, 2, 3, 4. 791
Single (Single Measurement/Sweep) 793
Source 795
Sweep/Control 797
Sweep Time 797
Sweep Setup 799
Sweep Time Rules 800
Auto 801
SA - Normal 801
SA - Accuracy 802
Stimulus/Response 802
Sweep Type 803
Auto 803
Swept 804
FFT 804
Sweep Type Rules 805
Auto 805
Best Dynamic Range 806
Best Speed 806
FFT Width 806
Pause/Resume 809
Gate 810
Gate On/Off 810
Gate View On/Off 812
Gate View Sweep Time 815
Gate Delay 816
Gate Length 816
Method 817
LO 817
Video 818
FFT. 818
Gate Source 819

Contents

Control Edge/Level 819
Gate Holdoff 820
Gate Delay Compensation 821
Min Fast Position Query (Remote Command Only) 823
Points 823
Zoom Points 825
Abort (Remote Command Only) 825
Trigger 827
Free Run 836
Video (IF Envelope) 836
Trigger Level 837
Trig Slope 837
Trig Delay 838
Line 839
Trig Slope 840
Trig Delay 840
External 1 841
Trigger Level 842
Trig Slope 842
Trig Delay 843
External 2 844
Trigger Level 845
Trig Slope 845
Trig Delay 845
RF Burst 846
Absolute Trigger Level 847
Relative Trigger Level 848
Trigger Slope 849
Trig Delay 850
Periodic Timer (Frame Trigger) 851
Period 852
Offset 853
Offset Adjust (Remote Command Only) 854
Reset Offset Display 855
Sync Source 855
Off 856
External 1 856
External 2 856
RF Burst. 857
Trig Delay 857
Sync Holdoff 858
LXI Trigger 858
LAN Event 859
Disable All 860
LAN Event List 860
Add (Remote Command Only) 862
Remove (Remote Command Only) 863
Remove All (Remote Command Only) 863
Alarm 865

Contents

Disable All 866
Alarm List 866
Baseband I/Q 874
I/Q Mag 874
Trigger Level 875
Trig Slope 875
Trig Delay 876
I (Demodulated) 876
Trigger Level 876
Trig Slope 877
Trig Delay 877
Q (Demodulated). 877
Trigger Level 878
Trig Slope 878
Trig Delay 878
Input I 879
Trigger Level 879
Trig Slope 880
Trig Delay 880
Input Q 880
Trigger Level 881
Trig Slope 881
Trig Delay 881
Auxiliary Channel I/Q Mag. 882
Trigger Level 882
Trig Slope. 883
Trig Delay 883
Trigger Center Frequency 883
Trigger Bandwidth 884
Auto/Holdoff 884
Auto Trig 885
Trig Holdoff 885
Holdoff Type 886
Trigger Offset (Remote Command Only) 887
View/Display 889
Display 889
Annotation 889
Meas Bar On/Off 890
Screen. 891
Trace 891
Active Function Values On/Off 892
Title 893
Change Title 893
Clear Title 894
Graticule 894
Display Line 894
System Display Settings 895
Annotation Local Settings 895
Theme. 896

Contents

Backlight 896
Backlight Intensity 897
Full Screen 897
Display Enable (Remote Command Only) 898
Common Measurement Functions 2 899
AMPTD Y Scale (Amplitude) 899
Range 899
Y Axis Scaling 900
Select Trace 900
Y Auto Scale 900
Y Reference Value 901
Y Scale Per Division 901
Couple Ref to Range 902
Y Reference: Position 902
Y Unit Preference 903
Y Log Ratio 904
Vector Horiz Center 904
Copy Y Scale 905
Reference Line 906
BW (Bandwidth) 906
Res BW 906
Res BW Coupling 907
FFT Window 909
FREQ Channel 909
Center Freq 910
Start Freq. 911
Stop Freq. 911
CF Step 912
Marker. 912
Select Marker 913
Control Mode 913
Normal (Position) 914
Delta. 914
Fixed 916
Off 916
Coupling of Delta and Reference Markers 917
Marker Position. 917
Marker X 918
Marker Y 920
Marker Y Imag (Imaginary) 921
Marker Z 922
Marker Properties 923
Relative To 923
Complex Format 924
Marker Trace 925
Marker Count. 926
Marker Table 927
Couple Markers 927
All Markers Off. 928

Contents

Marker -> (Marker To) 928
Mkr -> CF (Center Frequency) 929
Mkr -> CF Step 929
Mkr -> Start 929
Mkr -> Stop 930
Mkr Delta -> Span 930
Mkr -> Ref Lvl 930
Counter -> CF (Center Frequency) 931
Mkr Delta -> CF (Center Frequency) 931
Marker Function 931
Band/Interval Power 932
Band Power Calculation. 933
Band/Interval Density 934
Band Density Calculation 934
Band Adjust 936
Band/Interval Center 936
Band/Interval Span 936
Band/Interval Left 937
Band/Interval Right 938
Band Power and Delta Markers 938
Meas Setup 939
Avg Number 939
Average Mode 940
Average Setup 941
Average Type 941
Fast Average 942
Update Rate 943
PhNoise Opt 943
Best Close-in Φ Noise 944
Best Wide-offset Φ Noise 944
Peak Search 945
Next Peak (Next Lower Amptd) 945
Next Higher Amptd 946
Next Right 946
Next Left 947
Mkr -> CF (Center Frequency) 947
Continuous Peak Search 947
Min Search 948
Mkr -> Ref Lvl (Reference Level) 949
Recall. 949
State 949
Data (Import) 949
Import Trace Data 949
Open 951
Save 951
State 952
Data (Export) 952
Export Trace Data 952
Save As 954

Contents

Screen Image 954
SPAN X Scale 955
Span 955
Full Span 955
Signal Track 956
X Axis Scaling 956
Select Trace 958
X Scale. 959
X Reference Value. 959
X Width 960
X Reference Position 960
All Frequency Points 961
Freq Annotation 962
Copy X Scale 962
Sweep/Control 963
Main Time. 963
Pause / Resume 964
Abort 964
Gate 964
Gate 965
Gate Length 965
Gate Delay 966
Freq Points 966
Trace/Detector. 967
Select Trace. 967
Data 969
Spectrum 970
Inst Spectrum 972
Main Time 973
Inst Main Time. 974
Gate Time 975
Raw Main Time 975
PSD (Power Spectral Density) 976
Auto Correlation 977
Statistical 980
ACP (Adjacent Channel Power) 982
OBW (Occupied Bandwidth) 984
No Data 985
Format. 986
Digital Demod Trace Setup. 987
Symbol Shape 987
Ideal State Shape 988
Ideal State Size 988
Symbol Table Format 989
Eye Length 990
Time Unit 991
Freq Unit 991
Avg Line 992
Copy to Data Register. 992

Contents

Phase/Delay Properties 993
Phase/Trellis Offset 994
Unwrap Phase Ref 994
Group Delay Aperture 995
ACP Setup 996
ACP On/Off 997
Carrier Freq 998
Carrier Meas Noise BW 999
Carrier RRC Weighting 999
Carrier Filter Alpha 1000
Offsets 1000
RRC Weighting (All Offsets) 1004
OBW Setup (Occupied Bandwidth) 1004
OBW Power 1005
OBW Centroid > CF 1006
BW Limit 1007
Register 1007
Data 1. 1008
Data 2 1008
Data 3 1008
Data 4 1008
Data 5 1009
Data 6 1009
Trace Indicator Info. 1009
Trigger 1009
Trig Reference Line. 1010
Hardware Trigger 1011
Free Run 1011
Video (IF Envelope). 1011
External 1 1015
Free Run 1018
IF Envelope 1018
Baseband 1022
View/Display 1025
Layout 1025
Remote SCPI Commands and Data Queries 1028
:CALCulate:DATA 1032
:CALCulate:DATA:RAW 1033
:CALCulate:DATA:RAW:COMPlex. 1034
:CALCulate:DATA:POINts commands 1034
:CALCulate:DATA:TABL commands 1035
Query Table Data as Number 1036
Query Table Data as String 1037
Query Table Names 1037
Query Table Units 1038
:CALCulate:DATA:HEADer commands 1039
Query Header Names 1040
Query Header Type 1040
Query Header as String 1041

Contents

Query Numeric Header 1041
:CALC:CLIMits:FAIL? 1042
IQ Data Transfers 1042
Fast Capture Length. 1043
Fast Capture Word Length 1043
Initiate Fast Capture. 1044
Fast Capture Block 1044
Fast Capture Pointer 1044
Fetch Fast Capture 1045
Input Sample Rate Query 1045
Parameter Update Enable 1046

List of Commands

*CAL? 215
*CLS 135
*ESE <integer> 135
*ESE? 135
*ESR? 136
*IDN? 137
*OPC?. 137
*OPC 137
*OPT?. 138
*RCL <register \#> 138
*RST 148
*SAV <register \#> 138
*SRE <integer> 139
*SRE? 139
*STB? 139
*TRG 139
*TST? 140
*WAI 140
:ABORt 825
CALCulate: <meas>:DATA[1]|2|3|4:HEADer:NAMes? 1040
:CALCulate:<meas>:DATA[1]|2|3|4:HEADer:STRing? <string> 1041
:CALCulate:<meas>:DATA[1]|2|3|4:HEADer:TYPE? <string> 1040
CALCulate:<meas>:DATA[1]|2|3|4:HEADer[:NUMBer]? <string> 1041
:CALCulate: <meas>:DATA[1]|2|3|4:NAMes? 970
:CALCulate: <meas>:DATA[1]|2|3|4:POINts? [OFF|ON|0|1] 1035
CALCulate:<meas>:DATA[1]|2|3|4:RAW:COMPlex? 1034
:CALCulate:<meas>:DATA[1]|2|3|4:RAW:POINts? 1035
:CALCulate:<meas>:DATA[1]|2|3|4:RAW? 1034
:CALCulate:<meas>:DATA[1]|2|3|4:TABLe:NAMes? 1038
:CALCulate:<meas>:DATA[1]|2|3|4:TABLe:STRing? [<string>]. 1037
:CALCulate:<meas>:DATA[1]|2|3|4:TABLe:UNIT? 1038

List of Commands

:CALCulate:<meas>:DATA[1]|2|3|4:TABLe[:NUMBer]? [<string>]. 1036
:CALCulate: <meas>:DATA[1]|2|3|4? [Y|X|XY[,OFF|ON|0|1]] 1033
:CALCulate:<meas>:MARKer:AOFF 928
:CALCulate:<meas>:MARKer:COUPle[:STATe] OFF|ON|0|1 928
:CALCulate:<meas>:MARKer:COUPle[:STATe]? 928
:CALCulate:<meas>:MARKer:TABLe[:STATe] OFF|ON|0|1 927
:CALCulate:<meas>:MARKer:TABLe[:STATe]? 927
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 [:X]:POSition <real> 919
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 [:X]:POSition? 919
:CALCulate: <meas $>:$ MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MODE? 914
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: CFORmat RECTangular|POLar 925
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: CFORmat? 925
:CALCulate: <meas $>:$ MARKer $[1]|2| 3|4| 5|6| 7|8| 9|10| 11 \mid 12:$ CPSearch[:STATe] ON|OFF|1|0 948
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: CPSearch[:STATe]? 948
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FCOunt:X? 926
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FCOunt[:STATe] OFF|ON|0|1 926
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FCOunt[:STATe]? 926
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion BPOWer|BDENsity|=OFF 932
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:CENTer <real> 936
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:CENTer? 936
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:LEFT <real> 937
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:LEFT? 937
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:RIGHt <real> 938
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:RIGHt? 938
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:SPAN <real> 937
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BAND:SPAN?, 937
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BDENsity:CTYPe MEAN|RMS 935
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BDENsity:CTYPe? 935
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BPOWer:CTYPe MEAN|RMS 934
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion:BPOWer:CTYPe? 934
:CALCulate: <meas $>:$ MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: FUNCtion? 932

List of Commands

:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MAXimum 945
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MAXimum:LEFT 947
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MAXimum:NEXT. 946
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MAXimum:PREVious. 946
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MAXimum:RIGHt 947
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MINimum 948
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: MODE POSition|DELTa|FIXed|=OFF 914
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: REFerence <integer>. 924
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: REFerence? 924
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: TRACe <integer> 925
:CALCulate: <meas $>:$ MARKer[1]|2|3|4|5|6|7|8|9|10|11|12: TRACe? 925
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X <real> 918
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:UNIT?, 920
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X? 918
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y [:REAL] <real> 920
:CALCulate:<meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y [:REAL]? 920
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y:IMAGinary <real> 922
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y:IMAGinary? 922
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y:UNIT? 921
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z <real> 922
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z:UNIT? 923
:CALCulate: <meas>:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z? 922
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: BANDwidth|BWIDth:INTegration <bandwidth> 999
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: BANDwidth|BWIDth:INTegration? 999
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: FILTer:RRC:ALPHa <real> 1000
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: FILTer:RRC:ALPHa? 1000
:CALCulate: <meas>:TRACe[1]|2|3|4:ACPower:CARRier: FILTer:RRC:STATe OFF|ON|0|1 999
:CALCulate: <meas>:TRACe[1]|2|3|4:ACPower:CARRier: FILTer:RRC:STATe? 999
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: FREQuency <freq> 998
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:CARRier: FREQuency? 998
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:FILTer:RRC:STATe OFF|ON|0|1 1004

List of Commands

:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:FILTer:RRC:STATe? 1004
:CALCulate: <meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: BANDwidth|BWIDth:INTegration <band- width> 1002
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: BANDwidth|BWIDth:INTegration? 1002
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: FILTer:RRC:ALPHa <real>, 1002
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: FILTer:RRC:ALPHa?. 1002
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: FREQuency <freq> 1001
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: FREQuency? 1001
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: RCARrier <reall>, 1003
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: RCARrier:TEST OFF|ON|0|1, 1003
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: RCARrier:TEST?. 1003
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: RCARrier? 1003
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: STATe OFF|ON|0|1, 1001
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:OFFSet:LIST: STATe? 1001
:CALCulate: <meas $>:$ TRACe[1]|2|3|4:ACPower:STATe OFF|ON|0|1 998
:CALCulate:<meas>:TRACe[1]|2|3|4:ACPower:STATe? 998
:CALCulate:<meas>:TRACe[1]|2|3|4:OBWidth:CENTroid? 1006
:CALCulate:<meas>:TRACe[1]|2|3|4:OBWidth:LIMit:FBLimit <freq> 1007
:CALCulate:<meas>:TRACe[1]|2|3|4:OBWidth:LIMit:FBLimit? 1007
:CALCulate: <meas>:TRACe[1]|2|3|4:OBWidth:LIMit[:TEST] OFF|ON|0|1 1007
:CALCulate: <meas>:TRACe[1]|2|3|4:OBWidth:LIMit[:TEST]? 1007
:CALCulate:<meas>:TRACe[1]|2|3|4:OBWidth:PERCent <real> 1006
:CALCulate:<meas>:TRACe[1]|2|3|4:OBWidth:PERCent? 1006
:CALCulate: <meas>:TRACe[1]|2|3|4:OBWidth:STATe OFF|ON|0|1 1006
:CALCulate: <meas>:TRACe[1]|2|3|4:OBWidth:STATe? 1006
:CALCulate:BWIDth|BANDwidth:NDB <rel_ampl> 720
:CALCulate:BWIDth|BANDwidth:NDB? 720
:CALCulate:BWIDth|BANDwidth:RESult? 720
:CALCulate:BWIDth|BANDwidth[:STATe] OFF|ON|0|1 720
:CALCulate:BWIDth|BANDwidth[:STATe]? 720
:CALCulate:CLIMits:FAIL? 684

List of Commands

:CALCulate:DATA:REGister:ALL:REMove 993
:CALCulate:DATA:REGister[1]|2|3|4|5|6:EMPTy? 993
:CALCulate:DATA:REGister[1]|2|3|4|5|6:REMove 993
:CALCulate:DATA<n>:COMPress? BLOCk|CFIT|MAXimum|MINimum|MEAN|DMEan|RMS|RM- SCubed|SAMPle|SDEViation|PPHase [,<soffset>[,<length>[,<roffset>[,<rlimit>]]]] 685
:CALCulate:DATA[1]|2|3|4|5|6:PEAKs? <threshold>, <excursion>[,AMPLitude|FREQuency|TIME[,ALL|GTD- Line|LTDLine]]. 690
:CALCulate:DATA[1]|2|3|4|5|6:PEAKs? <threshold>,<excursion>[,AMPLitude|FREQuency|TIME] 690
:CALCulate:DATA[n]? 684
:CALCulate:IDEMod:BERate:LIMit:ERATe <real> 429
:CALCulate:IDEMod:BERate:LIMit:ERATe 429
:CALCulate:IDEMod:EVMagnitude:LIMit:EVMLimit <real> 428
:CALCulate:IDEMod:EVMagnitude:LIMit:EVMLimit? 428
:CALCulate:LIMit[1]|2|3|4|5|6:CLEar 718
:CALCulate:LIMit[1]|2|3|4|5|6:CONTrol:POINts? 716
:CALCulate:LIMit[1]|2|3|4|5|6:CONTrol[:DATA] <x>, <x>, 716
:CALCulate:LIMit[1]|2|3|4|5|6:CONTrol[:DATA]? 716
:CALCulate:LIMit[1]|2|3|4|5|6:FAIL? 717
:CALCulate:LIMit[1]|2|3|4|5|6:LOWer:POINts? 717
:CALCulate:LIMit[1]|2|3|4|5|6:LOWer[:DATA] <ampl>, 717
:CALCulate:LIMit[1]|2|3|4|5|6:LOWer[:DATA]? 717
:CALCulate:LIMit[1]|2|3|4|5|6:STATe ON|OFF|0|1 715
:CALCulate:LIMit[1]|2|3|4|5|6:STATe? 715
:CALCulate:LIMit[1]|2|3|4|5|6:UPPer:POINts? 717
:CALCulate:LIMit[1]|2|3|4|5|6:UPPer[:DATA] <ampl>, <ampl>, 716
:CALCulate:LIMit[1]|2|3|4|5|6:UPPer[:DATA]? 716
:CALCulate:LLINe:ALL:DELete 714
:CALCulate:LLINe:CMODe FIXed|RELative 718
:CALCulate:LLINe:CMODe? 718
:CALCulate:LLINe:CONTrol:DOMain FREQuency|TIME 713
:CALCulate:LLINe:CONTrol:DOMain? 713
:CALCulate:LLINe:TEST OFF|ON|0|1 713

List of Commands

:CALCulate:LLINe:TEST? 713
:CALCulate:LLINe[1]|2|3|4|5|6:AMPLitude:CMODe:RELative ON|OFF|1|0 705
:CALCulate:LLINe[1]|2|3|4|5|6:AMPLitude:CMODe:RELative? 705
:CALCulate:LLINe[1]|2|3|4|5|6:AMPLitude:INTerpolate:TYPE LOGarithmic|LINear. 704
:CALCulate:LLINe[1]|2|3|4|5|6:AMPLitude:INTerpolate:TYPE? 704
:CALCulate:LLINe[1]|2|3|4|5|6:BUILd TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6 710
:CALCulate:LLINe[1]|2|3|4|5|6:COMMent "text". 706
:CALCulate:LLINe[1]|2|3|4|5|6:COMMent? 706
:CALCulate:LLINe[1]|2|3|4|5|6:CONTrol:INTerpolate:TYPE LOGarithmic|LINear 704
:CALCulate:LLINe[1]|2|3|4|5|6:CONTrol:INTerpolate:TYPE? 704
:CALCulate:LLINe[1]|2|3|4|5|6:COPY LLINE1|LLINE2|LLINE3|LLINE4|LLINE5|LLINE6 709
:CALCulate:LLINe[1]|2|3|4|5|6:DATA <x>,<ampl>, <connect> 714
:CALCulate:LLINe[1]|2|3|4|5|6:DATA:MERGe <x-axis>, <ampl>, <connected> 719
:CALCulate:LLINe[1]|2|3|4|5|6:DATA? 714
:CALCulate:LLINe[1]|2|3|4|5|6:DELete 712
:CALCulate:LLINe[1]|2|3|4|5|6:DESCription "Description" 706
:CALCulate:LLINe[1]|2|3|4|5|6:DESCription? 706
:CALCulate:LLINe[1]|2|3|4|5|6:DISPlay OFF|ON|0|1 701
:CALCulate:LLINe[1]|2|3|4|5|6:DISPlay? 701
:CALCulate:LLINe[1]|2|3|4|5|6:FAIL? 715
:CALCulate:LLINe[1]|2|3|4|5|6:FREQuency:CMODe:RELative ON|OFF|1|0. 705
:CALCulate:LLINe[1]|2|3|4|5|6:FREQuency:CMODe:RELative? 705
:CALCulate:LLINe[1]|2|3|4|5|6:MARGin <rel_ampl> 707
:CALCulate:LLINe[1]|2|3|4|5|6:MARGin:STATe OFF|ON|0|1 707
:CALCulate:LLINe[1]|2|3|4|5|6:MARGin:STATe? 707
:CALCulate:LLINe[1]|2|3|4|5|6:MARGin? 707
:CALCulate:LLINe[1]|2|3|4|5|6:OFFSet:UPDate 711
:CALCulate:LLINe[1]|2|3|4|5|6:OFFSet:X <value> 710
:CALCulate:LLINe[1]|2|3|4|5|6:OFFSet:X? 710
:CALCulate:LLINe[1]|2|3|4|5|6:OFFSet:Y <rel ampl> 711
:CALCulate:LLINe[1]|2|3|4|5|6:OFFSet:Y? 711

List of Commands

:CALCulate:LLINe[1]|2|3|4|5|6:TRACe 1|2|3|4|5|6 702
:CALCulate:LLINe[1]|2|3|4|5|6:TRACe?. 702
:CALCulate:LLINe[1]|2|3|4|5|6:TYPE UPPer|LOWer. 702
:CALCulate:LLINe[1]|2|3|4|5|6:TYPE? 702
:CALCulate:MAMarker:COUPling ON|OFF|1|0 671
:CALCulate:MAMarker:COUPling? 671
:CALCulate:MAMarker:DETector[1]|2|3 OFF|NORMal|AVERage|POSitive|SAMPle|NEGative|QPEak|EAVer- age|RAVerage 667
:CALCulate:MAMarker:DETector[1]|2|3:DWELl <dwell time> 667
:CALCulate:MAMarker:DETector[1]|2|3:DWELI?. 667
:CALCulate:MAMarker:DETector[1]|2|3? 667
:CALCulate:MAMarker:PCENter ON|OFF|1|0 671
:CALCulate:MAMarker:PCENter? 671
:CALCulate:MARKer:AOFF 651
:CALCulate:MARKer:COUPle[:STATe] OFF|ON|0|1 650
:CALCulate:MARKer:COUPle[:STATe]? 650
:CALCulate:MARKer:PEAK:EXCursion <rel_ampl> 774
:CALCulate:MARKer:PEAK:EXCursion:STATe OFF|ON|0|1 774
:CALCulate:MARKer:PEAK:EXCursion:STATe? 774
:CALCulate:MARKer:PEAK:EXCursion? 774
:CALCulate:MARKer:PEAK:SEARch:MODE MAXimum|PARameter 772
:CALCulate:MARKer:PEAK:SEARch:MODE? 772
:CALCulate:MARKer:PEAK:SORT FREQuency|AMPLitude 777
:CALCulate:MARKer:PEAK:SORT? 777
:CALCulate:MARKer:PEAK:TABLe:READout ALL|GTDLine|LTDLine 778
:CALCulate:MARKer:PEAK:TABLe:READout? 778
:CALCulate:MARKer:PEAK:TABLe:STATe OFF|ON|0|1 777
:CALCulate:MARKer:PEAK:TABLe:STATe? 777
:CALCulate:MARKer:PEAK:THReshold <ampl> 775
:CALCulate:MARKer:PEAK:THReshold:STATe OFF|ON|0|1 775
:CALCulate:MARKer:PEAK:THReshold:STATe? 775

List of Commands

:CALCulate:MARKer:PEAK:THReshold? 775
:CALCulate:MARKer:TABLe[:STATe] OFF|ON|0|1 646
:CALCulate:MARKer:TABLe[:STATe]? 646
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:CPSearch[:STATe] ON|OFF|1|0. 780
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:CPSearch[:STATe]? 780
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt:GATetime <time> 650
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt:GATetime:AUTO OFF|ON|0|1 650
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt:GATetime:AUTO? 650
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt:GATetime? 650
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt:X? 648
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt[:STATe] OFF|ON|0|1 647
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt[:STATe]? 647
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion NOISe|BPOWer|BDENsity|OFF 653
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:LEFT <freq> 660
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:LEFT? 660
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:RIGHt <freq> 661
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:RIGHt? 661
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:SPAN <freq> 658
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:BAND:SPAN? 658
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion:MAMarker? 662
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FUNCtion? 653
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:LINes[:STATe] OFF|ON|0|1 645
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:LINes[:STATe]? 645
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MAXimum. 769
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MAXimum:LEFT 770
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MAXimum:NEXT 770
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MAXimum:RIGHt 770
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MINimum 782
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MODE POSition|DELTa|FIXed|OFF. 631
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:MODE? 631
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:PTPeak 782

List of Commands

:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:REFerence <integer> 639
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:REFerence? 639
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:TRACe 1|2|3|4|5|6 643
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:TRACe:AUTO OFF|ON|0|1 644
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:TRACe:AUTO? 644
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:TRACe? 643
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X <freq> 632
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:POSition <real> 633
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:POSition? 633
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:READout FREQuency|TIME|ITIMe|PERiod 640
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:READout:AUTO ON|OFF|1|0 640
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:READout:AUTO? 640
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:READout? 640
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X? 632
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y <real> 634
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Y? 634
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z:POSition <integer> 635
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z:POSition? 635
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:Z? 634
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:CENTer 673
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:DELTa:CENTer 677
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:DELTa:SPAN. 677
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:RLEVel 675
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:STARt 674
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:STEP 674
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:STOP 675
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:TZOom:CENTer 676
:CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12[:SET]:ZSPan:CENTer 676
:CALCulate:MONitor:MARKer:AOFF 334
:CALCulate:MONitor:MARKer:COUPle[:STATe] ON|OFF|1|0 334
:CALCulate:MONitor:MARKer:COUPle[:STATe]? 334

List of Commands

:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion NOISe|BPOWer|BDENsity|OFF 335
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:LEFT <freq>. 336
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:LEFT?. 336
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:RIGHt <freq> 337
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:RIGHt? 337
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:SPAN <freq> 336
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion:BAND:SPAN? 336
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :FUNCtion? 335
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :MODE POSition|DELTa|OFF 330
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :MODE? 330
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :REFerence <integer> 333
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :REFerence? 333
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :TRACe <integer> 333
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :TRACe? 333
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :X <freq> 331
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :X:POSition <real> 331
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :X:POSition? 331
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :X? 331
:CALCulate:MONitor:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12 :Y? 332
:CALCulate:TRACe[1]|2|3|4|5|6:FAIL? 718
:CALibration:AUTO ON|PARTial|OFF 207
:CALibration:AUTO:ALERt TTEMperature|DAY|WEEK|NONE 210
:CALibration:AUTO:ALERt? 210
:CALibration:AUTO:MODE ALL|NRF 210
:CALibration:AUTO:MODE? 210
:CALibration:AUTO:TIME:OFF? 220
:CALibration:AUTO? 207
:CALibration:DATA:BACKup <filename> 228
:CALibration:DATA:DEFault 222
:CALibration:DATA:RESTore <filename> 228
:CALibration:FREQuency:REFerence:COARse <integer> 231

List of Commands

:CALibration:FREQuency:REFerence:COARse? 231
:CALibration:FREQuency:REFerence:FINE <integer> 231
:CALibration:FREQuency:REFerence:FINE? 231
:CALibration:FREQuency:REFerence:MODE CALibrated|USER. 230
:CALibration:FREQuency:REFerence:MODE? 230
:CALibration:IQ:FLATness:I 620
:CALibration:IQ:FLATness:I|IBAR|Q|QBAR:TIME? 624
:CALibration:IQ:FLATness:IBAR 621
:CALibration:IQ:FLATness:Q 622
:CALibration:IQ:FLATness:QBAR 623
:CALibration:IQ:ISOLation 619
:CALibration:IQ:ISOLation:TIME? 619
:CALibration:IQ:PROBe:I 626
:CALibration:IQ:PROBe:I|IBAR|Q|QBAR:TIME? 630
:CALibration:IQ:PROBe:I|Q:CLEar 577
:CALibration:IQ:PROBe:IBar 627
:CALibration:IQ:PROBe:Q 628
:CALibration:IQ:PROBe:QBar 629
:CALibration:NRF? 215
:CALibration:NRF 215
:CALibration:RF? 217
:CALibration:RF 217
:CALibration:TEMPerature:CURRent? 218
:CALibration:TEMPerature:LALL?. 219
:CALibration:TEMPerature:LPReselector? 220
:CALibration:TEMPerature:LRF? 220
:CALibration:TIME:LALL?. 219
:CALibration:TIME:LPReselector? 220
:CALibration:TIME:LRF? 219
:CALibration:YTF? 229
:CALibration:YTF 229

List of Commands

:CALibration[:ALL]? 214
:CALibration[:ALL]. 214
:CONF:IDEMod. 405
:CONF:IPOWer 363
:CONFigure:MONitor 341
:CONFigure:MONitor:NDEFault 315
:CONFigure:MONitor 315
:CONFigure:VECTor:NDEFault 295
:CONFigure:VECTor 295
:CONFigure? 683
:COUPle ALL|NONE 507
:DISPlay:<meas>:AFPoints OFF|ON|0|1 961
:DISPlay:<meas>:AFPoints? 961
:DISPlay:<meas>:FANNotation CSPan|SSTop 962
:DISPlay:<meas>:FANNotation? 962
:DISPlay:<meas>:TRACe[1]|2|3|4:COPY D1|D2|D3|D4|D5|D6 992
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:ALIN? 992
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:ALINe OFF|ON|0|1 992
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:EYE:COUNt <real> 990
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:EYE:COUNt? 990
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol BARS|DOTS|OFF 988
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:FORMat HEXadecimal|BINary 990
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:FORMat? 990
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:SHAPe CIRCle|CROSs|OFF 988
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:SHAPe? 988
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:SIZE <real> 989
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol:SIZE? 989
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:SYMBol? 988
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:UNIT:FREQuency CARRier|HZ 991
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:UNIT:FREQuency?. 991
:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:UNIT:TIME SEC|SYMBol. 991

List of Commands

:DISPlay:<meas>:TRACe[1]|2|3|4:DDEMod:UNIT:TIME? 991
:DISPlay:<meas>:TRACe[1]|2|3|4:FEED <string> 970
:DISPlay:<meas>:TRACe[1]|2|3|4:FEED? 970
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat MLOG|MLINear|REAL|IMAGinary|VECTor|CONS|PHASe|UP- Hase|IEYE|QEYE|TRELlis|GDELay|MLGLinear. 987
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:DELay:APERture <real> 996
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:DELay:APERture? 996
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:PHASe:OFFSet <real> 994
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:PHASe:OFFSet? 994
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:PHASe:UNWRap: REFerence <real> 995
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat:PHASe:UNWRap: REFerence? 995
:DISPlay:<meas>:TRACe[1]|2|3|4:FORMat? 987
:DISPlay:<meas>:TRACe[1]|2|3|4:RLINe OFF|ON|0|1 :DISPlay:<meas>:TRACe[1]|2|3|4:RLINe? 906
:DISPlay:<meas>:TRACe[1]|2|3|4:VHCenter <real> 905
:DISPlay:<meas>:TRACe[1]|2|3|4:VHCenter? 905
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:COUPle OFF|ON|0|1 959
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:COUPle?. 959
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:RLEVel <real> 959
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:RLEVel? 959
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:RPOSition LEFT|CENTer|RIGHt 961
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:RPOSition? 961
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:SPAN <real> 960
:DISPlay:<meas>:TRACe[1]|2|3|4:X[:SCALe]:SPAN? 960
:DISPlay:<meas>:TRACe[1]|2|3|4:Y:LRATio <real> 904
:DISPlay:<meas>:TRACe[1]|2|3|4:Y:LRATio? 904
:DISPlay:<meas>:TRACe[1]|2|3|4:Y:UNIT:PREFerence AUTO|PEAK|RMS|POWer|MRMS 903
:DISPlay:<meas>:TRACe[1]|2|3|4:Y:UNIT:PREFerence? 903
:DISPlay:<meas>:TRACe[1]|2|3|4:Y:UNIT?. 904
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:AUTO:ONCE 900
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:PDIVision <real> 901
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:PDIVision? 901

List of Commands

:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RLEVel <real> 901
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RLEVel:AUTO OFF|ON|0|1 902
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RLEVel:AUTO? 902
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RLEVel? 901
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RPOSition TOP|CENTer|BOTTom 903
:DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RPOSition?. 903
:DISPlay:<meas>:WINDow:FORMat SINGle|TWO|TRI|QUAD|GR2X3|GR3X2 1027
:DISPlay:<meas>:WINDow:FORMat SINGle|TWO|TRI|QUAD 1027
:DISPlay:<meas>:WINDow:FORMat? 1027
:DISPlay:<meas>:WINDow:FORMat? 1027
:DISPlay:<measurement>:ANNotation:TITLe:DATA <string> 893
:DISPlay:<measurement>:ANNotation:TITLe:DATA? 893
:DISPlay:ACTivefunc[:STATe] ON|OFF|1|0 892
:DISPlay:ACTivefunc[:STATe]? 892
:DISPlay:ANNotation:MBAR[:STATe] OFF|ON|0|1 890
:DISPlay:ANNotation:MBAR[:STATe]? 890
:DISPlay:ANNotation:SCReen[:STATe] OFF|ON|0|1 891
:DISPlay:ANNotation:SCReen[:STATe]? 891
:DISPlay:ANNotation:TRACe[:STATe] ON|OFF|1|0 891
:DISPlay:ANNotation:TRACe[:STATe]? 891
:DISPlay:BACKlight ON|OFF. 896
:DISPlay:BACKlight:INTensity <integer> 897
:DISPlay:BACKlight:INTensity?. 897
:DISPlay:BACKlight? 896
:DISPlay:ENABle OFF|ON|0|1 898
:DISPlay:ENABle? 898
:DISPlay:FSCReen[:STATe] OFF|ON|0|1 897
:DISPlay:FSCReen[:STATe]? 897
:DISPlay:IDEMod:VIEW:PRESet TSTD|PVTBOTH|EVMQUAD|EVMSYMS|WPVT. 457
:DISPlay:IPOWer:VIEW:PRESet TSTD|ACP|ACPOBW|ACPBURST 399
:DISPlay:MONitor:VIEW:WINDow:TRACe[1]|2|3:CLEar 359

List of Commands

:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :COUPle 0|1|OFF|ON 318
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :COUPle?. 318
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :PDIVision <rel_ampl> 317
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :PDIVision? 317
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :RLEVel <real> 316
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :RLEVel? 316
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :RPOSition TOP|CENTer|BOTTom 318
:DISPlay:MONitor:VIEW[1]:WINDow[1]:TRACe:Y[:SCALe] :RPOSition? 318
:DISPlay:MOTotalk:VIEW:PRESet TSTD|SLOT 502
:DISPlay:THEMe TDColor|TDMonochrome|FCOLor|FMONochrome 896
:DISPlay:THEMe? 896
:DISPlay:VECTor:VIEW:PRESet SPECtrum|STATistics 312
:DISPlay:WINDow:FORMat:TILE 121
:DISPlay:WINDow:FORMat:ZOOM 121
:DISPlay:WINDow:MAMarker:POSition LEFT|RIGHt 666
:DISPlay:WINDow:MAMarker:POSition? 666
:DISPlay:WINDow:MAMarker[:STATe] ON|OFF|1|0 666
:DISPlay:WINDow:MAMarker[:STATe]? 666
:DISPlay:WINDow[:SELect] <number> 121
:DISPlay:WINDow[:SELect]? 121
:DISPlay:WINDow[1]:ANNotation[:ALL] OFF|ON|0|1 895
:DISPlay:WINDow[1]:ANNotation[:ALL]? 895
:DISPlay:WINDow[1]:TRACe:GRATicule:GRID[:STATe] OFF|ON|0|1 894
:DISPlay:WINDow[1]:TRACe:GRATicule:GRID[:STATe]? 894
:DISPlay:WINDow[1]:TRACe:Y:DLINe <ampl> 895
:DISPlay:WINDow[1]:TRACe:Y:DLINe:STATe OFF|ON|0|1 895
:DISPlay:WINDow[1]:TRACe:Y:DLINe:STATe? 895
:DISPlay:WINDow[1]:TRACe:Y:DLINe? 895
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:PDIVision <rel_ampl> 524
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:PDIVision? 524
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:RLEVel <real> 509

List of Commands

:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:RLEVel:OFFSet <rel_ampl> 533
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:RLEVel:OFFSet? 533
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:RLEVel? 509
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:SPACing LINear|LOGarithmic 525
:DISPlay:WINDow[1]:TRACe:Y[:SCALe]:SPACing?. 525
:FETCh:<meas>[n]?. 1028
:FETCh:FCAPture? 1045
:FETCh:IDEMod [n]? 405
:FETCh:IPOWer [n]? 363
:FETCh:MONitor[n]? 315
:FETCh:VECTor[n]? 295
:FORMat:BORDer NORMal|SWAPped 693
:FORMat:BORDer? 693
:FORMat[:TRACe][:DATA] ASCii|INTeger,32|REAL,32 |REAL,64. 691
:FORMat[:TRACe][:DATA]? 691
:GLOBal:FREQuency:CENTer[:STATe] 1|0|ON|OFF 758
:GLOBal:FREQuency:CENTer[:STATe]? 758
:HCOPy:ABORt. 149
:HCOPy[:IMMediate] 149
:INITiate:CONTinuous OFF|ON|0|1 543
:INITiate:CONTinuous? 543
:INITiate:FCAPture 1044
:INITiate:IDEMod 405
:INITiate:IPOWer 363
:INITiate:MONitor 315
:INITiate:PAUSe 810
:INITiate:RESTart 787
:INITiate:RESume 810
:INITiate:VECTor 295
:INITiate[:IMMediate] 787
:INPut:COUPling AC|DC 561

List of Commands

:INPut:COUPling:I|Q DC|LFR1|LFR2 575
:INPut:COUPling:I|Q? 575
:INPut:COUPling? 561
:INPut:IMPedance:IQ U50|B50|U1M|B1M 569
:INPut:IMPedance:IQ? 569
:INPut:IMPedance:REFerence <integer> 577
:INPut:IMPedance:REFerence? 577
:INPut:IQ:MIRRored OFF|ON|0|1 571
:INPut:IQ:MIRRored? 571
:INPut:IQ:Q:DIFFerential OFF|ON|0|1 571
:INPut:IQ:Q:DIFFerential?. 571
:INPut:IQ[:I]:DIFFerential OFF|ON|0|1 567
:INPut:IQ[:I]:DIFFerential? 567
:INPut:OFFSet:I|Q <voltage> 575
:INPut:OFFSet:I|Q? 575
:INPut[1]:IQ:BALanced[:STATe] OFF|ON|0|1 568
:INPut[1]:IQ:BALanced[:STATe]? 568
:INPut[1]:IQ:Q:IMPedance LOW|HIGH 572
:INPut[1]:IQ:Q:IMPedance? 572
:INPut[1]:IQ:TYPE IQ|I|Q 565
:INPut[1]:IQ:TYPE?. 565
:INPut[1]:IQ[:I]:IMPedance LOW|HIGH 568
:INPut[1]:IQ[:I]:IMPedance? 568
:INSTrument:CATalog? 744
:INSTrument:COUPle:DEFault 759
:INSTrument:COUPle:FREQuency:CENTer ALL|NONE 758
:INSTrument:COUPle:FREQuency:CENTer? 758
:INSTrument:DEFault 148
:INSTrument:NSELect <integer> 744
:INSTrument:NSELect? 744
:INSTrument[:SELect]

List of Commands

SA|BASIC|WCDMA|CDMA2K|EDGEGSM|PNOISE|CDMA1XEV|CWLAN|WIMAXOFDMA|CWIMAXOFD M|VSA|VSA89601|LTE|IDEN|WIMAXFIXED|LTETDD|TDSCDMA|NFIGURE|ADEMOD|DVB|DTMB|ISDBT |CMMB|RLC|SCPILC|SANalyzer|RECeiver|SEQAN|BT 741
:INSTrument[:SELect]? 741
:LXI:CLOCk:PTP:ACCuracy
NS25|NS100|NS250|NS1000|NS2500|US10|US25|US100|US250|US1000|US2500|MS10|MS25|MS100|MS1000|S
10|GT10S|UNKNown 253
:LXI:CLOCk:PTP:ACCuracy? 253
:LXI:CLOCk:PTP:ANNounce:INTerval <interval> 254
:LXI:CLOCk:PTP:ANNounce:INTerval? 254
:LXI:CLOCk:PTP:ANNounce:RTOut <numberOfIntervals> 254
:LXI:CLOCk:PTP:ANNounce:RTOut? 254
:LXI:CLOCk:PTP:CCLass? 254
:LXI:CLOCk:PTP:DEViation? 255
:LXI:CLOCk:PTP:DOMain <domainNumber> 255
:LXI:CLOCk:PTP:DOMain? 255
:LXI:CLOCk:PTP:DRINterval <seconds> 258
:LXI:CLOCk:PTP:DRINterval? 258
:LXI:CLOCk:PTP:GMASter:ACCuracy? 258
:LXI:CLOCk:PTP:GMASter:MADDress? 259
:LXI:CLOCk:PTP:GMASter:TRACeability? 259
:LXI:CLOCk:PTP:MASTer:MADDress? 259
:LXI:CLOCk:PTP:OFFSet? 255
:LXI:CLOCk:PTP:PRIority:FIRSt <priority> 256
:LXI:CLOCk:PTP:PRIority:FIRSt? 256
:LXI:CLOCk:PTP:PRIority:SECond <priority> 256
:LXI:CLOCk:PTP:PRIority:SECond? 256
:LXI:CLOCk:PTP:SINTerval <seconds> 257
:LXI:CLOCk:PTP:SINTerval? 257
:LXI:CLOCk:PTP:STATe? 256
:LXI:CLOCk:PTP:TRACeability? 257
:LXI:CLOCk:PTP:VARiance? 257

List of Commands

:LXI:CLOCk:SALGorithm:LOG:ALL? 262
:LXI:CLOCk:SALGorithm:LOG:CIRCular:FBENtry 260
:LXI:CLOCk:SALGorithm:LOG:CIRCular[:ENABled] ON|OFF|0|1 260
:LXI:CLOCk:SALGorithm:LOG:CIRCular[:ENABled]? 260
:LXI:CLOCk:SALGorithm:LOG:CLEar 261
:LXI:CLOCk:SALGorithm:LOG:COUNt? 261
:LXI:CLOCk:SALGorithm:LOG:ENABled ON|OFF|0|1 261
:LXI:CLOCk:SALGorithm:LOG:ENABled? 261
:LXI:CLOCk:SALGorithm:LOG:ENTRy? <intIndex> 262
:LXI:CLOCk:SALGorithm:LOG:SIZE <maxLogEntries> 261
:LXI:CLOCk:SALGorithm:LOG:SIZE? 261
:LXI:CLOCk:SALGorithm:LOG:STATistics:CLEar. 263
:LXI:CLOCk:SALGorithm:LOG:STATistics[:DATA]?. 262
:LXI:CLOCk:SALGorithm:LOG[:NEXT]? 260
:LXI:CLOCk:SALGorithm[:SET]:ASYMmetry <seconds> 263
:LXI:CLOCk:SALGorithm[:SET]:ASYMmetry? 263
:LXI:CLOCk:SALGorithm[:SET]:CFTHreshold <secondsSquared> 263
:LXI:CLOCk:SALGorithm[:SET]:CFTHreshold?. 263
:LXI:CLOCk:SALGorithm[:SET]:CIConstant <servoConstant> 264
:LXI:CLOCk:SALGorithm[:SET]:CIConstant? 264
:LXI:CLOCk:SALGorithm[:SET]:CONFigure <asymmetry>, <coarse fine threshold>, <cpc>, <cic>, <fpc>, <fic>, <maximum outlier discard>, <outlier threshold>, <set/steer threshold> 267
:LXI:CLOCk:SALGorithm[:SET]:CPConstant <servoConstant> 264
:LXI:CLOCk:SALGorithm[:SET]:CPConstant? 264
:LXI:CLOCk:SALGorithm[:SET]:FIConstant <servoConstant> 265
:LXI:CLOCk:SALGorithm[:SET]:FIConstant? 265
:LXI:CLOCk:SALGorithm[:SET]:FPConstant <servoConstant> 265
:LXI:CLOCk:SALGorithm[:SET]:FPConstant? 265
:LXI:CLOCk:SALGorithm[:SET]:OMAXimum <consecutiveSamples> 265
:LXI:CLOCk:SALGorithm[:SET]:OMAXimum? 265
:LXI:CLOCk:SALGorithm[:SET]:OTENable ON|OFF|1|0 266

List of Commands

:LXI:CLOCk:SALGorithm[:SET]:OTENable? 266
:LXI:CLOCk:SALGorithm[:SET]:OTHReshold <standardDeviations> 266
:LXI:CLOCk:SALGorithm[:SET]:OTHReshold? 266
:LXI:CLOCk:SALGorithm[:SET]:STHReshold <seconds> 267
:LXI:CLOCk:SALGorithm[:SET]:STHReshold? 267
:LXI:CLOCk:SYNC:LOCal:ENABled ON|OFF|0|1 267
:LXI:CLOCk:SYNC:LOCal:ENABled? 267
:LXI:CLOCk:SYNC:LOCal:INTerval? 268
:LXI:CLOCk:SYNC:LOCal:INTerval 268
:LXI:CLOCk:SYNC:MASTer? 267
:LXI:CLOCk[:TIME]:DLSavings? 250
:LXI:CLOCk[:TIME]:FRACtion <fraction> 249
:LXI:CLOCk[:TIME]:FRACtion? 249
:LXI:CLOCk[:TIME]:LOCal? 249
:LXI:CLOCk[:TIME]:LSOFfset <integer> 250
:LXI:CLOCk[:TIME]:LSOFfset? 250
:LXI:CLOCk[:TIME]:MARKer[1]|2|3|4|5|6|7|8|9:CLEAr 251
:LXI:CLOCk[:TIME]:MARKer[1]|2|3|4|5|6|7|8|9:DELTa? 252
:LXI:CLOCk[:TIME]:MARKer[1]|2|3|4|5|6|7|8|9[:SET] 251
:LXI:CLOCk[:TIME]:MEASure:CLEar 253
:LXI:CLOCk[:TIME]:MEASure[:DELTa]? 253
:LXI:CLOCk[:TIME]:SEConds <seconds> 249
:LXI:CLOCk[:TIME]:SEConds? 249
:LXI:CLOCk[:TIME]:TAI? 250
:LXI:CLOCk[:TIME]:TZONe? 250
:LXI:CLOCk[:TIME]:UTC? 251
:LXI:CLOCk[:TIME][:VALue] <seconds>,<fractionalSeconds> 248
:LXI:CLOCk[:TIME][:VALue]? 248
:LXI:EVENt:DOMain <intDomain> 237
:LXI:EVENt:DOMain? 237
:LXI:EVENt:INPut:LAN:ADD "LANEVENT" 270

List of Commands

:LXI:EVENt:INPut:LAN:COUNt? 274
:LXI:EVENt:INPut:LAN:DISable:ALL 270
:LXI:EVENt:INPut:LAN:FILTer "LANEVENT","filterString" 272
:LXI:EVENt:INPut:LAN:FILTer? 272
:LXI:EVENt:INPut:LAN:IDENtifier "LANEVENT","identifier" 272
:LXI:EVENt:INPut:LAN:IDENtifier? "LANEVENT" 272
:LXI:EVENt:INPut:LAN:LIST? 274
:LXI:EVENt:INPut:LAN:LOCation "LANEVENT","path" 269
:LXI:EVENt:INPut:LAN:LOCation? "LANEVENT", 270
:LXI:EVENt:INPut:LAN:REMove:ALL 271
:LXI:EVENt:INPut:LAN:REMove[:EVENt] "LANEVENT" 270
:LXI:EVENt:INPut:LAN[:SET]:CONFigure "lanEvent", <enab>, <detection>, <filter>, <identifier> 274
:LXI:EVENt:INPut:LAN[:SET]:DETection "LANEVENT", HIGH|LOW|RISE|FALL 272
:LXI:EVENt:INPut:LAN[:SET]:DETection? "LANEVENT" 273
:LXI:EVENt:INPut:LAN[:SET]:ENABled "LANEVENT",ON|OFF|1|0 273
:LXI:EVENt:INPut:LAN[:SET]:ENABled? "LANEVENT" 274
:LXI:EVENt:LOG:ALL? 197
:LXI:EVENt:LOG:CIRCular:FBENtry 198
:LXI:EVENt:LOG:CIRCular[:ENABle] ON|OFF|1|0 195
:LXI:EVENt:LOG:CIRCular[:ENABle]? 195
:LXI:EVENt:LOG:CLEar 196
:LXI:EVENt:LOG:COUNt? 197
:LXI:EVENt:LOG:ENABle ON|OFF|1|0 196
:LXI:EVENt:LOG:ENABle? 196
:LXI:EVENt:LOG:ENTRy? <intIndex> 198
:LXI:EVENt:LOG:SIZE <size> 196
:LXI:EVENt:LOG:SIZE? 196
:LXI:EVENt:LOG[:NEXT]? 197
:LXI:EVENt:STATus[:ENABled] "STATUSEVENT",ON|OFF|1|0 269
:LXI:EVENt:STATus[:ENABled]? "STATUSEVENT" 269
:LXI:EVENt[:OUTPut]:LAN:ADD "LANEVENT" 239

List of Commands

:LXI:EVENt[:OUTPut]:LAN:COUNt? 244
:LXI:EVENt[:OUTPut]:LAN:DISable:ALL 238
:LXI:EVENt[:OUTPut]:LAN:LIST? 238
:LXI:EVENt[:OUTPut]:LAN:REMove:ALL 239
:LXI:EVENt[:OUTPut]:LAN:REMove[:EVENt] "LANEVENT" 239
:LXI:EVENt[:OUTPut]:LAN:SEND "LANEVENT"", RISE|FALL 244
:LXI:EVENt[:OUTPut]:LAN[:SET]:CONFigure "lanEvent",<enabled>,<source>,,<slope>,<drive>,<destination> 244
:LXI:EVENt[:OUTPut]:LAN[:SET]:DESTination "LANEVENT","destinationExpression" 241
:LXI:EVENt[:OUTPut]:LAN[:SET]:DESTination? "LANEVENT" 241
:LXI:EVENt[:OUTPut]:LAN[:SET]:DRIVe "LANEVENT", OFF|NORMal|WOR 242
:LXI:EVENt[:OUTPut]:LAN[:SET]:DRIVe? "LANEVENT" 242
:LXI:EVENt[:OUTPut]:LAN[:SET]:ENABled "LANEVENT",ON|OFF|1|0 244
:LXI:EVENt[:OUTPut]:LAN[:SET]:ENABled? "LANEVENT" 244
:LXI:EVENt[:OUTPut]:LAN[:SET]:IDENtifier "LANEVENT", "identifier" 245
:LXI:EVENt[:OUTPut]:LAN[:SET]:IDENtifier? "LANEVENT" 245
:LXI:EVENt[:OUTPut]:LAN[:SET]:SLOPe "LANEVENT", POSitive|NEGative 243
:LXI:EVENt[:OUTPut]:LAN[:SET]:SLOPe? "LANEVENT" 243
:LXI:EVENt[:OUTPut]:LAN[:SET]:SOURce "LANEVENT", "SourceEvent" 240
:LXI:EVENt[:OUTPut]:LAN[:SET]:SOURce? "LANEVENT" 240
:LXI:EVENt[:OUTPut]:LAN[:SET]:TSDelta "LANEVENT", <seconds> 243
:LXI:EVENt[:OUTPut]:LAN[:SET]:TSDelta? "LANEVENT" 243
:MEASure:IDEMod [n]? 405
:MEASure:IPOWer [n]? 363
:MEASure:MONitor[n]? 315
:MEMMory:RDIRectory <directory_name> 189
:MMEMory:CATalog? [<directory_name>] 187
:MMEMory:CDIRectory [<directory_name>] 187
:MMEMory:CDIRectory? 187
:MMEMory:COPY <string>,<string>[,<string>,<string>] 187
:MMEMory:DATA <file_name>, <data> 188

List of Commands

:MMEMory:DATA? <file_name> 188
:MMEMory:DELete <file_name>[,<directory_name>] 188
:MMEMory:LOAD:CORRection $1|2| 3|4| 5 \mid 6$, <filename> 783
:MMEMory:LOAD:MASK <string> 164
:MMEMory:LOAD:STATe <filename> 155
:MMEMory:LOAD:TRACe TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6,<filename> 159
:MMEMory:LOAD:TRACe:DATA D1|D2|D3|D4|D5|D6,<filename>[,CSV|TXT|SDF|MAT4|MAT|HDF5|BIN]950
:MMEMory:LOAD:TRACe:DATA TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6,<filename> 161
:MMEMory:LOAD:TRACe:REGister TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6,<integer> 159
:MMEMory:MDIRectory <directory_name> 189
:MMEMory:MOVE <string>,<string>[,<string>,<string>] 189
:MMEMory:STORe:CORRection 1|2|3|4|5|6, <filename> 789
:MMEMory:STORe:SCReen <filename> 184
:MMEMory:STORe:SCReen:THEMe TDColor|TDMonochrome|FCOLor|FMONochrome 182
:MMEMory:STORe:SCReen:THEMe? 182
:MMEMory:STORe:STATe <filename> 172
:MMEMory:STORe:TRACe TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6|ALL,<filename> 175
:MMEMory:STORe:TRACe:DATA TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6,"<filename>" [,CSV|TXT|SDF|MAT4|MAT|HDF5|BIN[,OFF|ON|0|1]] 952
:MMEMory:STORe:TRACe:DATA TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6|ALL,<filename>.176
:MMEMory:STORe:TRACe:REGister TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6|ALL,<integer>175
:OUTPut:ANALog OFF|SVIDeo|LOGVideo|LINVideo|DAUDio 608
:OUTPut:ANALog? 608
:OUTPut:AUX SIF|AIF|LOGVideo|OFF 616
:OUTPut:AUX:AIF < value> 617
:OUTPut:AUX:AIF? 617
:OUTPut:AUX? 616
:OUTPut:DBUS[1][:STATe] ON|OFF|1|0 615
:OUTPut:DBUS[1][:STATe]? 615

List of Commands

:OUTPut:IQ:OUTPut IQ1|IQ250|OFF 614
:OUTPut:IQ:OUTPut? 614
:READ:<meas>[n]? 1028
:READ:IDEMod [n] 405
:READ:IPOWer [n]? 363
:READ:MONitor[n]? 315
:READ:VECTor[n]? 295
:SOURce:NOISe:SNS:ATTached? 739
:SOURce:NOISe:TYPE NORMal | SNS 738
:SOURce:NOISe:TYPE? 738
:SOURce:NOISe[:STATe] ON|OFF|1|0 739
:SOURce:NOISe[:STATe]? 739
:SYSTem:APPLication:CATalog:OPTion? <model> 747
:SYSTem:APPLication:CATalog:REVision? <model> 747
:SYSTem:APPLication:CATalog[:NAME]:COUNt? 746
:SYSTem:APPLication:CATalog[:NAME]? 746
:SYSTem:APPLication[:CURRent]:OPTion? 745
:SYSTem:APPLication[:CURRent]:REVision? 745
:SYSTem:APPLication[:CURRent][:NAME]? 745
:SYSTem:COMMunicate:GPIB[1][:SELF]:ADDRess <integer> 232
:SYSTem:COMMunicate:GPIB[1][:SELF]:ADDRess? 232
:SYSTem:COMMunicate:GPIB[1][:SELF]:CONTroller[:ENABle] ON|OFF|0|1 233
:SYSTem:COMMunicate:GPIB[1][:SELF]:CONTroller[:ENABle]? 233
:SYSTem:COMMunicate:LAN:SCPI:SICL:ENABle OFF|ON|0|1 236
:SYSTem:COMMunicate:LAN:SCPI:SICL:ENABle? 236
:SYSTem:COMMunicate:LAN:SCPI:SOCKet:CONTrol? 235
:SYSTem:COMMunicate:LAN:SCPI:SOCKet:ENABle OFF|ON|0|1 234
:SYSTem:COMMunicate:LAN:SCPI:SOCKet:ENABle?. 234
:SYSTem:COMMunicate:LAN:SCPI:TELNet:ENABle OFF|ON|0|1 234
:SYSTem:COMMunicate:LAN:SCPI:TELNet:ENABle? 234
:SYSTem:COMMunicate:USB:CONNection? 246

List of Commands

:SYSTem:COMMunicate:USB:PACKets? 247
:SYSTem:COMMunicate:USB:STATus? 247
:SYSTem:DATE "<year>,<month>,<day>" 289
:SYSTem:DATE? 289
:SYSTem:DEFault [ALL]|ALIGn|INPut|MISC|MODes|PON 275
:SYSTem:ERRor:VERBose OFF|ON|0|1 192
:SYSTem:ERRor:VERBose? 192
:SYSTem:ERRor[:NEXT]? 191
:SYSTem:HELP:HEADers? 289
:SYSTem:HID? 282
:SYSTem:IDN <string> 245
:SYSTem:IDN? 245
:SYSTem:KLOCk OFF|ON|0|1 288
:SYSTem:KLOCk? 288
:SYSTem:LKEY <"OptionInfo">, <"LicenseInfo"> 280
:SYSTem:LKEY:DELete <"OptionInfo">,<"LicenseInfo"> 281
:SYSTem:LKEY:LIST? 281
:SYSTem:LKEY? <"OptionInfo"> 282
:SYSTem:MRELay:COUNt? 285
:SYSTem:OPTions? 288
:SYSTem:PON:APPLication:LLISt <string of INSTrument:SELect names> 204
:SYSTem:PON:APPLication:LLISt? 204
:SYSTem:PON:APPLication:VMEMory:TOTal? 205
:SYSTem:PON:APPLication:VMEMory:USED:NAME? <INSTrument:SELect name> 206
:SYSTem:PON:APPLication:VMEMory:USED? 205
:SYSTem:PON:APPLication:VMEMory[:AVAilable]? 205
:SYSTem:PON:ETIMe? 286
:SYSTem:PON:MODE SA|BASIC|ADEMOD|NFIGURE|PNOISE|CDMA2K|TDSCD- MA|VSA|VSA89601|WCDMA|WIMAXOFDMA 200
:SYSTem:PON:MODE? 200
:SYSTem:PON:TIME? 218

List of Commands

:SYSTem:PON:TYPE MODE|USER|LAST|PRESet 198
:SYSTem:PON:TYPE? 198
:SYSTem:PRESet 146
:SYSTem:PRESet:USER 291
:SYSTem:PRESet:USER:ALL 292
:SYSTem:PRESet:USER:SAVE 293
:SYSTem:PRINt:THEMe TDColor|TDMonochrome|FCOLor|FMONochrome 143
:SYSTem:PRINt:THEMe? 143
:SYSTem:PUP:PROCess 203
:SYSTem:SECurity:USB:WPRotect[:ENABle] ON|OFF|0|1 283
:SYSTem:SECurity:USB:WPRotect[:ENABle]? 283
:SYSTem:SHOW OFF|ERRor|SYSTem|HARDware|LXI|HWSTatistics|ALIGnment|SOFTware|CAPPlication 190
:SYSTem:SHOW? 190
:SYSTem:TEMPerature:HEXTreme? 286
:SYSTem:TEMPerature:LEXTreme? 285
:SYSTem:TIME "<hour>,<minute>,<second>" 290
:SYSTem:TIME? 290
:SYSTem:VERSion? 289
:TRACe:MONitor:CLEar [TRACE1]|TRACE2|TRACE3 359
:TRACe:MONitor:CLEar:ALL 359
:TRACe[1]|2|3:MONitor:DISPlay[:STATe] ON|OFF|0|1 356
:TRACe[1]|2|3:MONitor:DISPlay[:STATe]? 356
:TRACe[1]|2|3:MONitor:TYPE WRITe|AVERage|MAXHold|MINHold 355
:TRACe[1]|2|3:MONitor:TYPE? 355
:TRACe[1]|2|3:MONitor:UPDate[:STATe] ON|OFF|0|1 356
:TRACe[1]|2|3:MONitor:UPDate[:STATe]? 356
:TRIGger:<meas>[:SEQuence]:SOURce IMMediate|VIDeo|EXTernal1 1011
:TRIGger:<meas>[:SEQuence]:SOURce?. 1011
:TRIGger:<measurement>[:SEQuence]:IQ:SOURce EXTernal1|EXTernal2|IMMediate|IQMag|IDEMod|QDE- Mod|IINPut|QINPut|AIQMag 834
:TRIGger:<measurement>[:SEQuence]:IQ:SOURce? 834

List of Commands

:TRIGger:<measurement>[:SEQuence]:RF:SOURce EXTernal1|EXTernal2|IMMediate|LINE|FRAMe|RF- Burst|VIDeo|IF|ALARm|LAN 832
:TRIGger:<measurement>[:SEQuence]:RF:SOURce? 832
:TRIGger:<measurement>[:SEQuence]:SOURce EXTernal1|EXTernal2|IMMediate|LINE|FRAMe|RFBurst|VID- eo|IF|ALARm|LAN|IQMag|IDEMod|QDEMod|IINPut|QINPut|AIQMag 827
:TRIGger:<measurement>[:SEQuence]:SOURce? 827
:TRIGger[:SEQuence]:AIQMag:BANDwidth <freq> 884
:TRIGger[:SEQuence]:AIQMag:BANDwidth? 884
:TRIGger[:SEQuence]:AIQMag:CENTer <freq> 883
:TRIGger[:SEQuence]:AIQMag:CENTer? 883
:TRIGger[:SEQuence]:AIQMag:DELay <time> 883
:TRIGger[:SEQuence]:AIQMag:DELay:STATe OFF|ON|0|1 883
:TRIGger[:SEQuence]:AIQMag:DELay:STATe? 883
:TRIGger[:SEQuence]:AIQMag:DELay? 883
:TRIGger[:SEQuence]:AIQMag:LEVel <ampl > 882
:TRIGger[:SEQuence]:AIQMag:LEVel? 882
:TRIGger[:SEQuence]:AIQMag:SLOPe POSitive | NEGative 883
:TRIGger[:SEQuence]:AIQMag:SLOPe? 883
:TRIGger[:SEQuence]:ATRigger <time> 885
:TRIGger[:SEQuence]:ATRigger:STATe OFF|ON|0|1 885
:TRIGger[:SEQuence]:ATRigger:STATe? 885
:TRIGger[:SEQuence]:ATRigger? 885
:TRIGger[:SEQuence]:EXTernal1:DELay <time> 1016
:TRIGger[:SEQuence]:EXTernal1:DELay <time> 843
:TRIGger[:SEQuence]:EXTernal1:DELay:STATe OFF|ON|0|1 1016
:TRIGger[:SEQuence]:EXTernal1:DELay:STATe OFF|ON|0|1 843
:TRIGger[:SEQuence]:EXTernal1:DELay:STATe? 1016
:TRIGger[:SEQuence]:EXTernal1:DELay:STATe? 843
:TRIGger[:SEQuence]:EXTernal1:DELay? 1016
:TRIGger[:SEQuence]:EXTernal1:DELay? 843
:TRIGger[:SEQuence]:EXTernal1:HOLDoff <time> 1017
:TRIGger[:SEQuence]:EXTernal1:HOLDoff:STATe OFF|ON|0|1 1017

List of Commands

:TRIGger[:SEQuence]:EXTernal1:HOLDoff:STATe? 1017
:TRIGger[:SEQuence]:EXTernal1:HOLDoff:TYPE BELow|ABOVe 1018
:TRIGger[:SEQuence]:EXTernal1:HOLDoff:TYPE? 1018
:TRIGger[:SEQuence]:EXTernal1:HOLDoff? 1017
:TRIGger[:SEQuence]:EXTernal1:LEVel <level> 842
:TRIGger[:SEQuence]:EXTernal1:LEVel <voltage> 1015
:TRIGger[:SEQuence]:EXTernal1:LEVel? 1015
:TRIGger[:SEQuence]:EXTernal1:LEVel? 842
:TRIGger[:SEQuence]:EXTernal1:SLOPe POSitive|NEGative 1016
:TRIGger[:SEQuence]:EXTernal1:SLOPe POSitive|NEGative 842
:TRIGger[:SEQuence]:EXTernal1:SLOPe? 1016
:TRIGger[:SEQuence]:EXTernal1:SLOPe? 842
:TRIGger[:SEQuence]:EXTernal2:DELay <time> 846
:TRIGger[:SEQuence]:EXTernal2:DELay:STATe OFF|ON|0|1 846
:TRIGger[:SEQuence]:EXTernal2:DELay:STATe? 846
:TRIGger[:SEQuence]:EXTernal2:DELay? 846
:TRIGger[:SEQuence]:EXTernal2:LEVel 845
:TRIGger[:SEQuence]:EXTernal2:LEVel? 845
:TRIGger[:SEQuence]:EXTernal2:SLOPe POSitive|NEGative 845
:TRIGger[:SEQuence]:EXTernal2:SLOPe? 845
:TRIGger[:SEQuence]:FRAMe:ADJust <time> 854
:TRIGger[:SEQuence]:FRAMe:DELay <time> 858
:TRIGger[:SEQuence]:FRAMe:DELay:STATe OFF|ON|0|1 858
:TRIGger[:SEQuence]:FRAMe:DELay:STATe? 858
:TRIGger[:SEQuence]:FRAMe:DELay?. 858
:TRIGger[:SEQuence]:FRAMe:OFFSet <time> 853
:TRIGger[:SEQuence]:FRAMe:OFFSet:DISPlay:RESet 855
:TRIGger[:SEQuence]:FRAMe:OFFSet? 853
:TRIGger[:SEQuence]:FRAMe:PERiod <time> 852
:TRIGger[:SEQuence]:FRAMe:PERiod? 852
:TRIGger[:SEQuence]:FRAMe:SYNC EXTernal1|EXTernal2|RFBurst|OFF 855

List of Commands

:TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff <time> 858
:TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff:STATe OFF|ON|0|1 858
:TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff:STATe? 858
:TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff? 858
:TRIGger[:SEQuence]:FRAMe:SYNC? 855
:TRIGger[:SEQuence]:HOLDoff <time> 886
:TRIGger[:SEQuence]:HOLDoff:STATe OFF|ON|0|1 886
:TRIGger[:SEQuence]:HOLDoff:STATe? 886
:TRIGger[:SEQuence]:HOLDoff:TYPE NORMal|ABOVe|BELow 887
:TRIGger[:SEQuence]:HOLDoff:TYPE? 887
:TRIGger[:SEQuence]:HOLDoff? 886
:TRIGger[:SEQuence]:IDEMod:DELay <time> 877
:TRIGger[:SEQuence]:IDEMod:DELay:STATe OFF|ON|0|1 877
:TRIGger[:SEQuence]:IDEMod:DELay:STATe? 877
:TRIGger[:SEQuence]:IDEMod:DELay? 877
:TRIGger[:SEQuence]:IDEMod:LEVel < voltage> 876
:TRIGger[:SEQuence]:IDEMod:LEVel? 876
:TRIGger[:SEQuence]:IDEMod:SLOPe POSitive | NEGative 877
:TRIGger[:SEQuence]:IDEMod:SLOPe? 877
:TRIGger[:SEQuence]:IINPut:DELay <time> 880
:TRIGger[:SEQuence]:IINPut:DELay:STATe OFF|ON|0|1 880
:TRIGger[:SEQuence]:IINPut:DELay:STATe? 880
:TRIGger[:SEQuence]:IINPut:DELay? 880
:TRIGger[:SEQuence]:IINPut:LEVel <voltage> 879
:TRIGger[:SEQuence]:IINPut:LEVel? 879
:TRIGger[:SEQuence]:IINPut:SLOPe POSitive | NEGative 880
:TRIGger[:SEQuence]:IINPut:SLOPe? 880
:TRIGger[:SEQuence]:IQMag:DELay <time> 876
:TRIGger[:SEQuence]:IQMag:DELay:STATe OFF|ON|0|1 876
:TRIGger[:SEQuence]:IQMag:DELay:STATe? 876
:TRIGger[:SEQuence]:IQMag:DELay? 876

List of Commands

:TRIGger[:SEQuence]:IQMag:LEVel <ampl > 875
:TRIGger[:SEQuence]:IQMag:LEVel? 875
:TRIGger[:SEQuence]:IQMag:SLOPe POSitive | NEGative 875
:TRIGger[:SEQuence]:IQMag:SLOPe? 875
:TRIGger[:SEQuence]:LINE:DELay <time> 840
:TRIGger[:SEQuence]:LINE:DELay:STATe OFF|ON|0|1 840
:TRIGger[:SEQuence]:LINE:DELay:STATe? 840
:TRIGger[:SEQuence]:LINE:DELay? 840
:TRIGger[:SEQuence]:LINE:SLOPe POSitive|NEGative 840
:TRIGger[:SEQuence]:LINE:SLOPe? 840
:TRIGger[:SEQuence]:LXI:ALARm:DISable:ALL 866
:TRIGger[:SEQuence]:LXI:ALARm:LIST? 866
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:CONFigure "alarmEvent", <enable>, <epochSeconds>, <epochFrac- tion>, <period>, <repeat> 874
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:ENABled "alarmEvent",ON|OFF|1|0 873
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:ENABled? "alarmEvent" 873
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:PERiod "alarmEvent",<seconds> 872
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:PERiod? "alarmEvent" 872
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:REPeat "alarmEvent",,<repetitions> 872
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:REPeat? "alarmEvent" 873
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME:SEConds "alarmEvent",<seconds> 870
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME:SEConds? "alarmEvent" 870
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue] "alarmEvent",<seconds>, <fractionalSeconds> 869
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:ABSolute "alarmEvent","date","time" 867
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:ABSolute? "alarmEvent" 867
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:FRACtion "alarmEvent",<fractionalSeconds> 871
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:FRACtion? "alarmEvent" 871
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:RELative "alarmEvent",<seconds> 871
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:RELative? "alarmEvent". 872
:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]? 870
:TRIGger[:SEQuence]:LXI:LAN:ADD "LANEVENT" 862

List of Commands

:TRIGger[:SEQuence]:LXI:LAN:COUNt? 864
:TRIGger[:SEQuence]:LXI:LAN:DISable:ALL 860
:TRIGger[:SEQuence]:LXI:LAN:LIST? 860
:TRIGger[:SEQuence]:LXI:LAN:REMove:ALL 863
:TRIGger[:SEQuence]:LXI:LAN:REMove[:EVENt] "LANEVENT" 863
:TRIGger[:SEQuence]:LXI:LAN[:SET]:CONFigure "lanEvent", <enable>, <detection>, <delay>, <filter>,<identi-fier>865
:TRIGger[:SEQuence]:LXI:LAN[:SET]:DELay "LANEVENT",<time> 861
:TRIGger[:SEQuence]:LXI:LAN[:SET]:DELay? "lanEvent" 861
:TRIGger[:SEQuence]:LXI:LAN[:SET]:DETection "LANEVENT", HIGH|LOW|RISE|FALL 860
:TRIGger[:SEQuence]:LXI:LAN[:SET]:DETection? "LANEVENT" 861
:TRIGger[:SEQuence]:LXI:LAN[:SET]:ENABled "LANEVENT",ON|OFF|1|0 862
:TRIGger[:SEQuence]:LXI:LAN[:SET]:ENABled? "LANEVENT" 862
:TRIGger[:SEQuence]:LXI:LAN[:SET]:FILTer "LANEVENT","filterString". 864
:TRIGger[:SEQuence]:LXI:LAN[:SET]:FILTer? 864
:TRIGger[:SEQuence]:LXI:LAN[:SET]:IDENtifier "LANEVENT","identifier" 865
:TRIGger[:SEQuence]:LXI:LAN[:SET]:IDENtifier? "LANEVENT" 865
:TRIGger[:SEQuence]:OFFSet <time> 887
:TRIGger[:SEQuence]:OFFSet:STATe OFF|ON|0|1 887
:TRIGger[:SEQuence]:OFFSet:STATe? 887
:TRIGger[:SEQuence]:OFFSet?. 887
:TRIGger[:SEQuence]:QDEMod:DELay <time> 879
:TRIGger[:SEQuence]:QDEMod:DELay:STATe OFF|ON|0|1 879
:TRIGger[:SEQuence]:QDEMod:DELay:STATe? 879
:TRIGger[:SEQuence]:QDEMod:DELay? 879
:TRIGger[:SEQuence]:QDEMod:LEVel <voltage> 878
:TRIGger[:SEQuence]:QDEMod:LEVel? 878
:TRIGger[:SEQuence]:QDEMod:SLOPe POSitive | NEGative 878
:TRIGger[:SEQuence]:QDEMod:SLOPe? 878
:TRIGger[:SEQuence]:QINPut:DELay <time> 882
:TRIGger[:SEQuence]:QINPut:DELay:STATe OFF|ON|0|1 882

List of Commands

:TRIGger[:SEQuence]:QINPut:DELay:STATe? 882
:TRIGger[:SEQuence]:QINPut:DELay? 882
:TRIGger[:SEQuence]:QINPut:LEVel <voltage> 881
:TRIGger[:SEQuence]:QINPut:LEVel? 881
:TRIGger[:SEQuence]:QINPut:SLOPe POSitive | NEGative 881
:TRIGger[:SEQuence]:QINPut:SLOPe? 881
:TRIGger[:SEQuence]:RECording:BASeband:DELay <time> 1023
:TRIGger[:SEQuence]:RECording:BASeband:DELay:STATe OFF|ON|0|1 1023
:TRIGger[:SEQuence]:RECording:BASeband:DELay:STATe? 1023
:TRIGger[:SEQuence]:RECording:BASeband:DELay? 1023
:TRIGger[:SEQuence]:RECording:BASeband:HOLDoff <time> 1024
:TRIGger[:SEQuence]:RECording:BASeband:HOLDoff:TYPE BELow|ABOVe 1024
:TRIGger[:SEQuence]:RECording:BASeband:HOLDoff:TYPE? 1024
:TRIGger[:SEQuence]:RECording:BASeband:HOLDoff? 1024
:TRIGger[:SEQuence]:RECording:BASeband:LEVel < voltage> 1022
:TRIGger[:SEQuence]:RECording:BASeband:LEVel?. 1022
:TRIGger[:SEQuence]:RECording:BASeband:SLOPe POSitive|NEGative 1023
:TRIGger[:SEQuence]:RECording:BASeband:SLOPe? 1023
:TRIGger[:SEQuence]:RECording:VIDeo:DELay <time> 1020
:TRIGger[:SEQuence]:RECording:VIDeo:DELay:STATe OFF|ON|0|1 1020
:TRIGger[:SEQuence]:RECording:VIDeo:DELay:STATe? 1020
:TRIGger[:SEQuence]:RECording:VIDeo:DELay? 1020
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff <time> 1020
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:STATe OFF|ON|0|1 1020
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:STATe? 1020
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:TYPE BELow|ABOVe 1021
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:TYPE? 1021
:TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff? 1020
:TRIGger[:SEQuence]:RECording:VIDeo:LEVel <voltage> 1019
:TRIGger[:SEQuence]:RECording:VIDeo:LEVel? 1019
:TRIGger[:SEQuence]:RECording:VIDeo:SLOPe POSitive|NEGative 1019

List of Commands

:TRIGger[:SEQuence]:RECording:VIDeo:SLOPe? 1019
:TRIGger[:SEQuence]:RFBurst:DELay <time> 850
:TRIGger[:SEQuence]:RFBurst:DELay:STATe OFF|ON|0|1 850
:TRIGger[:SEQuence]:RFBurst:DELay:STATe? 850
:TRIGger[:SEQuence]:RFBurst:DELay? 850
:TRIGger[:SEQuence]:RFBurst:LEVel:ABSolute <ampl> 847
:TRIGger[:SEQuence]:RFBurst:LEVel:ABSolute? 847
:TRIGger[:SEQuence]:RFBurst:LEVel:RELative <rel_ampl> 849
:TRIGger[:SEQuence]:RFBurst:LEVel:RELative? 849
:TRIGger[:SEQuence]:RFBurst:LEVel:TYPE ABSolute|RELative 848
:TRIGger[:SEQuence]:RFBurst:LEVel:TYPE? 848
:TRIGger[:SEQuence]:RFBurst:SLOPe POSitive|NEGative 849
:TRIGger[:SEQuence]:RFBurst:SLOPe? 849
:TRIGger[:SEQuence]:RLINe OFF|ON|0|1 1010
:TRIGger[:SEQuence]:RLINe? 1010
:TRIGger[:SEQuence]:VIDeo:DELay <time> 1013
:TRIGger[:SEQuence]:VIDeo:DELay <time> 838
:TRIGger[:SEQuence]:VIDeo:DELay:STATe OFF|ON|0|1 1013
:TRIGger[:SEQuence]:VIDeo:DELay:STATe OFF|ON|0|1 838
:TRIGger[:SEQuence]:VIDeo:DELay:STATe? 1013
:TRIGger[:SEQuence]:VIDeo:DELay:STATe? 838
:TRIGger[:SEQuence]:VIDeo:DELay? 1013
:TRIGger[:SEQuence]:VIDeo:DELay? 838
:TRIGger[:SEQuence]:VIDeo:HOLDoff <time> 1014
:TRIGger[:SEQuence]:VIDeo:HOLDoff:STATe OFF|ON|0|1 1014
:TRIGger[:SEQuence]:VIDeo:HOLDoff:STATe? 1014
:TRIGger[:SEQuence]:VIDeo:HOLDoff:TYPE BELow|ABOVe 1015
:TRIGger[:SEQuence]:VIDeo:HOLDoff:TYPE? 1015
:TRIGger[:SEQuence]:VIDeo:HOLDoff? 1014
:TRIGger[:SEQuence]:VIDeo:LEVel <ampl> 837
:TRIGger[:SEQuence]:VIDeo:LEVel < voltage> 1012

List of Commands

:TRIGger[:SEQuence]:VIDeo:LEVel? 1012
:TRIGger[:SEQuence]:VIDeo:LEVel? 837
:TRIGger[:SEQuence]:VIDeo:SLOPe POSitive|NEGative 1012
:TRIGger[:SEQuence]:VIDeo:SLOPe POSitive|NEGative 838
:TRIGger[:SEQuence]:VIDeo:SLOPe? 1012
:TRIGger[:SEQuence]:VIDeo:SLOPe? 838
:TRIGger|TRIGger1|TRIGger2[:SEQuence]:OUTPut HSWP|MEASuring|MAIN|GATE|GTRigger|OEV- en|SPOint|SSWeep|SSETtled|S1Marker|S2Marker|S3Marker|S4Marker|OFF 606
:TRIGger|TRIGger1|TRIGger2[:SEQuence]:OUTPut:POLarity POSitive|NEGative 606
:TRIGger|TRIGger1|TRIGger2[:SEQuence]:OUTPut:POLarity? 606
:TRIGger|TRIGger1|TRIGger2[:SEQuence]:OUTPut?. 606
:TRIGger1|TRIGger[:SEQuence]:LXI:ALARm:COUNt? 874
:UNIT:POWer DBM|DBMV|DBMA|V|W|A|DBUV|DBUA|DBUVM|DBUAM|DBPT|DBG 529
:UNIT:POWer? 529
[:SENSe]:<meas>:AVERage:COUNt <integer> 940
[:SENSe]:<meas>:AVERage:COUNt? 940
[:SENSe]:<meas>:AVERage:FAST OFF|ON|0|1 942
[:SENSe]:<meas>:AVERage:FAST:URATe <integer> 943
[:SENSe]:<meas>:AVERage:FAST:URATe:AUTO OFF|ON|0|1 943
[:SENSe]:<meas>:AVERage:FAST:URATe:AUTO? 943
[:SENSe]:<meas>:AVERage:FAST:URATe? 943
[:SENSe]:<meas>:AVERage:FAST? 942
[:SENSe]:<meas>:AVERage:TCONtrol EXPonential|REPeat 941
[:SENSe]:<meas>:AVERage:TCONtrol? 941
[:SENSe]:<meas>:AVERage:TYPE RMS|TIME|MAXimum 942
[:SENSe]:<meas>:AVERage:TYPE?. 942
[:SENSe]:<meas>:AVERage[:STATe] OFF|ON|0|1 940
[:SENSe]:<meas>:AVERage[:STATe]? 940
[:SENSe]:<meas>:BANDwidth|BWIDth[:RESolution] <bandwidth> 907
[:SENSe]:<meas>:BANDwidth|BWIDth[:RESolution]:COUPle SPAN|MIN|FIXed 908
[:SENSe]:<meas>:BANDwidth|BWIDth[:RESolution]:COUPle? 908

List of Commands

[:SENSe]:<meas>:BANDwidth|BWIDth[:RESolution]? 907
[:SENSe]:<meas>:FFT:WINDow[:TYPE] UNIForm|HANNing|GAUSsian|FLATtop 909
[:SENSe]:<meas>:FFT:WINDow[:TYPE]? 909
[:SENSe]:<meas>:FREQuency:SYNThesis[:STATe] 1|2 943
[:SENSe]:<meas>:FREQuency:SYNThesis[:STATe]? 943
[:SENSe]:<meas>:PUPDate:ENABle OFF|ON|0|1 1047
[:SENSe]:<meas>:PUPDate:ENABle? 1047
[:SENSe]:<meas>:SWEep:EGATe:DELay <time> 966
[:SENSe]:<meas>:SWEep:EGATe:DELay? 966
[:SENSe]:<meas>:SWEep:EGATe:STATe OFF|ON|0|1 965
[:SENSe]:<meas>:SWEep:EGATe:STATe? 965
[:SENSe]:<meas>:SWEep:EGATe[:SPAN] <time> 965
[:SENSe]:<meas>:SWEep:EGATe[:SPAN]? 965
[:SENSe]:<meas>:SWEep:ISRate? 1046
[:SENSe]:<meas>:SWEep:POINts <integer> 967
[:SENSe]:<meas>:SWEep:POINts:AUTO OFF|ON|0|1 967
[:SENSe]:<meas>:SWEep:POINts:AUTO? 967
[:SENSe]:<meas>:SWEep:POINts? 967
[:SENSe]:<meas>:SWEep:TIME <time> 964
[:SENSe]:<meas>:SWEep:TIME? 964
[:SENSe]:ADC:DITHer:AUTO[:STATe] OFF|ON|0|1 727
[:SENSe]:ADC:DITHer:AUTO[:STATe]? 727
[:SENSe]:ADC:DITHer[:STATe] OFF|ON|HIGH 726
[:SENSe]:ADC:DITHer[:STATe]? 726
[:SENSe]:AVERage:CLEar 696
[:SENSe]:AVERage:COUNt <integer> 695
[:SENSe]:AVERage:COUNt? 695
[:SENSe]:AVERage:TYPE RMS|LOG|SCALar [:SENSe]:AVERage:TYPE? 697
[:SENSe]:AVERage:TYPE:AUTO OFF|ON|0|1 696
[:SENSe]:AVERage:TYPE:AUTO? 696
[:SENSe]:BANDwidth|BWIDth:SHAPe GAUSsian|FLATtop 552

List of Commands

[:SENSe]:BANDwidth|BWIDth:SHAPe? 552
[:SENSe]:BANDwidth|BWIDth:TYPE DB3|DB6|IMPulse|NOISe 554
[:SENSe]:BANDwidth|BWIDth:TYPE? 554
[:SENSe]:BANDwidth|BWIDth:VIDeo <freq> 547
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO OFF|ON|0|1 547
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO? 547
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio <real> 549
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio:AUTO OFF|ON|0|1 549
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio:AUTO? 549
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio?. 549
[:SENSe]:BANDwidth|BWIDth:VIDeo? 547
[:SENSe]:BANDwidth|BWIDth[:RESolution] <freq> 545
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO OFF|ON|0|1 545
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO? 545
[:SENSe]:BANDwidth|BWIDth[:RESolution]? 545
[:SENSe]:CORRection:BTS[:RF]:GAIN <rel_ampl> 582
[:SENSe]:CORRection:BTS[:RF]:GAIN? 582
[:SENSe]:CORRection:CSET:ALL:DELete 599
[:SENSe]:CORRection:CSET:ALL[:STATe] ON|OFF|1|0 599
[:SENSe]:CORRection:CSET:ALL[:STATe]? 599
[:SENSe]:CORRection:CSET[1]|2|3|4:ANTenna[:UNIT] GAUSs|PTESla|UVM|UAM|NOConversion 592
[:SENSe]:CORRection:CSET[1]|2|3|4:ANTenna[:UNIT]? 592
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:COMMent "text" 596
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:COMMent?. 596
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DATA <freq>, <ampl>, 599
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DATA:MERGe <freq>, <ampl>, 600
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DATA? 599
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DELete 598
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DESCription "text" 595
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DESCription? 595
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:X:SPACing LINear|LOGarithmic 594

List of Commands

[:SENSe]:CORRection:CSET[1]|2|3|4|5|6:X:SPACing? 594
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6[:STATe] ON|OFF|1|0 591
[:SENSe]:CORRection:CSET[1]|2|3|4|5|6[:STATe]? 591
[:SENSe]:CORRection:FEQualizer OFF|NORMal|INVert 762
[:SENSe]:CORRection:FEQualizer:REGister D1|D2|D3|D4|D5|D6 762
[:SENSe]:CORRection:FEQualizer:REGister? 762
[:SENSe]:CORRection:FEQualizer:RELative? 763
[:SENSe]:CORRection:FEQualizer? 762
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude] 50|75. 560
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude]? 560
[:SENSe]:CORRection:IQ:I:GAIN <rel_ampl> 583
[:SENSe]:CORRection:IQ:I:GAIN? 583
[:SENSe]:CORRection:IQ:I|Q:ATTenuation <rel_ampl> 574
[:SENSe]:CORRection:IQ:I|Q:ATTenuation:RATio <real> 574
[:SENSe]:CORRection:IQ:I|Q:ATTenuation:RATio? 574
[:SENSe]:CORRection:IQ:I|Q:ATTenuation? 574
[:SENSe]:CORRection:IQ:Q:GAIN <rel_ampl> 584
[:SENSe]:CORRection:IQ:Q:GAIN? 584
[:SENSe]:CORRection:IQ:Q:SKEW <seconds> 573
[:SENSe]:CORRection:IQ:Q:SKEW? 573
[:SENSe]:CORRection:IQ[:I]:SKEW <seconds> 569
[:SENSe]:CORRection:IQ[:I]:SKEW? 569
[:SENSe]:CORRection:MS[:RF]:GAIN <rel_ampl> 581
[:SENSe]:CORRection:MS[:RF]:GAIN? 581
[:SENSe]:CORRection:SA[:RF]:GAIN <rel_ampl> 581
[:SENSe]:CORRection:SA[:RF]:GAIN? 581
[:SENSe]:DEMod AM|FM|PM|OFF 732
[:SENSe]:DEMod:AM:BANDwidth:CHANnel <freq> 733
[:SENSe]:DEMod:AM:BANDwidth:CHANnel? 733
[:SENSe]:DEMod:FM:BANDwidth:CHANnel <freq> 734
[:SENSe]:DEMod:FM:BANDwidth:CHANnel? 734

List of Commands

[:SENSe]:DEMod:FM:DEEMphasis OFF|US25|US50|US75|US750 734
[:SENSe]:DEMod:FM:DEEMphasis? 734
[:SENSe]:DEMod:PM:BANDwidth:CHANnel <freq> 736
[:SENSe]:DEMod:PM:BANDwidth:CHANnel? 736
[:SENSe]:DEMod:STATe OFF|ON|0|1 737
[:SENSe]:DEMod:STATe? 737
[:SENSe]:DEMod:TIME <time> 737
[:SENSe]:DEMod:TIME? 737
[:SENSe]:DEMod? 732
[:SENSe]:FCAPture:BLOCk <integer> 1044
[:SENSe]:FCAPture:BLOCk? 1044
[:SENSe]:FCAPture:LENGth <integer> 1043
[:SENSe]:FCAPture:LENGth? 1043
[:SENSe]:FCAPture:POINter <integer> 1045
[:SENSe]:FCAPture:POINter? 1045
[:SENSe]:FCAPture:WLENgth AUTO|BIT32|BIT64. 1043
[:SENSe]:FCAPture:WLENgth? 1043
[:SENSe]:FEED RF|AIQ|IQ|IONLy|QONLy|INDependent|AREFerence. 559
[:SENSe]:FEED:AREFerence REF50|REF4800|OFF 578
[:SENSe]:FEED:AREFerence? 578
[:SENSe]:FEED:DATA INPut|STORed|RECorded 585
[:SENSe]:FEED:DATA:STORe 587
[:SENSe]:FEED:DATA? 585
[:SENSe]:FEED:IQ:TYPE IQ|IONLy|QONLy|INDependent 565
[:SENSe]:FEED:IQ:TYPE? 565
[:SENSe]:FEED:RF:PORT[:INPut] RFIN|RFIN2|RFIO1|RFIO2 562
[:SENSe]:FEED:RF:PORT[:INPut]? 562
[:SENSe]:FEED? 559
[:SENSe]:FREQuency:CENTer <freq> 910
[:SENSe]:FREQuency:CENTer:STEP:AUTO OFF|ON|0|1 912
[:SENSe]:FREQuency:CENTer:STEP:AUTO?. 912

List of Commands

[:SENSe]:FREQuency:CENTer:STEP[:INCRement] <freq> 912
[:SENSe]:FREQuency:CENTer:STEP[:INCRement]? 912
[:SENSe]:FREQuency:CENTer? 910
[:SENSe]:FREQuency:SPAN <freq> 955
[:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio <integer> 551
[:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio:AUTO OFF|ON|0|1 551
[:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio:AUTO? 551
[:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio? 551
[:SENSe]:FREQuency:SPAN:FULL 955
[:SENSe]:FREQuency:SPAN? 955
[:SENSe]:FREQuency:STARt < freq> 911
[:SENSe]:FREQuency:STARt? 911
[:SENSe]:FREQuency:STOP <freq> 911
[:SENSe]:FREQuency:STOP? 911
[:SENSe]:FREQuency:SYNThesis:AUTO[:STATe] OFF|ON|0|1 724
[:SENSe]:FREQuency:SYNThesis:AUTO[:STATe]? 724
[:SENSe]:FREQuency:SYNThesis[:STATe] 1|2|3 723
[:SENSe]:FREQuency:SYNThesis[:STATe]? 723
[:SENSe]:IDEMod:ADRoop:COMPensation OFF|ON|0|1 435
[:SENSe]:IDEMod:ADRoop:COMPensation? 435
[:SENSe]:IDEMod:ALPHa <real> 434
[:SENSe]:IDEMod:ALPHa? 434
[:SENSe]:IDEMod:ASCHannel LO|LI|RI|RO 426
[:SENSe]:IDEMod:ASCHannel? 426
[:SENSe]:IDEMod:ASLot <integer> 430
[:SENSe]:IDEMod:ASLot? 430
[:SENSe]:IDEMod:EFLock OFF|ON|0|1 433
[:SENSe]:IDEMod:EFLock? 433
[:SENSe]:IDEMod:NORMalize:STATe OFF|ON|0|1 433
[:SENSe]:IDEMod:NORMalize:STATe? 433
[:SENSe]:IDEMod:PILot:TRACk OFF|ON|0|1 436

List of Commands

[:SENSe]:IDEMod:PILot:TRACk? 436
[:SENSe]:IDEMod:SLOTs <integer> 428
[:SENSe]:IDEMod:SLOTs? 428
[:SENSe]:IDEMod:SPSYmbols:INCLude OFF|ON|0|1 435
[:SENSe]:IDEMod:SPSYmbols:INCLude? 435
[:SENSe]:IDEMod:SYNC:SLENgth <time> 430
[:SENSe]:IDEMod:SYNC:SLENgth? 430
[:SENSe]:IDEMod:TSCale <real> 435
[:SENSe]:IDEMod:TSCale? 435
[:SENSe]:IDEMod:TSEL:BERate OFF|ON|0|1 424
[:SENSe]:IDEMod:TSEL:BERate? 424
[:SENSe]:IDEMod:TSEL:EVMagnitude OFF|ON|0|1 423
[:SENSe]:IDEMod:TSEL:EVMagnitude? 423
[:SENSe]:IDEMod:TSEL:PVTime OFF|ON|0|1 424
[:SENSe]:IDEMod:TSEL:PVTime? 424
[:SENSe]:IDEMod:WCARrier <integer> 427
[:SENSe]:IDEMod:WCARrier? 427
[:SENSe]:IF:GAIN:FFT:AUTO[:STATe] OFF|ON|0|1 731
[:SENSe]:IF:GAIN:FFT:AUTO[:STATe]? 731
[:SENSe]:IF:GAIN:FFT[:STATe] AUTOrange|LOW|HIGH 730
[:SENSe]:IF:GAIN:FFT[:STATe]? 730
[:SENSe]:IF:GAIN:SWEPt:AUTO[:STATe] OFF|ON|0|1 729
[:SENSe]:IF:GAIN:SWEPt:AUTO[:STATe]? 729
[:SENSe]:IF:GAIN:SWEPt[:STATe] OFF|ON|0|1 728
[:SENSe]:IF:GAIN:SWEPt[:STATe]? 728
[:SENSe]:IPOWer:TSEL:ACPower OFF|ON|0|1 377
[:SENSe]:IPOWer:TSEL:ACPower? 377
[:SENSe]:IPOWer:TSEL:OBWidth OFF|ON|0|1 377
[:SENSe]:IPOWer:TSEL:OBWidth? 377
[:SENSe]:MONitor:AVERage:COUNt <integer> 340
[:SENSe]:MONitor:AVERage:COUNt? 340

List of Commands

[:SENSe]:MONitor:AVERage:TCONtrol EXPonential|REPeat 341
[:SENSe]:MONitor:AVERage:TCONtrol? 341
[:SENSe]:MONitor:AVERage[:STATe] OFF|ON|0|1 340
[:SENSe]:MONitor:AVERage[:STATe]? 340
[:SENSe]:MONitor:BANDwidth:VIDeo <bandwidth> 323
[:SENSe]:MONitor:BANDwidth:VIDeo:AUTO ON|OFF|1|0 323
[:SENSe]:MONitor:BANDwidth:VIDeo:AUTO? 323
[:SENSe]:MONitor:BANDwidth:VIDeo:RATio <real> [:SENSe]:MONitor:BANDwidth:VIDeo:RATio? 325
[:SENSe]:MONitor:BANDwidth:VIDeo:RATio:AUTO OFF|ON|0|1 325
[:SENSe]:MONitor:BANDwidth:VIDeo:RATio:AUTO? 325
[:SENSe]:MONitor:BANDwidth:VIDeo? 323
[:SENSe]:MONitor:BANDwidth[:RESolution] <freq> 321
[:SENSe]:MONitor:BANDwidth[:RESolution]:AUTO OFF|ON|0|1 321
[:SENSe]:MONitor:BANDwidth[:RESolution]:AUTO? 321
[:SENSe]:MONitor:BANDwidth[:RESolution]? 321
[:SENSe]:MONitor:DETector:AUTO ON|OFF|1|0 358
[:SENSe]:MONitor:DETector:AUTO? 358
[:SENSe]:MONitor:DETector:TRACe AVERage|NEGative|NORMal|POSitive|SAMPle 357
[:SENSe]:MONitor:DETector:TRACe? 357
[:SENSe]:MONitor:FREQuency:SPAN <freq> 350
[:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio <integer> 326
[:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio:AUTO OFF|ON|0|1 326
[:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio:AUTO? 326
[:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio? 326
[:SENSe]:MONitor:FREQuency:SPAN:FULL 351
[:SENSe]:MONitor:FREQuency:SPAN:PREVious 351
[:SENSe]:MONitor:FREQuency:SPAN? 350
[:SENSe]:MONitor:SWEep:POINts <integer> 354
[:SENSe]:MONitor:SWEep:POINts? 354
[:SENSe]:MONitor:SWEep:TIME <time> 353

List of Commands

[:SENSe]:MONitor:SWEep:TIME:AUTO OFF|ON|0|1 353
[:SENSe]:MONitor:SWEep:TIME:AUTO? 353
[:SENSe]:MONitor:SWEep:TIME? 353
[:SENSe]:MOTotalk: ANALysis:SLOT?. 482
[:SENSe]:MOTotalk:ANALysis:SLOT <integer> 482
[:SENSe]:MOTotalk:BT <real> 485
[:SENSe]:MOTotalk:BT? 485
[:SENSe]:MOTotalk:NORMalize:STATe OFF|ON|0|1 484
[:SENSe]:MOTotalk:NORMalize:STATe? 484
[:SENSe]:MOTotalk:SRATe <real> 485
[:SENSe]:MOTotalk:SRATe? 485
[:SENSe]:MOTotalk:SYNC:BURSt:STATe OFF|ON|0|1 486
[:SENSe]:MOTotalk:SYNC:BURSt:STATe? 486
[:SENSe]:MOTotalk[:SYNC]:SLENgth <time> 481
[:SENSe]:MOTotalk[:SYNC]:SLENgth? 481
[:SENSe]:POWer:IQ:Q:RANGe[:UPPer] <ampl> 523
[:SENSe]:POWer:IQ:Q:RANGe[:UPPer]? 523
[:SENSe]:POWer:IQ:RANGe:AUTO OFF|ON|0|1 520
[:SENSe]:POWer:IQ:RANGe:AUTO? 520
[:SENSe]:POWer:IQ[:I]:RANGe[:UPPer] <ampl> 521
[:SENSe]:POWer:IQ[:I]:RANGe[:UPPer]? 521
[:SENSe]:POWer[:RF]:ATTenuation <rel_ampl> 512
[:SENSe]:POWer[:RF]:ATTenuation:AUTO OFF|ON|0|1 512
[:SENSe]:POWer[:RF]:ATTenuation:AUTO? 512
[:SENSe]:POWer[:RF]:ATTenuation:STEP[:INCRement] $10 \mathrm{~dB} \mid 2 \mathrm{~dB}$ 518
[:SENSe]:POWer[:RF]:ATTenuation:STEP[:INCRement]? 518
[:SENSe]:POWer[:RF]:ATTenuation? 512
[:SENSe]:POWer[:RF]:EATTenuation <rel_ampl> 516
[:SENSe]:POWer[:RF]:EATTenuation:STATe OFF|ON|0|1 514
[:SENSe]:POWer[:RF]:EATTenuation:STATe?. 514
[:SENSe]:POWer[:RF]:EATTenuation? 516

List of Commands

[:SENSe]:POWer[:RF]:GAIN:BAND LOW|FULL 540
[:SENSe]:POWer[:RF]:GAIN:BAND? 540
[:SENSe]:POWer[:RF]:GAIN[:STATe] OFF|ON|0|1 539
[:SENSe]:POWer[:RF]:GAIN[:STATe]? 539
[:SENSe]:POWer[:RF]:MIXer:RANGe[:UPPer] <real> 518
[:SENSe]:POWer[:RF]:MIXer:RANGe[:UPPer]? 518
[:SENSe]:POWer[:RF]:MW:PATH STD|LNPath|MPBypass|FULL 535
[:SENSe]:POWer[:RF]:MW:PATH? 535
[:SENSe]:POWer[:RF]:PADJust <freq> 527
[:SENSe]:POWer[:RF]:PADJust:PRESelector MWAVe|MMWave|EXTernal 528
[:SENSe]:POWer[:RF]:PADJust:PRESelector? 528
[:SENSe]:POWer[:RF]:PADJust? 527
[:SENSe]:POWer[:RF]:PCENter 526
[:SENSe]:POWer[:RF]:RANGe <real> 899
[:SENSe]:POWer[:RF]:RANGe:AUTO ON|OFF|1|0 517
[:SENSe]:POWer[:RF]:RANGe:AUTO? 517
[:SENSe]:POWer[:RF]:RANGe:OPTimize IMMediate 517
[:SENSe]:POWer[:RF]:RANGe:OPTimize:ATTenuation OFF|ELECtrical|COMBined 517
[:SENSe]:POWer[:RF]:RANGe:OPTimize:ATTenuation? 517
[:SENSe]:POWer[:RF]:RANGe? 899
[:SENSe]:RADio:IDEN:CCODe <integer> 767
[:SENSe]:RADio:IDEN:CCODe? 767
[:SENSe]:RADio:IDEN:FORMat M4QAM|M16QAM|M64QAM 763
[:SENSe]:RADio:IDEN:FORMat? 763
[:SENSe]:RADio:IDEN:SLOT TCHFull|RAP|TCHN61|TCHN61T|TCHE61|WIDen|OTCFull|OTCN61 764
[:SENSe]:RADio:IDEN:SLOT? 764
[:SENSe]:RADio:IDEN:WCARrier I25|I50|O50|I75|I100 767
[:SENSe]:RADio:IDEN:WCARrier? 767
[:SENSe]:RECording:ABORt 588
[:SENSe]:RECording:INITiate[:IMMediate] 588
[:SENSe]:RECording:LENGth <real>,SEConds|RECords|POINts 588

List of Commands

[:SENSe]:RECording:LENGth:STATe MAX|MANual 588
[:SENSe]:RECording:LENGth:STATe? 588
[:SENSe]:RECording:LENGth:UNIT? 589
[:SENSe]:RECording:LENGth:VALue? 589
[:SENSe]:ROSCillator:BANDwidth WIDE|NARRow 604
[:SENSe]:ROSCillator:BANDwidth? 604
[:SENSe]:ROSCillator:COUPling NORMal|NACQuisition 605
[:SENSe]:ROSCillator:COUPling? 605
[:SENSe]:ROSCillator:EXTernal:FREQuency <freq> 603
[:SENSe]:ROSCillator:EXTernal:FREQuency? 603
[:SENSe]:ROSCillator:SOURce INTernal|EXTernal 602
[:SENSe]:ROSCillator:SOURce:TYPE INTernal|EXTernal|SENSe 601
[:SENSe]:ROSCillator:SOURce:TYPE? 601
[:SENSe]:ROSCillator:SOURce? 601
[:SENSe]:SPECtrum NORMal|INVert. 761
[:SENSe]:SPECtrum? 761
[:SENSe]:SWEep:EGATe:CONTrol EDGE|LEVel 820
[:SENSe]:SWEep:EGATe:CONTrol? 820
[:SENSe]:SWEep:EGATe:DELay <time> 816
[:SENSe]:SWEep:EGATe:DELay:COMPensation:TYPE OFF|SETTled|GDELay 822
[:SENSe]:SWEep:EGATe:DELay:COMPensation:TYPE? 822
[:SENSe]:SWEep:EGATe:DELay? 816
[:SENSe]:SWEep:EGATe:HOLDoff <time> 821
[:SENSe]:SWEep:EGATe:HOLDoff:AUTO OFF|ON|0|1 821
[:SENSe]:SWEep:EGATe:HOLDoff:AUTO? 821
[:SENSe]:SWEep:EGATe:HOLDoff? 821
[:SENSe]:SWEep:EGATe:LENGth <time> 816
[:SENSe]:SWEep:EGATe:LENGth? 816
[:SENSe]:SWEep:EGATe:METHod LO|VIDeo|FFT 817
[:SENSe]:SWEep:EGATe:METHod? 817
[:SENSe]:SWEep:EGATe:MINFast? 823

List of Commands

[:SENSe]:SWEep:EGATe:SOURce EXTernal1|EXTernal2 |LINE|FRAMe|RFBurst 819
[:SENSe]:SWEep:EGATe:SOURce? 819
[:SENSe]:SWEep:EGATe:TIME <time> 815
[:SENSe]:SWEep:EGATe:TIME? 815
[:SENSe]:SWEep:EGATe:VIEW ON|OFF|1|0. 812
[:SENSe]:SWEep:EGATe:VIEW? 812
[:SENSe]:SWEep:EGATe[:STATe] OFF|ON|0|1 811
[:SENSe]:SWEep:EGATe[:STATe]? 811
[:SENSe]:SWEep:FFT:WIDTh <real> 807
[:SENSe]:SWEep:FFT:WIDTh:AUTO OFF|ON|0|1 808
[:SENSe]:SWEep:FFT:WIDTh:AUTO? 808
[:SENSe]:SWEep:FFT:WIDTh? 807
[:SENSe]:SWEep:POINts <integer> 824
[:SENSe]:SWEep:POINts?. 824
[:SENSe]:SWEep:TIME <time> 798
[:SENSe]:SWEep:TIME:AUTO OFF|ON|0|1 798
[:SENSe]:SWEep:TIME:AUTO:RULes NORMal|ACCuracy|SRESponse 800
[:SENSe]:SWEep:TIME:AUTO:RULes:AUTO[:STATe] ON|OFF|1|0 801
[:SENSe]:SWEep:TIME:AUTO:RULes:AUTO[:STATe]? 801
[:SENSe]:SWEep:TIME:AUTO:RULes? 800
[:SENSe]:SWEep:TIME:AUTO?. 798
[:SENSe]:SWEep:TIME? 798
[:SENSe]:SWEep:TYPE FFT|SWEep 803
[:SENSe]:SWEep:TYPE:AUTO OFF|ON|0|1 804
[:SENSe]:SWEep:TYPE:AUTO:RULes SPEed|DRANge 805
[:SENSe]:SWEep:TYPE:AUTO:RULes:AUTO[:STATe] OFF|ON|0|1 806
[:SENSe]:SWEep:TYPE:AUTO:RULes:AUTO[:STATe]? 806
[:SENSe]:SWEep:TYPE:AUTO:RULes? 805
[:SENSe]:SWEep:TYPE:AUTO? 804
[:SENSe]:SWEep:TYPE? 803
[:SENSe]:SWEep:TZOom:POINts <integer> 825

List of Commands

[:SENSe]:SWEep:TZOom:POINts? 825
[:SENSe]:VECTor|ADEMod:FREQuency:CENTer:TRACk OFF|ON|0|1 956
[:SENSe]:VECTor|ADEMod:FREQuency:CENTer:TRACk? 956
[:SENSe]:VOLTage:IQ:Q:RANGe[:UPPer] <voltage> 522
[:SENSe]:VOLTage:IQ:Q:RANGe[:UPPer]? 522
[:SENSe]:VOLTage:IQ:RANGe:AUTO OFF|ON|0|1 520
[:SENSe]:VOLTage:IQ:RANGe:AUTO? 520
[:SENSe]:VOLTage:IQ[:I]:RANGe[:UPPer] <voltage> 521
[:SENSe]:VOLTage:IQ[:I]:RANGe[:UPPer]? 521
[:SENSe]:VOLTage|POWer:IQ:MIRRored OFF|ON|0|1 522
[:SENSe]:VOLTage|POWer:IQ:MIRRored? 522
CALCulate:IPOWer:PCALculation MOD|FULL 378
CALCulate:IPOWer:PCALculation? 378
CONF:IDEMod 425
CONF:IPOWer. 377
CONF:MOTotalk 481
CONFigure:MOTotalk:NDEFault 467
CONFigure:MOTotalk 467
FETCh:MOTotalk[n]? 467
INITiate:MOTotalk 467
MEASure:MOTotalk[n]? 467
Only table results may be obtained using FETCh. The tables available for the Vector Analysis measurement are ACPand OccBW tables, which are available to any VSA measurement.295
OUTPut:ANALog:AUTO OFF|ON|0|1 609
OUTPut:ANALog:AUTO? 609
READ:MOTotalk[n]?. 467
System, I/O Config, LXI 237
SYSTem:PDOWn [NORMal|FORCe]. 288

1 Using Help

Welcome to the X-Series Signal Analyzer Help system!
The online Help system is "context-sensitive". This means that the information displayed when you invoke the Help system depends on the selected Analyzer Mode, Measurement and key.

TIP
To view help for any front-panel key or menu key, press that key with this Help Window open.

To scroll any page vertically (to see the whole of a long topic), press the Down Arrow key on the front panel to scroll down (or the Up Arrow key to scroll up). To locate these keys, see "Front Panel Keys used by the Help System" on page 89.

See "Navigating the Help Window Without a Mouse" on page 94 for complete information about Using Help without an attached Mouse and Keyboard. For specific details of how to navigate to topics, see "Finding a Topic without a Mouse and Keyboard" on page 103.

See "Navigating the Help Window with a Mouse" on page 92 to learn about Using Help with an attached Mouse and Keyboard.

You can view Help on the Analyzer itself, or you can View Help on Another Computer, by copying the Help files and viewing Help there. For details, see the Section "Viewing Help on a separate Computer" on page 83.

To locate Other Available Help Resources, see "Locating Other Help Resources" on page 82.

Key Path	Help

Locating Other Help Resources

All available documentation is present on the Analyzer's hard disk, either as HTML Help or Acrobat PDF files.

In addition to the interactive Windows (HTML) Help system, the Analyzer's hard disk contains Application Notes, tutorial documents, etc.

This same documentation is also included on the Documentation CD shipped with your Analyzer.
Many of the supporting documents use the Adobe Acrobat (PDF) file format. You can view PDF files using the pre-installed Adobe Reader software.

The Adobe Reader user interface differs from the Windows Help interface. For full details on how to navigate within Acrobat documents using Adobe Reader, see "Navigating Acrobat (PDF) Files" on page 98.

Viewing Help on a separate Computer

You may want to view the help pages without having them appear on top of the Analyzer's screen.
There are two separate Help files for each Analyzer Mode, which contain all the same help pages in different formats:

1. A file in HTML Help (CHM) format,
2. A file in Acrobat (PDF) format.

You can copy any of the Help files to another computer, then open and view the help pages in the file on that computer.

Your choice of which file to copy and view may depend on what you want to do with the file (for example, whether you want to print it and read the paper copy, or view it on the computer). The table below compares the relative advantages of the two formats:

Format Type	HTML Help Format (CHM Files)	Acrobat Format (PDF Files)
File Extension	CHM	PDF
Software Required to view file	Microsoft Windows operating system only, with Microsoft Internet Explorer installed.	Free Adobe Reader software can be downloaded for many operating systems, including: Microsoft Windows, Macintosh, Linux, Solaris.
Full Text Search?	Yes	Yes
Printable?	Yes, but with limited control.	Yes. Full print control.
Printable Table of Contents?	No	Yes
Navigable without a Mouse and Keyboard?	Yes, but with some loss of functionality.	Yes
Has Page Numbers? No	No	
Context-Sensitive Yes, when viewed using the X-Series Display? Analyzer application window.	No	
Indexed?	Yes	Yes

Copying the HTML Help (CHM) Files

You can copy the HTML Help file(s) you need to a separate computer running Microsoft Windows. Each HTML Help file has a .chm extension.

You can find the HTML Help (.chm) files:

- Either, on the documentation CD that came with the Analyzer,
- Or, in a special directory on the Analyzer's hard disk. The directory path is:

C:\Program Files \Agilent\SignalAnalysis \Infrastructure\Help
The illustration below shows an example listing of the HTML Help files in this directory, viewed using Windows Explorer.
Depending on which Analyzer software licenses you purchased, the content of the directory on your machine may vary.

NOTE You can open and view the HTML Help files only on a PC that has Microsoft Windows and Microsoft Internet Explorer installed.

Copying the Acrobat (PDF) Files

You can copy the Acrobat file(s) you need to a separate computer running any of several different operating systems. Each Acrobat file has a .pdf extension.

You can find the Acrobat (.pdf) files:

- Either, on the documentation CD that came with the Analyzer,
- Or, in a special directory on the Analyzer's hard disk. The directory path is: C:\Program Files\Agilent\SignalAnalysis\Infrastructure\Help\bookfiles
- The illustration below shows an example listing of the Acrobat files in this directory, viewed using Windows Explorer.
- The PDF versions of the help files are named <mode>_ref.pdf, where <mode> is the name of the Analyzer Mode. For example, the name of the PDF file for GSM/EDGE Mode is gsmedge_ref.pdf. (Note that the directory also contains other PDF documents.)
- When you open any <mode>_ref.pdf document, the title page displays "<Mode> User's and Programmer's Reference", where <Mode> is the name of the Analyzer Mode described by the document.
- Depending on which Analyzer software licenses you purchased, the content of the directory on your machine may vary.

How Help is Organized

This topic contains the following sections:
"Help Contents Listing" on page 86
"System Functions" on page 86
"Key Descriptions for Each Measurement" on page 87
"Key Information for Softkeys" on page 87
"Common Measurement Functions" on page 88

Help Contents Listing

The listing under the Contents tab in the Help Window includes a topic for each Front-panel key and each softkey, for each available measurement.

The Contents listing is split into several major sections, as shown below for the HTML Help version of the document. The structure of the PDF version is similar.

Help information is split between these sections as follows:

1. Using Help: this section.
2. System Functions. See "System Functions" on page 86 below.
3. Measurement Functions. See "Key Descriptions for Each Measurement" on page 87 below.
4. Common Measurement Functions. See "Common Measurement Functions" on page 88 below.

System Functions

This section contains information for the following keys, which are listed in alphabetical order: File,

Preset, Print, Quick Save, Recall, Save, System, User Preset.

The functions of these keys do not vary between measurements: they operate the same way, irrespective of which Analyzer measurement you have selected.

The sections for Recall and Save contain only cross-references to the respective sections in "Common Measurement Functions" on page 88, and are included here for convenience.

Key Descriptions for Each Measurement

The Contents section for each Measurement is sub-divided into topics for each Front-panel key, in alphabetical order, as shown below.

If you don't see a topic for a Front-panel key in the Measurement-specific section, then it is located in the section "System Functions" on page 86.

Key Information for Softkeys

Information for each softkey that appears when you press a Front-panel key (or a softkey with a submenu) is listed under the entry for that key in the Help Contents. The example below shows the submenu under the SPAN X Scale Front-panel key in the "Waveform" Measurement, alongside the
actual softkeys for that menu.

In these subsections, all softkeys are listed in the order they appear in their menu (that is, not in alphabetical order).

Common Measurement Functions

This section groups together function and key information that is shared between measurements.
However, there is a listing for every Front-panel key and subkey in the section for each measurement, so you will generally not need to refer to this section.

The key subsections are listed alphabetically.

Front Panel Keys used by the Help System

The interactive Help system uses the Front-panel keys shown below.

\#	Item Name	Description
1	Help Key	Opens Help (displaying the topic for the last key pressed).
2	Cancel (Esc) Key	Exits Help.
3	Next Window Key	Changes the current window pane selection.
4	Arrow / Enter Keys	A central Enter key, surrounded by four directional arrow keys. Navigates within the Help system.
5	Backward Tab Key	Moves between controls in the Help display.
6	Knob	For future use.
7	Forward Tab Key	Moves between controls in the Help display.
8	Select / Space Key	Navigates within the Help system, in conjunction with other keys.
9	Ctrl Key	Navigates within the Help system, in conjunction with other keys. See "Navigating Windows HTML Help (CHM) Files" on page 90.
10	Alt Key	Navigates within the Help system, in conjunction with other keys. See "Navigating Windows HTML Help (CHM) Files" on page 90.
11	Bk Sp (Backspace) Key	Acts as a "Back" key when navigating the pages of the Help system.

Navigating Windows HTML Help (CHM) Files

HTML Help Window Components

When the interactive Help Window is open, the Analyzer's display appears as below.
HTML Help
Window

The HTML Help Window appears on top of, and to the left of, the measurement display. You can still see and use the current softkey menu when the HTML Help Window is open. However, pressing a softkey when the Help window is open displays Help for that softkey, but does not execute the softkey's function.

When the Help Window is open, the Analyzer retains its current Mode and Measurement, as shown in the Title Bar.

The HTML Help Window itself consists of two panes, as shown in the diagram above.
On the left is the Navigation Pane, and on the right is the Topic Pane.

The Help Window Navigation Pane

The Navigation Pane is further divided into four tabs: Contents, Index, Search and Favorites, as shown below.

```
Contents |Index | Search|Favorites|
```

For details of how to switch between these tabs, if you don't have a mouse attached to the Analyzer, see the Section "To Switch the Active Tab within the Navigation Pane" on page 94.

The Help Window Topic Pane

This pane displays the text for the topic that you have selected. It also contains clickable Previous Page and Next Page buttons (as shown below), which can be used to move to the previous or next page in the Help file.

Basic Help Window Operations

This topic contains the following sections:
"Opening Help" on page 91
"Getting Help for a Specific Key" on page 91
"Closing the Help Window" on page 92
"Viewing Help on How to Use Help" on page 92
"Exiting Help on How to Use Help" on page 92
To locate the keys mentioned in this section, see "Front Panel Keys used by the Help System" on page 89.

Opening Help

To access the Help system, press the green Help key below the front panel display (shown below) while an Agilent application is running.

Note that the softkeys remain visible when the Help window is open.

Getting Help for a Specific Key

1. If the Help window is already open, press the desired key. The relevant Help topic appears.

Note that the function normally invoked by the key is not executed when the key is pressed with the Help window open. If you want to execute the key's function, first close Help by pressing the Cancel (Esc) key (as described in "Closing the Help Window" on page 92), then press the key, before opening Help again (if required).
2. If the Help window is not already open, press the desired key (which executes the key's function), then press the Help key to display the relevant Help page. Help is available for all softkeys, and for

Navigating Windows HTML Help (CHM) Files

all the Front-panel keys listed under the "System Functions" and "Measurement" sections.
For details of how to navigate within the panes of the Help window, see "Navigating Windows HTML Help (CHM) Files" on page 90.

Closing the Help Window

To close the Help window, and return to the measurement application, press the Cancel (Esc) key (depicted below).

```
LOCAL
(Esc)
```


Viewing Help on How to Use Help

With the Help window open, press the green Help key again.
The "Using Help" page appears, as shown below.

Exiting Help on How to Use Help

See the Section "To Go Back or Forward: display the Previously-viewed or Next-viewed Topic in the Topic Pane" on page 96 for details of several methods to accomplish this.

Navigating the Help Window

The way you navigate around the HTML Help Window depends on whether you have a mouse and keyboard attached to your Analyzer:

- If you have a mouse and keyboard attached, see the Section "Navigating the Help Window with a Mouse" on page 92.
- If you don’t have a mouse and keyboard attached, see the Section "Navigating the Help Window Without a Mouse" on page 94.

Navigating the Help Window with a Mouse

When the HTML Help window is open, you can point-and-click to navigate, as you would when using Help for any Microsoft Windows computer application. The basic navigational features the Help systems of all X-Series Analyzers are as follows:

- If necessary, press the green Help key on the Front Panel, as described in "Opening Help" on page 91, to open the HTML Help window.
- Choose the desired topic from the list under the Contents Tab of the HTML Help Window's Navigation Pane, then click on the topic title to display the first page of the topic.
- To expand the listing of a topic, click on the + icon to the left of the topic's book icon, as shown below. A list of subtopics and pages appears.

- To move to the Next or Previous Page within the Topic Pane, click the Next Page or Previous Page Keys (at the top right of the Topic Pane), as shown below.

Searching for a Help Topic If you also have a keyboard attached to the Analyzer, you can use the Help system's full-text search feature to locate help for any topic, by typing in a key name, a topic name, or any other desired text.

Select the "Search" tab of the Help window's Navigation Pane, then use the following procedure:

1. Type the desired topic name into the Search window as shown in the diagram above. Note that the text search is not case-sensitive.
2. Click on the List Topics button.
3. Either:

Double-click on the desired topic in the list,

Or:
Click on the desired topic to select it, then click the Display button beneath the list.
4. The topic is then displayed in the Topic Pane (right-hand side of display).

Navigating the Help Window Without a Mouse

Most features of the Help system can be accessed and navigated without the necessity to attach a mouse or keyboard to the Analyzer. There are, however, a few exceptions to this rule, which are noted in the Section "Functions that cannot be used without a Mouse and Keyboard" on page 97.
For information about how to perform common tasks in the Help system, click on one of the following links:
"To Toggle the Focus between the Navigation Pane and the Topic Pane" on page 94
"To Switch the Active Tab within the Navigation Pane" on page 94
"To Scroll up or down the list of Topics within the Contents or Index Tabs of the Navigation Pane" on page 95
"To Expand or Collapse a selected topic within the Contents Tab of the Navigation Pane" on page 95
"To Display a selected Help topic in the Topic Pane from the Contents Tab of the Navigation Pane" on page 95
"To Display a Help topic in the Topic Pane from the Index Tab of the Navigation Pane" on page 95
"To Scroll up or down within a topic in the Topic Pane" on page 95
"To Go to the Next or Previous Page in the Topic Pane" on page 96
"To Go Back or Forward: display the Previously-viewed or Next-viewed Topic in the Topic Pane" on page 96
"To Scroll horizontally or vertically within the Contents Tab of the Navigation Pane" on page 97
"To Print the topic currently displayed" on page 97
To locate all the keys mentioned in this section, see "Front Panel Keys used by the Help System" on page 89.

To Toggle the Focus between the Navigation Pane and the Topic Pane Press the Next Window key.

To Switch the Active Tab within the Navigation Pane Perform this procedure to display either the Contents, Index, Search or Favorites tab of the Help window's Navigation Pane.
Hold down the Ctrl key, then press either the Forward Tab key, or the Backward Tab key.

To Scroll up or down the list of Topics within the Contents or Index Tabs of the Navigation Pane

 With the focus in the Navigation Pane, press the Up Arrow or Down Arrow keys.

To Expand or Collapse a selected topic within the Contents Tab of the Navigation Pane With the focus in the Navigation Pane, press the Right Arrow key to expand the selected topic:

Or press the Left Arrow key to collapse the selected topic.

To Display a selected Help topic in the Topic Pane from the Contents Tab of the Navigation Pane With the focus in the Contents Tab of the Navigation Pane, press the Enter key. If the selected topic was not already expanded, it expands in the Navigation Pane.

To Display a Help topic in the Topic Pane from the Index Tab of the Navigation Pane With the focus in the Index Tab of the Navigation Pane, press the Enter key.

To Scroll up or down within a topic in the Topic Pane With the focus in the Topic Pane, press either
the Up Arrow key or Down Arrow key.

To Go to the Next or Previous Page in the Topic Pane With the focus in the Topic Pane, press either Forward Tab or Backward Tab keys

to select the > (Next Page) key at the top right of the Pane, if you want to go to the next page,

or select the < (Previous Page) key at the top right of the Pane, if you want to go to the previous page.

Press Enter.

To Go Back or Forward: display the Previously-viewed or Next-viewed Topic in the Topic Pane To go back, either:

Hold down the Alt key, then press the Left Arrow key.

Or:
Press the Bk Sp key.

To go forward, hold down the Alt key, then press the Right Arrow key.

(The "Go Forward" operation has no effect unless there have been previous "Go Back" operations)
To Scroll horizontally or vertically within the Contents Tab of the Navigation Pane To scroll horizontally: with the focus in the Contents Tab of the Navigation Pane, hold down the Ctrl key, then press either the Left Arrow or Right Arrow keys.

To scroll vertically: with the focus in the Contents Tab of the Navigation Pane, hold down the Ctrl key, then press either the Up Arrow or Down Arrow keys.

To Print the topic currently displayed Press the Front-panel Print key

Functions that cannot be used without a Mouse and Keyboard The following parts of the HTML Help System cannot easily be used without attaching a mouse and keyboard to the Analyzer.

- The menu options at the top of the Help Window, consisting of: Hide, Back, Print and Options.
- The functionality of the Search Tab of the Navigation Pane.
- The functionality of the Favorites Tab of the Navigation Pane.

Navigating Acrobat (PDF) Files

IMPORTANT

To navigate PDF files effectively, you must attach a mouse and keyboard to the Analyzer.

If it is not possible to attach a mouse and keyboard to the Analyzer, you should copy the PDF file to a separate computer, then open it on that computer. Every PDF file that is present on the Analyzer's hard disk can also be found on the Documentation CD shipped with the Analyzer. For details, see "Copying the Acrobat (PDF) Files" on page 84.

Adobe Reader Window

When an Adobe Acrobat (PDF) file is open and being viewed, the Analyzer's display appears as below.
Note that, unlike the HTML Help Window, the Acrobat Reader Window is not embedded in the Analyzer's Application window. It is a separate window, which can be resized, moved and closed independently of the Application window.

The Adobe Reader Window itself consists of two panes, as shown in the diagram above.
On the left is the Navigation Pane (which may be hidden), and on the right is the Document Pane.
The Navigation Pane is further subdivided into four tabs: Bookmarks, Pages, Attachments and Comments. Typically, PDF files supplied with the Agilent X-Series Analyzers contain useful content only under the Bookmarks and Pages Tabs: the Attachments and Comments Tabs are not used.

Navigating the Acrobat Reader Window

The online Help for Adobe Reader provides detailed information on how to use the Reader. To access the online Help, do the following:

- With the Adobe Reader window open, click Help, Adobe Reader Help in the menu at the top of the screen. This opens the Help window on top of the document window.
- To close the Help window, either click the Red \mathbf{X} at the top right of the window, or right-click

anywhere in the title bar, then select Close from the popup menu.

Printing Acrobat Files

NOTE \quad| The driver for the appropriate printer must be installed on the Analyzer's hard disk |
| :--- |
| before any file can be printed. |

To print all or part of an open Acrobat file, do the following.

1. Either,

a. click on the Print icon in the Acrobat Reader toolbar,

b. or, select File > Print from the menu.

Navigating Acrobat (PDF) Files

2. The Acrobat Reader Print dialog opens, as shown below.

3. Choose the desired options within the Print dialog, then click OK to print (or click Cancel to cancel the printing).

NOTE	Clicking the Properties button within the Print dialog opens a window containing controls that are specific to the printer model installed. Check the printer manufacturer's documentation for details of these capabilities.

Terms Used in This Documentation

Many special terms are used throughout this documentation. Please refer to the "Getting Started Guide" for detailed explanations of all these terms.

The Section below provides a brief description of special terms used in the Key parameter tables.

Terms used in Key Parameter Tables

The following terms are used in the parameter tables for each front-panel key or softkey. However, a particular key description may not use all the terms listed.

Term	Meaning
Default Unit	The default measurement unit of the setting.
Default Terminator	Indicates the units that will be attached to the numeric value that you have entered. This default will be used from the front panel, when you terminate your entry by pressing the Enter key, rather then selecting a units key. This default will be used remotely when you send the command without specifying any units after your value(s).
Dependencies/ Couplings	Some commands may be unavailable when other parameters are set in certain ways. If applicable, any such limitations are described here.
Example	Provides command examples using the indicated remote command syntax.
Factory Preset	Describes the function settings after a Factory Preset.
Key Path	The sequence of Front-panel keys that accesses the function or setting.
Knob Increment/Decrement	The numeric value of the minimum increment or decrement that is applied when turning the thumb wheel knob.
Max	The Maximum numerical value that the setting can take.
Min	The Minimum numerical value that the setting can take.
Meas Global	The functionality described is the same in all measurements.
Meas Local	The functionality described is only true for the measurement selected.
Mode Global	The functionality described is the same for all modes.
Preset	In some cases, a Preset operation changes the status of a parameter. If the operation of the key specified is modified by a Preset operation, the effect is described here.
Range	Describes the range of the smallest to largest values to which the function can be set. If you try to set a value below the minimum value, the analyzer defaults to the minimum value. If you try to set a value above the maximum value, the analyzer defaults to the maximum value.
Remote Command	Shows the syntax requirements for each SCPI command.

Terms Used in This Documentation

Term

Remote Command Notes
Resolution

SCPI Status Bits/OPC
Dependencies
State Saved

Meaning

Additional notes regarding Remote Commands.
Specifies the smallest change that can be made to the numeric value of a parameter.

Pressing certain keys may affect one or more status bits. If applicable, details are given here.

Indicates what happens to a particular function when the Analyzer state is saved (either to an external memory device or the internal D: drive). It also indicates whether the current settings of the function are maintained if the Analyzer is powered on or preset using Power On Last State or User Preset.

Context Sensitive Help not Available

You have been directed to this page because interactive help for the key you selected is not available.
The following information may help you to find related topics of interest:

- If your Analyzer has an attached Mouse and Keyboard, see the Section "Searching for a Help Topic" on page 93.
- If your Analyzer does not have an attached Mouse and Keyboard, see the Section "Finding a Topic without a Mouse and Keyboard" on page 103 below.
- If you want to learn how to select on-page links without a Mouse attached to your Analyzer, see the Section "Selecting a Hyperlink without a Mouse" on page 104 below.

TIP
If you want to understand the organization of Help, see the Section "How Help is Organized" on page 86.

Finding a Topic without a Mouse and Keyboard

Follow this procedure when you want to display a different Help topic by selecting it from the Contents tab of the Help window's Navigation Pane, but you do not have a mouse attached to the Analyzer.

| Perform this action: |
| :--- | :--- |
| 1. If necessary, toggle the focus between the Contents tab of
 the Navigation Pane (left side of display) and the Topic Pane
 (right side of display) by pressing the Next Window key.
 Ensure that the focus is in the Contents tab of the
 Navigation Pane.
 2. Move up or down the Contents list, by pressing the Up
 Arrow or Down Arrow keys. Topics become highlighted
 upon selection. |
| 3. Display the selected topic, by pressing the Enter key. |

Context Sensitive Help not Available

Selecting a Hyperlink without a Mouse

Follow this procedure when you want to select and follow a hyperlink on a Help page, but you do not have a mouse attached to the Analyzer.

Perform this action:	Using these keys:
1. If necessary, toggle the focus between the Contents tab of the Navigation Pane (left side of display) and the Topic Pane (right side of display) by pressing the Next Window key. Ensure that the focus is in the Topic Pane.	
2. Move from link to link in the Topic Pane (right side of display) by pressing the Forward Tab and Backward Tab keys. Links become highlighted upon selection. NOTE: When a Help page is first displayed, no link is selected. Clicking the Forward Tab key once selects the Previous Page key. Clicking the Forward Tab key a second time selects the Next Page key. Clicking the Forward Tab key for a third time selects the first hyperlink on the page. It is sometimes difficult to see the highlighting of the Previous and Next Page keys.	
3. When you have selected the desired link, activate it by	
pressing the Enter key.	

2 About the Analyzer

The X-Series signal analyzer measures and monitors complex RF and microwave signals. Analog baseband analysis is available on MXA. The analyzer integrates traditional spectrum measurements with advanced vector signal analysis to optimize speed, accuracy, and dynamic range. The analyzer has Windows XP Pro ${ }^{\circledR}$ built in as an operating system, which expands the usability of the analyzer.

With a broad set of applications and demodulation capabilities, an intuitive user interface, outstanding connectivity and powerful one-button measurements, the analyzer is ideal for both R\&D and manufacturing engineers working on cellular, emerging wireless communications, general purpose, aerospace and defense applications.

Installing Application Software

When you want to install a measurement application after your initial hardware purchase, you actually only need to license it. All of the available applications are loaded in your analyzer at the time of purchase.

So when you purchase an application, you will receive an entitlement certificate that is used to obtain a license key for that particular measurement application. Enter the license key that you obtain into the Signal Analyzer to activate the new measurement application. See below for more information.

For the latest information on Agilent Signal Analyzer measurement applications and upgrade kits, visit the following internet URL.
http://www.agilent.com/find/sa_upgrades

Viewing a License Key

Measurement personalities purchased with your instrument have been installed and activated at the factory before shipment. The instrument requires a unique License Key for every measurement application purchased. The license key is a hexadecimal string that is specific to your measurement application, instrument model number and serial number. It enables you to install, or reactivate that particular application.

Press System, Show, System to display which measurement applications are currently licensed in your analyzer.
Go to the following location to view the license keys for the installed measurement applications:
C:\Programing Files\Agilent\Licensing

NOTE
You may want to keep a copy of your license key in a secure location. You can print out a copy of the display showing the license numbers to do this. If you should lose your license key, call your nearest Agilent Technologies service or sales office for assistance.

Obtaining and Installing a License Key

If you purchase an additional application that requires installation, you will receive an "Entitlement Certificate" which may be redeemed for a license key for one instrument. Follow the instructions that accompany the certificate to obtain your license key.
Installing a license key for the selected application can be done automatically using a USB memory device. To do this, you would put the license file on the USB memory device at the root level. Follow the instructions that come with your software installation kit.

Installing a license key can also be done manually using the license management application in the instrument. It is found through the instrument front panel keys at System, Licensing. . . , or internally at C:\Programming Files\AgilentLLicensing.

NOTE

You can also use these procedures to reinstall a license key that has been accidentally deleted, or lost due to a memory failure.

Missing and Old Measurement Application Software

All the software applications were loaded at the time of original instrument manufacture. It is a good idea to regularly update your software with the latest available version. This assures that you get any improvements and expanded functionality that is available.

Because the software was loaded at the initial purchase, there may be additional measurement applications that are now available. If the application you are interested in licensing is not available, you will need to do a software update. (Press System, Show, System.)

Check the Agilent internet website for the latest software versions available for downloading:
http://www.agilent.com/find/mxa_software
http://www.agilent.com/find/exa_software
http://www.agilent.com/find/cxa_software
You must load the updated software package into the analyzer from a USB drive, or directly from the internet. An automatic loading program is included with the files.

X-Series Options and Accessories

Advanced Measurement Application Software

For a current list of application software, go to the following URLs.
For MXA,
http://www.agilent.com/find/mxa/options
Select the MXA N9020A, Options and Measurement Applications link on the top of the page.
For EXA,
http://www.agilent.com/find/exa/options
Select the EXA N9010A, Options and Measurement Applications link on the top of the page.
For CXA,
http://www.agilent.com/find/cxa/options
Select the CXA N9000A, Options and Measurement Applications link on the top of the page.

Front-Panel Features

Item		Description
\#	Name	
1	Menu Keys	Key labels appear to the left of the menu keys to identify the current function of each key. The displayed functions are dependent on the currently selected Mode and Measurement, and are directly related to the most recent key press.
2	Analyzer Setup Keys	These keys set the parameters used for making measurements in the current Mode and Measurement.
3	Measurement Keys	These keys select the Mode, and the Measurement within the mode. They also control the initiation and rate of recurrence of measurements.
4	Marker Keys	Markers are often available for a measurement, to measure a very specific point/segment of data within the range of the current measurement data.
5	Utility Keys	These keys control system-wide functionality such as: - instrument configuration information and I/O setup, - printer setup and printing, - file management, save and recall, - instrument presets.
6	Probe Power	Supplies power for external high frequency probes and accessories.
7	Headphones Output	Headphones can be used to hear any available audio output.
8	Back Space Key	Press this key to delete the previous character when entering alphanumeric information. It also works as the Back key in Help and Explorer windows.

Item		Description
\#	Name	
9	Delete Key	Press this key to delete files, or to perform other deletion tasks.
10	USB Connectors	Standard USB 2.0 ports, Type A. Connect to external peripherals such as a mouse, keyboard, DVD drive, or hard drive.
11	Local/Cancel/(Esc) Key	If you are in remote operation, Local: - returns instrument control from remote back to local (the front panel). - turns the display on (if it was turned off for remote operation). - can be used to clear errors. (Press the key once to return to local control, and a second time to clear error message line.) If you have not already pressed the units or Enter key, Cancel exits the currently selected function without changing its value. Esc works the same as it does on a PC keyboard. It: - exits Windows dialogs - clears errors - aborts printing - cancels operations.
12	RF Input	Connector for inputting an external signal. Make sure that the total power of all signals at the analyzer input does not exceed +30 dBm (1 watt).
13	Numeric Keypad	Enters a specific numeric value for the current function. Entries appear on the upper left of the display, in the measurement information area.
14	Enter and Arrow Keys	The Enter key terminates data entry when either no unit of measure is needed, or you want to use the default unit. The arrow keys: - Increment and decrement the value of the current measurement selection. - Navigate help topics. - Navigate, or make selections, within Windows dialogs. - Navigate within forms used for setting up measurements. - Navigate within tables. The arrow keys cannot be used to move a mouse NOTE pointer around on the display.
15	Menu/ (Alt) Key	Alt works the same as a PC keyboard. Use it to change control focus in Windows pull-down menus.
16	Ctrl Key	Ctrl works the same as a PC keyboard. Use it to navigate in Windows applications, or to select multiple items in lists.
17	Select / Space Key	Select is also the Space key and it has typical PC functionality. For example, in Windows dialogs, it selects files, checks and unchecks check boxes, and picks radio button choices. It opens a highlighted Help topic.
18	Tab Keys	Use these keys to move between fields in Windows dialogs.
19	Knob	Increments and decrements the value of the current active function.
20	Return Key	Exits the current menu and returns to the previous menu. Has typical PC functionality.

Item		Description
\#	Name	
21	Full Screen Key	Pressing this key turns off the softkeys to maximize the graticule display area. Press the key again to restore the normal display.
22	Help Key	Initiates a context-sensitive Help display for the current Mode. Once Help is accessed, pressing a front panel key brings up the help topic for that key function.
23	Speaker Control Keys	Enables you to increase or decrease the speaker volume, or mute it.
24	Window Control Keys	These keys select between single or multiple window displays. They zoom the current window to fill the data display, or change the currently selected window. They can be used to switch between the Help window navigation pane and the topic pane.
25	Power Standby/ On	Turns the analyzer on. A green light indicates power on. A yellow light indicates standby mode. The front-panel switch is a standby switch, not a LINE NOTE switch (disconnecting device). The analyzer continues to draw power even when the line switch is in standby. The main power cord can be used as the system disconnecting device. It disconnects the mains circuits from the mains supply.
26	$\overline{\mathrm{Q}}$ Input	Input port for the $\overline{\mathrm{Q}}$ channel when in differential mode. ${ }^{\text {a }}$
27	Q Input	Input port for the Q channel for either single or differential mode. ${ }^{\text {a }}$
28	$\overline{\text { İ Input }}$	Input port for the $\overline{\mathrm{I}}$ channel when in differential mode. ${ }^{\text {a }}$
29	I Input	Input port for the I channel for either single or differential mode. ${ }^{\text {a }}$
30	Cal Out	Output port for calibrating the I, $\overline{\mathrm{I}}, \mathrm{Q}$ and $\overline{\mathrm{Q}}$ inputs and probes used with these inputs. ${ }^{\text {a }}$

a. Status of the LED indicates whether the current state of the port is active (green) or is not in use (dark).

Overview of key types

The keys labeled FREQ Channel, System, and Marker Functions are all examples of front-panel keys.

Most of the dark or light gray keys access menus of functions that are displayed along the right side of the display. These displayed key labels are next to a column of keys called menu keys.

Menu keys list functions based on which front-panel key was pressed last. These functions are also dependant on the current selection of measurement application (Mode) and measurement (Meas).

If the numeric value of a menu key function can be changed, it is called an active function. The function label of the active function is highlighted after that key has been selected. For example, press AMPTD Y Scale. This calls up the menu of related amplitude functions. The function labeled Ref Level (the default selected key in the Amplitude menu) is highlighted. Ref Level also appears in the upper left of the display in the measurement information area. The displayed value indicates that the function is selected and its value can now be changed using any of the data entry controls.

Some menu keys have multiple choices on their label, such as On/Off, Auto/Man, or Log/Lin (as shown above). The different choices are selected by pressing the key multiple times. For example, the Auto/Man type of key. To select the function, press the menu key and notice that Auto is underlined and the key becomes highlighted. To change the function to manual, press the key again so that Man is underlined. If there are more than two settings on the key, keep pressing it until the desired selection is underlined.

When a menu first appears, one key label is highlighted to show which key is the default selection. If you press Marker Function, the Marker Function Off key is the menu default key, and is highlighted.

Some of the menu keys are grouped together by a yellow bar running behind the keys near the left side or by a yellow border around the group of keys. When you press a key within the yellow region, such as Marker Noise, the highlight moves to that key to show it has been selected. The keys that are linked are related functions, and only one of them can be selected at any one time. For example, a marker can only have one marker function active on it. So if you select a different function it turns off the previous selection. If the current menu is two pages long, the yellow bar or border could include keys on the second page of keys.

In some key menus, a key label is highlighted to show which key has been selected from multiple available choices. And the menu is immediately exited when you press one of the other keys. For example, when you press the Select Trace key (in the Trace/Detector menu), it brings up its own menu of keys. The Trace $\mathbf{1}$ key is highlighted. When you press the Trace 2 key, the highlight moves to that key and the screen returns to the Trace/Detector menu.

If a displayed key label shows a small solid-black arrow tip pointing to the right, it indicates that additional key menus are available. If the arrow tip is not filled in solid then pressing the key the first time selects that function. Now the arrow is solid and pressing it again brings up an additional menu of settings.

Display Annotations

This section describes the display annotation as it is on the Spectrum Analyzer Measurement Application display. Other measurement application modes have some annotation differences.

Item	Description	Function Keys
5	$\begin{array}{l}\text { Settings panel - displays system information that is not } \\ \text { specific to any one application. } \\ \text { - } \begin{array}{l}\text { Input/Output status - green LXI indicates the LAN is } \\ \text { connected. RLTS indicate Remote, Listen, Talk, SRQ } \\ \text { - Input impedance and coupling } \\ \text { - } \\ \text { Selection of external frequency reference } \\ \text { Setting of automatic internal alignment routine }\end{array}\end{array}$	$\begin{array}{l}\text { Local and System, I/O Config } \\ \text { Input/Output, Amplitude, System and } \\ \text { others }\end{array}$
6	Active marker frequency, amplitude or function value	Marker
7	Settings panel - time and date display.	$\begin{array}{l}\text { System, Control Panel }\end{array}$
8	$\begin{array}{l}\text { Trace and detector information }\end{array}$	$\begin{array}{l}\text { Trace/Detector, Clear Write (W) Trace } \\ \text { Average (A) Max Hold (M) Min Hold } \\ \text { (m) }\end{array}$
Trace/Detector, More, Detector,		
Average (A) Normal (N) Peak (P)		
Sample (S) Negative Peak (p)		

Rear-Panel Features

MXA and EXA with Option PC2

EXA

CXA

Item		Description
\#	Name	
1	EXT REF IN	Input for an external frequency reference signal: For MXA - 1 to 50 MHz For EXA - 10 MHz . For CXA - 10 MHz .
2	GPIB	A General Purpose Interface Bus (GPIB, IEEE 488.1) connection that can be used for remote analyzer operation.
3	USB Connector	USB 2.0 port, Type B. USB TMC (test and measurement class) connects to an external pc controller to control the instrument and for data transfers over a 480 Mbps link.
4	USB Connectors	Standard USB 2.0 ports, Type A. Connect to external peripherals such as a mouse, keyboard, printer, DVD drive, or hard drive.
5	MONITOR	Allows connection of an external VGA monitor.
6	LAN	A TCP/IP Interface that is used for remote analyzer operation.
7	Line power input	The AC power connection. See the product specifications for more details.
8	Removable Disk Drive	Standard on MXA. Optional on EXA.
9	Digital Bus	Reserved for future use.
10	Analog Out	For PXA option YAV: Screen Video Log Video Linear Video For PXA option EMC: Demod Audio
11	TRIGGER 2 OUT	A trigger output used to synchronize other test equipment with the analyzer. Configurable from the Input/Output keys.
12	TRIGGER 1 OUT	A trigger output used to synchronize other test equipment with the analyzer. Configurable from the Input/Output keys.
13	Sync	Reserved for future use.
14	TRIGGER 2 IN	Allows external triggering of measurements.
15	TRIGGER 1 IN	Allows external triggering of measurements.
16	Noise Source Drive +28 V (Pulsed)	For use with Agilent 346A, 346B, and 346C Noise Sources.

Item		Description
$\# \#$	Name	
17	SNS Series Noise Source	For use with Agilent N4000A, N4001A, N4002A Smart Noise Sources (SNS).
18	10 MHz OUT	An output of the analyzer internal 10 MHz frequency reference signal. It is used to lock the frequency reference of other test equipment to the analyzer.
19	Preselector Tune Out	Reserved for future use.
20	Aux IF Out	For PXA options: CR3 Second IF Out CRP Arbitrary IF Out ALV Log Video

Window Control Keys

The instrument provides three front-panel keys for controlling windows. They are Multi Window, Zoom, and Next Window. These are all "immediate action" keys.

Multi-Window

The Multi Window front-panel key will toggle you back and forth between the Normal View and the last Multi Window View (Zone Span, Trace Zoom or Spectrogram) that you were in, when using the Swept SA measurement of the Spectrum Analyzer Mode. It remembers which View you were in through a Preset. This "previous view" is set to Zone Span on a Restore Mode Defaults.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Zoom

Zoom is a toggle function. Pressing once Zooms the selected window; pressing again un-zooms.
When Zoom is on for a window, that window will get the entire primary display area. The zoomed window, since it is the selected window, is outlined in green.

Zoom is local to each Measurement. Each Measurement remembers its Zoom state. The Zoom state of each Measurement is part of the Mode's state.

NOTE	Data acquisition and processing for the other windows continues while a window is zoomed, as does all SCPI communication with the other windows.

Remote Command	:DISPlay:WINDow:FORMat:ZOOM
Remote Command	:DISPlay:WINDow:FORMat:TILE
Example	$:$ DISP:WIND:FORM:ZOOM sets zoomed :DISP:WIND:FORM:TILE sets un-zoomed
Preset	TILE
Initial S/W Revision	Prior to A.02.00

Next Window

Selects the next window of the current view.
When this key is selected in Help Mode, it toggles focus between the table of contents window and the topic pane window.

Remote Command	$:$ DISPlay:WINDow[:SELect] <number> $:$ DISPlay:WINDow[:SELect]?
Example	$:$ DISP:WIND 1
Preset	1
Min	1
Max	If <number> is greater than the number of windows, limit to <number of windows>
Initial S/W Revision	Prior to A.02.00

Selected Window

One and only one window is always selected. The selected window has the focus and all key presses are going to that window.

The selected window has a green boundary. If a window is not selected, its boundary is gray.
If a window in a multi-window display is zoomed it is still outlined in green. If there is only one window, the green outline is not used. This allows the user to distinguish between a zoomed window and a display with only one window.

The selected window is local to each Measurement. Each Measurement remembers which window is selected. The selected window for each Measurement is remembered in Mode state.

Navigating Windows

When the Next Window key is pressed, the next window in the order of precedencebecomes selected. If the selected window was zoomed, the next window will also be zoomed.

The window navigation does NOT use the arrow and select keys. Those are reserved for navigation within a window.

Mouse and Keyboard Control

If you do not have access to the instrument front-panel, there are several ways that a mouse and PC Keyboard can give you access to functions normally accessed using the front-panel keys.

Right-Click

If you plug in a mouse and right-click on the analyzer screen, a menu will appear as below:

Placing the mouse on one of the rows marked with a right arrow symbol will cause that row to expand, as for example below where the mouse is hovered over the "Utility" row:

This method can be used to access any of the front-panel keys by using a mouse; as for example if you are accessing the instrument through Remote Desktop.

The array of keys thus available is shown below:

PC Keyboard

If you have a PC keyboard plugged in (or via Remote Desktop), certain key codes on the PC keyboard

About the Analyzer
Mouse and Keyboard Control
map to front-panel keys on the GPSA front panel. These key codes are shown below:

Front-panel key	Key code
Frequency	CTRL+SHIFT+F
Span	CTRL+SHIFT+S
Amplitude	CTRL+SHIFT+A
Input/Output	CTRL+SHIFT+O
View/Display	CTRL+SHIFT+V
Trace/Detector	CTRL+ALT+T
Auto Couple	CTRL+SHIFT+C
Bandwidth	CTRL+ALT+B
Source	CTRL+SHIFT+E
Marker	CTRL+ALT+K
Peak Search	CTRL+ALT+P
Marker To	CTRL+ALT + N
Marker Function	CTRL+ALT+F
System	CTRL+SHIFT+Y
Quick Save	CTRL+Q
Save	CTRL+S
Recall	CTRL+R
Mode Preset	CTRL+M
User Preset	CTRL+U
Print	CTRL+P
File	CTRL+SHIFT+L
Mode	CTRL+SHIFT+M
Measure	CTRL+ALT+M
Mode Setup	CTRL+SHIFT+E
Meas Setup	CTRL+ALT+E
Trigger	CTRL+SHIFT+T
Sweep/Control	CTRL+SHIFT+W
Restart	CTRL+ALT+R
Single	CTRL+ALT+S

Front-panel key	Key code
Cont	CTRL+ALT+C
Zoom	CTRL+SHIFT+Z
Next Window	CTRL+SHIFT+N
Split Screen	CTRL+L
Full Screen	CTRL+SHIFT+B
Return	CTRL+SHIFT+R
Mute	Mute
Inc Audio	Volume Up
Dec Audio	Volume Down
Help	F1
Control	CTRL
Alt	ALT
Enter	Return
Cancel	Esc
Del	Delete
Backspace	Backspace
Select	Space
Up Arrow	Up
Down Arrow	Down
Left Arrow	Left
Right Arrow	Right
Menu key 1	CTRL+SHIFT+F1
Menu key 2	CTRL+SHIFT+F2
Menu key 3	CTRL+SHIFT+F3
Menu key 4	CTRL+SHIFT+F4
Menu key 5	CTRL+SHIFT+F5
Menu key 6	CTRL+SHIFT+F6
Menu key 7	CTRL+SHIFT+F7
Backspace	BACKSPACE
Enter	ENTER

About the Analyzer
Mouse and Keyboard Control

Front-panel key	Key code
Tab	Tab
1	1
2	2
3	3
4	4
5	5
6	7
7	8
8	9
9	0
0	

This is a pictorial view of the table:

Instrument Security \& Memory Volatility

If you are using the instrument in a secure environment, you may need details of how to clear or sanitize its memory, in compliance with published security standards of the United States Department of Defense, or other similar authorities.

For the X Series analyzers, this information is contained in the document "Security Features and Certificate of Volatility". This document is not included in the Documentation CD, or the instrument's on-disk library, but it may be downloaded from Agilent's web site.

To obtain a copy of the document, click on or browse to the following URL:
http://www.agilent.com/find/security
To locate and download the document, select Model Number "N9020A", then click "Submit". Then, follow the on-screen instructions to download the file.

About the Analyzer
Instrument Security \& Memory Volatility

About the iDEN/WiDEN/MotoTalk Analyzer Measurement Application

This chapter provides overall information on the Agilent N6149A iDEN/WiDEN/MotoTtalk Analyzer Measurement Application and describes the measurements made by the analyzer. Installation instructions for adding this option to your analyzer are provided in this section, in case you purchased this option separately.

What Does the Agilent N6149A iDEN/WiDEN/MotoTalk Analyzer Measurement Application Do?

The N6149A is a full-featured iDEN/WiDEN/MotoTalk signal analyzer that can help determine if an modulated source or transmitter is working correctly. There are standard and optional settings to enable complete analysis of iDEN/WiDEN/MotoTalk signals.

The N6149A 2FP iDEN/WiDEN/MotoTalk Analyzer measurement application provides:

- iDEN Power Measurement
- iDEN Demod Measurement
- MotoTalk Measurement
- VSA Vector Analysis Measurement
- Monitor Spectrum Measurement

The N6149A 2FP iDEN/WiDEN/MotoTalk Analyzer measurement application supports the following standards:

- iDEN RF Interface Specification: Layer 1, version R02.00.06
- Requirement to Modify WiDEN Power Versus Time Mask
- Motorola TalkAround: RF Interface, Talk Around Protocol (8/19/2002)

Installing Application Software

When you want to install a measurement application after your initial hardware purchase, you actually only need to license it. All of the available applications are loaded in your analyzer at the time of purchase.

So when you purchase an application, you will receive an entitlement certificate that is used to obtain a license key for that particular measurement application. Enter the license key that you obtain into the N9020A Signal Analyzer to activate the new measurement application. See below for more information.

For the latest information on Agilent Signal Analyzer measurement applications and upgrade kits, visit the following internet URL.
http://www.agilent.com/find/sa_upgrades

Viewing a License Key

Measurement personalities purchased with your instrument have been installed and activated at the factory before shipment. The instrument requires a unique License Key for every measurement application purchased. The license key is a hexadecimal string that is specific to your measurement application, instrument model number and serial number. It enables you to install, or reactivate that particular application.

Press System, Show, System to display which measurement applications are currently licensed in your analyzer.

Go to the following location to view the license keys for the installed measurement applications:
C:\Programing Files\Agilent\Licensing

NOTE

You may want to keep a copy of your license key in a secure location. You can print out a copy of the display showing the license numbers to do this. If you should lose your license key, call your nearest Agilent Technologies service or sales office for assistance.

Obtaining and Installing a License Key

If you purchase an additional application that requires installation, you will receive an "Entitlement Certificate" which may be redeemed for a license key for one instrument. Follow the instructions that accompany the certificate to obtain your license key.

Installing a license key for the selected application can be done automatically using a USB memory device. To do this, you would put the license file on the USB memory device at the root level. Follow the instructions that come with your software installation kit.

Installing a license key can also be done manually using the license management application in the instrument. It is found through the instrument front panel keys at System, Licensing. . . , or internally at C:\Programming Files\Agilent\Licensing. accidentally deleted, or lost due to a memory failure.

Missing and Old Measurement Application Software

All the software applications were loaded at the time of original instrument manufacture. It is a good idea to regularly update your software with the latest available version. This assures that you get any improvements and expanded functionality that is available.

Because the software was loaded at the initial purchase, there may be additional measurement applications that are now available. If the application you are interested in licensing is not available, you will need to do a software update. (Press System, Show, System.)

Check the Agilent internet website for the latest software versions available for downloading:
http://www.agilent.com/find/mxa_software
http://www.agilent.com/find/exa_software
You must load the updated software package into the analyzer from a USB drive, or directly from the internet. An automatic loading program is included with the files.

4 Programming the Analyzer

This chapter provides introductory information about the programming documentation included with your product.

What Programming Information is Available?

The X-Series Documentation can be accessed through the Additional Documentation page in the instrument Help system and is included on the Documentation CD shipped with the instrument. It can also be found in the instrument at: C:\ProgramsFiles \Agilent\SignalAnalysis \backslash Infrastructure\Help\otherdocs, or online at: http://www.agilent.com/find/mxa_manuals.

The following resources are available to help you create programs for automating your X-Series measurements:

Resource	Description
X-Series	Provides general SCPI programming information on the following topics:
Programmer's Guide	• Programming the X-Series Applications
	• \quad Programming fundamentals
	Note that SCPI command descriptions for measurement applications are NOT in this book,
	but are in the User's and Programmer's Reference.

Agilent Application Printable PDF versions of pertinent application notes. Notes

Agilent VISA User's Describes the Agilent Virtual Instrument Software Architecture (VISA) library and shows Guide how to use it to develop I/O applications and instrument drivers on Windows PCs.

IEEE Common GPIB Commands

Numeric values for bit patterns can be entered using decimal or hexi-decimal representations. (that is,. 0 to 32767 is equivalent to \#H0 to \#H7FFF).

Calibration Query

*CAL? Performs a full alignment and returns a number indicating the success of the alignment. A zero is returned if the alignment is successful. A one is returned if any part of the alignment fails. The equivalent SCPI command is CALibrate[:ALL]?

See "Alignments" on page 206 for details of *CAL?.

Clear Status

Clears the status byte register. It does this by emptying the error queue and clearing all bits in all of the event registers. The status byte register summarizes the states of the other registers. It is also responsible for generating service requests.

Key Path	No equivalent key. Related key System, Show Errors, Clear Error Queue
Remote Command	*CLS
Example	*CLS Clears the error queue and the Status Byte Register.
Notes	For related commands, see the SYSTem:ERRor[:NEXT]? command. See also the STATus:PRESet command and all commands in the STATus subsystem.
Status Bits/OPC dependencies	Resets all bits in all event registers to 0 , which resets all the status byte register bits to 0 also.
Initial S/W Revision	Prior to A.02.00

Standard Event Status Enable

Selects the desired bits from the standard event status enable register. This register monitors I/O errors and synchronization conditions such as operation complete, request control, query error, device dependent error, status execution error, command error, and power on. The selected bits are OR'd to become a summary bit (bit 5) in the byte register which can be queried.

The query returns the state of the standard event status enable register.

Key Path	No equivalent key. Related key System, Show Errors, Clear Error Queue
Remote Command	*ESE <integer>
	*ESE?

Example	*ESE 36 Enables the Standard Event Status Register to monitor query and command errors (bits 2 and 5). *ESE? Returns a 36 indicating that the query and command status bits are enabled.
Notes	For related commands, see the STATus subsystem and SYSTem:ERRor[:NEXT]? commands.
Preset	255
State Saved	Not saved in state.
Min	0
Max	255
Status Bits/OPC dependencies	Event Enable Register of the Standard Event Status Register.
Initial S/W Revision	Prior to A.02.00

Standard Event Status Register Query

Queries and clears the standard event status event register. (This is a destructive read.) The value returned is a hexadecimal number that reflects the current state (0/1) of all the bits in the register.

Remote Command	*ESR?
Example	*ESR? Returns a 1 if there is either a query or command error, otherwise it returns a zero.
Notes	For related commands, see the STATus subsystem commands.
Preset	0
Min	0
Max	255
Status Bits/OPC dependencies	Standard Event Status Register (bits $0-7$).
Initial S/W Revision	Prior to A.02.00

Identification Query

Returns a string of instrument identification information. The string will contain the model number, serial number, and firmware revision.

The response is organized into four fields separated by commas. The field definitions are as follows:

- Manufacturer
- Model
- Serial number
- Firmware version

Key Path	No equivalent key. See related key System, Show System.
Remote Command	*IDN?
Example	*IDN? Returns instrument identification information, such as: Agilent Technologies,N9020A,US01020004,A.01.02
Initial S/W Revision	Prior to A.02.00

Instrument Model Number

ID? - Returns a string of the instrument identification. The string will contain the model number.
When in Remote Language compatibility mode the query will return the model number of the emulated instrument, when in any other mode the returned model number will be that of the actual hardware.

Operation Complete

The *OPC command sets bit 0 in the standard event status register (SER) to " 1 " when pending operations have finished, that is when all overlapped commands are complete. It does not hold off subsequent operations. You can determine when the overlapped commands have completed either by polling the OPC bit in SER, or by setting up the status system such that a service request (SRQ) is asserted when the OPC bit is set.

The *OPC? query returns a " 1 " after all the current overlapped commands are complete. So it holds off subsequent commands until the " 1 " is returned, then the program continues. This query can be used to synchronize events of other instruments on the external bus.

Remote Command	$*$ OPC $*$ OPC?
Example	INIT:CONT 0 Selects single sweeping. INIT:IMM Initiates a sweep. $*$ OPC? Holds off any further commands until the sweep is complete.
Status Bits/OPC dependencies	Not global to all remote ports or front panel. *OPC only considers operation that was initiated on the same port as the *OPC command was issued from. *OPC is an overlapped command, but *OPC? is sequential.
Initial S/W Revision	Prior to A.02.00

Query Instrument Options

Returns a string of all the installed instrument options. It is a comma separated list with quotes, such as: "503,P03,PFR".

To be IEEE compliant, this command should return an arbitrary ascii variable that would not begin and end with quotes. But the quotes are needed to be backward compatible with previous SA products and

IEEE Common GPIB Commands

software. So, the actual implementation will use arbitrary ascii. But quotes will be sent as the first and last ascii characters that are sent with the comma-separated option list.

Remote Command	*OPT?
Initial S/W Revision	Prior to A.02.00

Recall Instrument State

This command recalls the instrument state from the specified instrument memory register.

- If the state being loaded has a newer firmware revision than the revision of the instrument, no state is recalled and an error is reported
- If the state being loaded has an equal firmware revision than the revision of the instrument, the state will be loaded.
- If the state being loaded has an older firmware revision than the revision of the instrument, the instrument will only load the parts of the state that apply to the older revision.

Remote Command	$*$ RCL <register \#>
Example	$*$ RCL 7 Recalls the instrument state that is currently stored in register 7.
Notes	Registers 0 through 6 are accessible from the front panel in menu keys for Recall Registers.
Min	0
Max	127
Status Bits/OPC dependencies	The command is sequential.
Initial S/W Revision	Prior to A.02.00

Save Instrument State

This command saves the current instrument state and mode to the specified instrument memory register.

Remote Command	*SAV <register \#>
Example	*SAV 9 Saves the instrument state in register 9.
Notes	Registers 0 through 6 are accessible from the front panel in menu keys for Save Registers.
Min	0
Max	127
Status Bits/OPC dependencies	The command is sequential.
Initial S/W Revision	Prior to A.02.00

Service Request Enable

This command enables the desired bits of the service request enable register.
The query returns the value of the register, indicating which bits are currently enabled.

Remote Command	*SRE <integer> *SRE?
Example	*SRE 22 Enables bits 1, 2, and 4 in the service request enable register.
Notes	For related commands, see the STATus subsystem and SYSTem:ERRor[:NEXT]? commands.
Preset	0
Min	0
Max	255
Status Bits/OPC dependencies	Service Request Enable Register (all bits, 0-7).
Initial S/W Revision	Prior to A.02.00

Status Byte Query

Returns the value of the status byte register without erasing its contents.

Remote Command	*STB?
Example	*STB? Returns a decimal value for the bits in the status byte register.
For example, if a 16 is returned, it indicates that bit 5 is set and one of the	
conditions monitored in the standard event status register is set.	

Trigger

This command triggers the instrument. Use the :TRIGger[:SEQuence]:SOURce command to select the trigger source.

Key Path	No equivalent key. See related keys Single and Restart.
Remote Command	*TRG
Example	*TRG Triggers the instrument to take a sweep or start a measurement, depending on the current instrument settings.
Notes	See related command :INITiate:IMMediate.
Initial S/W Revision	Prior to A.02.00

Self Test Query

This query performs the internal self-test routines and returns a number indicating the success of the testing. A zero is returned if the test is successful, 1 if it fails.

Remote Command	*TST?
Example	*TST? Runs the self-test routines and returns 0=passed, 1=some part failed.
Initial S/W Revision	Prior to A.02.00

Wait-to-Continue

This command causes the instrument to wait until all overlapped commands are completed before executing any additional commands. There is no query form for the command.

Remote Command	*WAI
Example	INIT:CONT OFF; INIT;*WAI Sets the instrument to single sweep. Starts a sweep and waits for its completion.
Status Bits/OPC dependencies	Not global to all remote ports or front panel. *OPC only considers operation that was initiated on the same port as the *OPC command was issued from.
Initial S/W Revision	Prior to A.02.00

5
 System Functions

File

File

Opens a menu that enables you to access various standard and custom Windows functions. Press any other front-panel key to exit

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

File Explorer

Opens the standard Windows File Explorer. The File Explorer opensin the My Documents directory for the current user.

The File Explorer is a separate Windows application, so to return to the analyzer once you are in the File Explorer, you may either:

Exit the File Explorer by clicking on the red X in the upper right hand corner, with a mouse

Or use Alt-Tab: press and hold the Alt $\begin{aligned} & \text { Menu } \\ & (\text { Alt })\end{aligned}$ key and press and release the Tab key until the Analyzer
logo is showing in the window in the center of the screen, as above, then release the Alt key.

Key Path	File
Initial S/W Revision	Prior to A.02.00

Page Setup

The Page Setup key brings up a Windows Page Setup dialog that allows you to control aspects of the pages sent to the printer when the PRINT hardkey is pressed.

Key Path	File
Initial S/W Revision	Prior to A.02.00

Paper size, the printer paper source, the page orientation and the margins are all settable. Just like any standard Windows dialog, you may navigate the dialog using front-panel keys, or a mouse. There are no SCPI commands for controlling these parameters.

Also contained in this dialog is a drop-down control that lets you select the Theme to use when printing. For more on Themes, see information under View/Display, Display, System Display Settings, Theme. The Theme control has a corresponding SCPI command:

Parameter Name	Print Themes		
Parameter Type	Enum		
Mode	All		
Remote Command	:SYSTem:PRINt:THEMe TDColor\|TDMonochrome	FCOLor	FMONochrome $: S Y S T e m: P R I N t: T H E M e ? ~$
Example	:SYST:PRIN:THEM FCOL		

File

Setup	: SYSTem:DEFault MISC
Preset	FCOL; not part of Preset, but is reset by Restore Misc Defaults or Restore System Defaults All and survives subsequent running of the modes.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Print

The Print key opens a Print dialog for configured printing (for example, to the printer of your choice). Refer to your Microsoft Windows Operating System manual for more information.

Maximize/Restore Down

These keys allow the Instrument Application to be maximized and then restored to its prior state. Only one of the two keys is visible at a time. When not already maximized the Maximize Application key is visible, and when maximized, the Restore Down Application key is visible and replaces the Maximize Application key.

Maximize

This key allows you to Maximize the Instrument Application which causes the analyzer display to fill the screen. Once the application is maximized, this key is replaced by the Restore Down key.

Key Path	File
Mode	All
Notes	No equivalent remote command for this key.
State Saved	No
Initial S/W Revision	A.05.01

Restore Down

This key allows you to Restore Down the Instrument Application and reverses the action taken by Maximize. This key is only visible when the application has been maximized, and after the Restore Down action has been completed this key is replaced by the Maximize key.

Key Path	File
Mode	All
Notes	No equivalent remote command for this key.
State Saved	No
Initial S/W Revision	A.05.01

Minimize

The Minimize key causes the analyzer display to disappear down into the task bar, allowing you to see the Windows Desktop. You can use Alt-Tab (press and hold the Alt $\begin{aligned} & \begin{array}{l}\text { Menu } \\ \text { (Alt) }\end{array} \\ & \text { key and press and release }\end{aligned}$ the Tab key) to restore the analyzer display.

Key Path	File
Mode	All
Notes	No equivalent remote command for this key.
State Saved	No
Initial S/W Revision	A.05.01

Exit

This key, when pressed, will exit the Instrument Application. A dialog box is used to confirm that you intended to exit the application:

Key Path	File
Mode	All
Notes	The Instrument Application will close. No further SCPI commands can be sent. Use with caution!
Initial S/W Revision	Prior to A.02.00

Preset

Mode Preset

Returns the active mode to a known state.
Mode Preset does the following for the currently active mode:

- Aborts the currently running measurement.
- Brings up the default menu for the mode, with no active function.
- Sets measurement Global settings to their preset values for the active mode only.
- Activates the default measurement.
- Brings up the default menu for the mode.
- Clears the input and output buffers.
- Sets Status Byte to 0 .

Mode Preset does not:

- Cause a mode switch
- Affect mode persistent settings
- Affect system settings

See "How-To Preset" on page 146 for more information.

Key Path	Front-panel key
Remote Command	:SYSTem:PRESet
Example	:SYST:PRES
Notes	*RST is preferred over :SYST:PRES for remote operation. *RST does a Mode Preset, as done by the :SYST:PRES command, and sets the measurement mode to Single measurement rather than Continuous for optimal remote control throughput. Clears all pending OPC bits. The Status Byte is set to 0.
Couplings	A Mode Preset aborts the currently running measurement, activates the default measurement, and. gets the mode to a consistent state with all of the default couplings set.
Initial S/W Revision	Prior to A.02.00

How-To Preset

The table below shows all possible presets, their corresponding SCPI commands and front-panel access (key paths). Instrument settings depend on the current measurement context. Some settings are local to the current measurement, some are global (common) across all the measurements in the current mode,
and some are global to all the available modes. In a similar way, restoring the settings to their preset state can be done within the different contexts.

Auto Couple - is a measurement local key. It sets all Auto/Man parameter couplings in the measurement to Auto. Any Auto/Man selection that is local to other measurements in the mode will not be affected.

Meas Preset - is a measurement local key. Meas Preset resets all the variables local to the current measurement except the persistent ones.

Mode Preset - resets all the current mode's measurement local and measurement global variables except the persistent ones.

Restore Mode Defaults - resets ALL the Mode variables (and all the Meas global and Meas local variables), including the persistent ones.

Type Of Preset	SCPI Command	Front Panel Access
Auto Couple	:COUPle ALL	Auto Couple front-panel key
Meas Preset	:CONFigure:<Measurement>	Meas Setup Menu
Mode Preset	:SYSTem:PRESet	Mode Preset (green key)
Restore Mode Defaults	:INSTrument:DEFault	Mode Setup Menu
Restore All Mode Defaults	:SYSTem:DEFault MODes	System Menu; Restore System Default Menu
*RST	*RST	not possible (Mode Preset with Single)
Restore Input/Output Defaults	:SYSTem:DEFault INPut	System Menu; Restore System Default Menu
Restore Power On Defaults	:SYSTem:DEFault PON	System Menu; Restore System Default Menu
Restore Alignment Defaults	:SYSTem:DEFault ALIGn	System Menu; Restore System Default Menu
Restore Miscellaneous	:SYSTem:DEFault MISC	System Menu; Restore System Default Menu
Restore All System Defaults	:SYSTem:DEFault [ALL]	System Menu; Restore
User Preset	:SYSTem:PRESet:PERSistent	System Default Menu
Pser Preset All Modes	:SYSTem:PRESet:USER:ALL	Syser Preset Menu
Power On User Preset	:SYSTem:PON:TYPE USER	System Menu
Power On Last State	:SYSTem:PON:TYPE LAST	Srem Menu

Restore Mode Defaults

Resets the state for the currently active mode by resetting the mode persistent settings to their factory default values, clearing mode data and by performing a Mode Preset. This function will never cause a mode switch. This function performs a full preset for the currently active mode; whereas, Mode Preset performs a partial preset. Restore Mode Defaults does not affect any system settings. System settings are reset by the Restore System Defaults function. This function does reset mode data; as well as settings.

Key Path	Mode Setup
Remote Command	: INSTrument : DEFault
Example	:INST:DEF
Notes	Clears all pending OPC bits. The Status Byte is set to 0. A message comes up saying: "If you are sure, press key again".
Couplings	A Restore Mode Defaults will cause the currently running measurement to be aborted and causes the default measurement to be active. It gets the mode to a consistent state with all of the default couplings set.
Initial S/W Revision	Prior to A.02.00

*RST (Remote Command Only)

*RST is equivalent to :SYST:PRES;:INIT:CONT OFF which is a Mode Preset in the Single measurement state. This remote command is preferred over Mode Preset remote command :SYST:PRES, as optimal remote programming occurs with the instrument in the single measurement state.

Remote Command	*RST
Example	*RST
Notes	Sequential Clears all pending OPC bits and the Status Byte is set to 0.
Couplings	A *RST will cause the currently running measurement to be aborted and cause the default measurement to be active. *RST gets the mode to a consistent state with all of the default couplings set.
Initial S/W Revision	Prior to A.02.00

Print

This front-panel key is equivalent to performing a File, Print, OK. It immediately performs the currently configured Print to the Default printer.

The :HCOPy command is equivalent to pressing the PRINT key. The HCOPy:ABORt command can be used to abort a print which is already in progress. Sending HCOPy:ABORt will cause the analyzer to stop sending data to the printer, although the printer may continue or even complete the print, depending on how much data was sent to the printer before the user sent the ABORt command.

Key Path	Front-panel key
Remote Command	:HCOPy [: IMMediate]
Initial S/W Revision	Prior to A.02.00

Key Path	SCPI command only
Remote Command	:HCOPy:ABORt
Initial S/W Revision	Prior to A.02.00

Quick Save

The Quick Save front-panel key repeats the most recent save that was performed from the Save menu, with the following exceptions: :

Register saves are not remembered as Saves for the purpose of the Quick Save function
If the current measurement does not support the last non-register save that was performed, an informational message is generated, "File type not supported for this measurement"

Quick Save repeats the last type of qualified save (that is, a save qualified by the above criteria) in the last save directory by creating a unique filename using the Auto File Naming algorithm described below.

If Quick Save is pressed after startup and before any qualified Save has been performed, the Quick Save function performs a Screen Image save using the current settings for Screen Image saves (current theme, current directory), which then becomes the "last save" for the purpose of subsequent Quick Saves.

The Auto File Naming feature automatically generates a file name for use when saving a file. The filename consists of a prefix and suffix separated by a dot, as is standard for the Windows ${ }^{\circledR}$ file system. A default prefix exists for each of the available file types:

Type	Default Prefix	Menu
State	State_	(Save/Recall)
Trace + State	State_	(Save/Recall)
Screen	Screen_	(Save/Recall)
Amplitude Corrections	Ampcor_	(Import/Export)
Traces	Trace_	(Import/Export)
Limit Lines	LLine_	(Import/Export)
Measurement Result	MeasR_	(Import/Export)
Capture Buffer	CapBuf_	(Import/Export)

A four digit number is appended to the prefix to create a unique file name. The numbering sequence starts at 0000 within each Mode for each file type and updates incrementally to 9999, then wraps to 0000 again. It remembers where it was through a Mode Preset and when leaving and returning to the Mode. It is reset by Restore Misc Defaults and Restore System Defaults and subsequent running of the instrument application. So, for example, the first auto file name generated for State files is State_0000.state. The next is State_0001, and so forth.

One of the key features of Auto File Name is that we guarantee that the Auto File Name will never conflict with an existing file. The algorithm looks for the next available number. If it gets to 9999, then it looks for holes. If it find no holes, that is no more numbers are available, it gives an error.

For example, if when we get to State_0010.state there is already a State_0010.state file in the current directory, it advances the counter to State_0011.state to ensure that no conflict will exist (and then it verifies that State_0011.state also does not exist in the current directory and advances again if it does,
and so forth).
If you enter a file name for a given file type, then the prefix becomes the filename you entered instead of the default prefix, followed by an underscore. The last four letters (the suffix) are the 4-digit number.

For example, if you save a measurement results file as "fred.csv", then the next auto file name chosen for a measurement results save will be fred_0000.csv.

NOTE Although 0000 is used in the example above, the number that is used is actually the current number in the Meas Results sequence, that is, the number that would have been used if you had not entered your own file name.

If the filename you entered ends with _dddd, where d=any number, making it look just like an auto file name, then the next auto file name picks up where you left off with the suffix being dddd +1 .

Key Path	Front-panel key
Notes	No remote command for this key specifically.
Initial S/W Revision	Prior to A.02.00

Recall

Accesses a menu that enables you to select the information that you want to recall.
The options are State, Trace and Data. (screen images can be saved, but not recalled.) The default paths for Recall are data type dependent and are the same as for the Save key.

Key Path	Front-panel key
Notes	No remote command directly controls the Recall Type that this key controls. The Recall type is a node in the :MMEM:LOAD command. An example is $: M M E M: L O A D: S T A T e ~<f i l e n a m e>. ~$
Initial S/W Revision	Prior to A.02.00

State

Accesses a menu that enables you to recall a State that has previously been saved. Recalling a saved state returns the analyzer as close as possible to the mode context and may cause a mode switch if the file selected is not for the current active mode. A State file can be recalled from either a register or a file. Once you select the source of the recall in the State menu, the recall will occur.

See "More Information" on page 152.

Key Path	Recall
Mode	All
Example	MMEM:LOAD:STAT "MyStateFile.state" This loads the state file data (on the default file directory path) into the instrument state.
Notes	See "Open" on page 154.
Initial S/W Revision	Prior to A.02.00

More Information

In measurements that support saving Traces, for example, Swept SA, the Trace data is saved along with the State in the State file. When recalling the State, the Trace data is recalled as well. Traces are recalled exactly as they were stored, including the writing mode and update and display modes. If a Trace was updating and visible when the State was saved, it will come back updating and visible,and its data will be rewritten right away. When you use State to save and recall traces, any trace whose data must be preserved should be placed in View or Blank mode before saving.

The following table describes the Trace Save and Recall possibilities:

You want to recall state and one trace's data, leaving other traces unaffected.	Save Trace+State from 1 trace. Make sure that no other traces are updating (they should all be in View or Blank mode) when the save is performed.	On Recall, specify the trace you want to load the one trace's data into. This trace will load in View. All other traces' data will be unaffected, although their trace mode will be as it was when the state save was performed.
You want to recall all traces	Save Trace+State from ALL traces.	On Recall, all traces will come back in View (or Blank if they were in Blank or Background when saved)
You want all traces to load exactly as they were when saved.	Save State	On recall, all traces' mode and data will be exactly as they were when saved. Any traces that were updating willhave their data immediately overwritten.

Register 1 thru Register 6

Selecting any one of these register keys causes the State of the mode from the specified Register to be recalled. Each of the register keys annotates whether it is empty or at what date and time it was last modified.

Registers are shared by all modes, so recalling from any one of the 6 registers may cause a mode switch to the mode that was active when the save to the Register occurred.

After the recall completes, the message "Register <register number> recalled" appears in the message bar. If you are in the Spectrum Analyzer Mode, and you are recalling a register that was saved in the Spectrum Analyzer Mode, then after the recall, you will still be in the Recall Register menu. If the Recall causes you to switch modes, then after the Recall, you will be in the Frequency menu.

Key Path	Recall, State
Example	*RCL 1
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, State
Example	*RCL 2
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Recall

Key Path	Recall, State
Example	*RCL 3
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, State
Example	*RCL 4
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, State
Example	*RCL 5
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, State
Example	*RCL 6
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

From File\ File Open

Brings up the standard Windows ${ }^{\circledR}$ File Open dialog and its corresponding key menu.
When you first enter this dialog, the State File default path is in the Look In: box in this File Open dialog. The File Open dialog is loaded with the file information related to the State Save Type. The first *.state file is highlighted. The only files that are visible are the *.state files and the Files of type is *.state, since .state is the file suffix for the State save type. For more details, refer to "File Open Dialog and Menu" on page 165.

Key Path	Recall, State
Notes	Brings up the Open dialog for recalling a State Save Type
Initial S/W Revision	Prior to A.02.00

Open

The recalling State function must first verify the file is recallable in the current instrument by checking
the software version and model number of the instrument. If everything matches, a full recall proceeds by aborting the currently running measurement, and then loading the State from the saved state file to as close as possible to the context in which the save occurred. You can open state files from any mode, so recalling a State file switches to the mode that was active when the save occurred. After switching to the mode of the saved state file, mode settings and data (if any for the mode) are loaded with values from the saved file. The saved measurement of the mode becomes the newly active measurement and the data relevant to the measurement (if there is any) is recalled.

If there is a mismatch between file version or model number or instrument version or model number, the recall function tries to recall as much as possible and it returns a warning message of what it did.

NOTE
No Trace data is loaded when recalling a State File. Measurements that support loading of trace data will include a Trace key in the Recall menu and will load State + Trace data from .trace files under that key.

Key Path	Recall, State, From File...
Remote Command	:MMEMory:LOAD:STATe <filename>
Example	:MMEM:LOAD:STAT "myState.state" recalls the file myState.state on the default path
Notes	Auto return to the State menu and the Open dialog goes away. Advisory Event "Recalled File <file name>" after recall is complete.
Notes	If the file specified is empty an error is generated. If the specified file does not exist, another error is generated. If there is a mismatch between the file and the proper file type, an error is generated. If there is a mismatch between file version or model number or instrument version or model number, a warning is displayed. Then it returns to the State menu and File Open dialog goes away. Although the trace data is included in the .state file it is not recalled. Recalling trace data is left for trace files only for measurements that support recalling of trace data. Errors are generated if the specified file is empty or does not exist, or there is a file type mismatch.
Initial S/W Revision	Prior to A.02.00

The state of a mode includes all of the variables affected by doing a full preset. It not only recalls Mode Preset settings, but it also recalls all of the mode persistent settings and data if the mode has either. Each mode determines whether data is part of mode state and if the mode has any persistent settings. Recall

Recall

State also recalls all of the Input/Output system settings, since they are saved with each State File for each mode.

The Recall State function does the following:

- Verifies that the file is recallable on this instrument using the version number and model number.
- Aborts the currently running measurement.
- Clears any pending operations.
- Switches to the mode of the selected Save State file.
- Sets mode State and Input/Output system settings to the values in the selected Saved State file.
- Limits settings that differ based on model number, licensing or version number.
- Makes the saved measurement for the mode the active measurement.
- Clears the input and output buffers.
- Status Byte is set to 0 .
- Executes a *CLS

Trace (+State)

Selects Trace as the data type to be recalled. Trace files include the state of the mode they were saved from as well as the trace data, with internal flags to indicate which trace the user was trying to save, which may include ALL traces. They are otherwise identical to State files. Recalling trace data may cause a mode switch if the file selected is not for the currently active mode.

Not all modes support saving of trace data with the state, and for modes that do, not all measurements do. The Trace key is grayed out for measurements that do not support trace recall. It is blanked for modes that do not support trace recall.

This key will not actually cause the recall, since the recall feature still needs to know from which file to recall the trace and which trace to recall it into. Pressing this key will bring up the Recall Trace menu that provides you with the options of where to retrieve the trace.

For quick recalls, the Trace menu lists 5 registers to recall from or you can select a file to recall from.

Key Path	Recall				
Mode	SA				
Example	MMEM:LOAD:TRAC TRACE2,"MyTraceFile.trace" This loads the trace file data (on the default file directory path) into the specified trace. $: M M E M: L O A D: T R A C: R E G ~ T R A C E 1,2 ~$				
restores the trace data in register 2 to Trace 1		$	$	Notes	Prior to A.02.00
:---	:---				
Initial S/W Revision					

Register 1 thru Register 5

Selecting any one of these register keys causes the Traces and State from the specified Register to be recalled. Each of the register keys annotates whether it is empty or at what date and time it was last modified.

Trace registers are shared by all modes, so recalling from any one of the 5 registers may cause a mode switch to the mode that was active when the save to the Register occurred.
After the recall completes, the message "Trace Register < register number> recalled" appears in the message bar.

Key Path	Recall, Trace
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, Trace
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, Trace
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, Trace
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Recall, Trace
Readback	Date and time with seconds resolution of the last Save is displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

To Trace

Thesemenu selections let you pick which Trace to recall the saved trace into. Not all modes have the full 6 traces available. The default is the currently selected trace, selected in this menu or in the Trace/Detector, Export Data, Import Data, or Save Trace menus, except if you have chosen All, then it remains chosen until you specifically change it to a single trace.

Recall

If the .trace file is an "all trace" file, "To Trace" is ignored and the traces each go back to the trace they were saved from.

Once selected, the key returns back to the Recall Trace menu and the selected Trace number is annotated on the key. Now you have selected exactly where the trace needs to be recalled.To trigger a recall of the selected Trace, you must select the Open key in the Recall Trace menu.

Key Path	Save, Data, Trace
Mode	SA
Initial S/W Revision	Prior to A.02.00

Open...

Accesses the standard Windows File Open dialog and its corresponding File Open menu. When you navigate to this selection, you have already determinedyou are recalling Trace and now you want to specify from which file to do the recall.

When you first enter this dialog, the State File default path is in the Look In: box. The File Open dialog is loaded with the file information related to the State Save Type. The first *.trace file is highlighted. Also, the only files that are visible are the *.trace files and the Files of type is *.trace, since .trace is the file suffix for the Trace save type. For more details, refer to "File Open Dialog and Menu" on page 165.

Key Path	Recall, Trace
Mode	SA
Notes	Brings up Open dialog for recalling a Trace Save Type
Initial S/W Revision	Prior to A.02.00

Open

The recalling Trace function must first verify the file is recallable in this instrument by checking instrument software version and model number, since it includes State. If everything matches, a full recall proceeds by aborting the currently running measurement, and loading the state from the saved state file to as close as possible to the context in which the save occurred. You can open .trace files from any mode that supports them, so recalling a Trace file switches to the mode that was active when the save occurred. After switching to the mode of the saved state file, mode settings and data (if any for the mode) are loaded with values from the saved file and the saved measurement of the mode becomes the newly active measurement, and the data relevant to the measurement (if there is any) is recalled.

Once the state is loaded, the trace data must be loaded. The internal flags are consulted to see which trace to load and the "To Trace" setting to see where to load it. Trace data is always loaded with the specified trace set to View, so that the data is visible and not updating(so as not to erase the recalled data). If the file is an "all trace" file, all traces are loaded with the saved data(to the original trace the data was saved from) and set to View. Traces whose data is not loaded are restored to the update state that existed when they were saved.

In every other way a Trace load is identical to a State load. See section "Open" on page 154 "Open" on
page 154 for details.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Key Path } & \text { Recall, Trace, Open... } \\
\hline \text { Remote Command } & \begin{array}{l}\text { :MMEMory: LOAD: TRACe } \\
\text { TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6, <filename> } \\
\text { :MMEMory: LOAD: TRACe:REGister } \\
\text { TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6, <integer> }\end{array} \\
\hline \text { Example } & \begin{array}{l}\text { :MMEM:LOAD:TRAC TRACE2,"myState.trace" recalls the file } \\
\text { myState.trace on the default path; if it is a "single trace" save file, that trace is } \\
\text { loaded to trace 2, andis set to be not updating. } \\
\text { :MMEM:LOAD:TRAC:REG TRACE1,2 restores the trace data in register 2 } \\
\text { to Trace 1 }\end{array} \\
\hline \text { Notes } & \begin{array}{l}\text { Auto return to the Trace menu and the Open dialog goes away. } \\
\text { Advisory Event "Recalled File <file name>" after recall is complete. } \\
\text { Some modes and measurements do not have available all } 6 \text { traces. Phase } \\
\text { Noise mode command, for example, is: MMEMory:LOAD:TRACe } \\
\text { TRACE1|TRACE2|TRACE3,<filename> }\end{array} \\
\hline \text { Initial S/W Revision } & \begin{array}{l}\text { The load trace command actually performs a load state, which in the Swept } \\
\text { SA measurement includes the trace data. However it looks in the recalled state } \\
\text { file to see how it was flagged at save time. The possibilities are: }\end{array}
$$

If the trace file was saved using one of the TRACE\# enums, it is flagged as a

single trace save file. The trace that was flagged as the one that was saved, is

loaded to the trace specified. The trace is loaded with update off and display

on, and none of the other traces are loaded.

If the trace file was saved using one the ALL enum, it is flagged as an "all

traces" file. And all traces will be loaded. All of the traces are loaded with

Update=Off to keep them from updating, regardless of the setting of "Recall

State w/Trace Update".\end{array}\right\}\)| Prior to A.02.00 |
| :--- |

Data (Import)

Importing a data file loads data that was previously saved from the current measurement or from other measurements and/or modes that produce the same type of data. The Import Menu only contains Data Types that are supported by the current measurement.

Since the commonly exported data files are in .csv format, the data can be edited by the user prior to importing. This allows you to export a data file, manipulate the data in Excel (the most common PC Application for manipulating .csv files) and then import it.

Importing Data loads measurement data from the specified file into the specified or default destination, depending on the data type selected. Selecting an Import Data menu key will not actually cause the importing to occur, since the analyzer still needs to know from where to get the data. Pressing the Open key in this menu brings up the Open dialog and Open menu that provides you with the options from where to recall the data. Once a filename has been selected or entered in the Open menu, the recall

Recall

occurs as soon as the Open key is pressed.

Key Path	Recall
Mode	All
Notes	The menu is built from whatever data types are available for the mode. Some keys will be missing completely, so the key locations in the sub-menu will vary. No SCPI command directly controls the Data Type that this key controls. The Data Type is included in the MMEM:LOAD commands.
Dependencies	If a file type is not used by a certain measurement, it is grayed out for that measurement. The key for a file type will not show at all if there are no measurements in the Mode that support it.
Preset	Is not affected by Preset or shutdown, but is reset during Restore Mode Defaults
Readback	The data type that is currently selected
Initial S/W Revision	Prior to A.02.00

Trace

This key selects Trace as the data type to be imported. When pressed a second time, it brings up the Trace Menu, which lets you select the Trace into which the data will be imported.

This key is grayed out when measurements are running that do not support trace importing.

For Vector Signal Analyzer Mode:

The trace data is loaded into the selected data register. Trace data registers are temporary storage places for trace data. They allow you to view past results next to current measurement results, and are also used in some functions like user defined filters. They are measurement global, so you can import data into a register while in the Digital Demod measurement and view it later while in the Vector measurement. Data registers are cleared when the measurement application is terminated, but not when you change Modes and return.

If the recalled file was saved with header information, the trace will initially be displayed with the same formatting and scaling as it had when it was saved. If headers are not saved, the scaling and format are set to defaults when the trace is recalled.

The following trace data formats may be imported:
Text and comma-separated variable (CSV)
Text
SDF.
Option 200 also allows import of these additional formats:
Matlab 4
Matlab 5

Matlab HDF5
N5110A compatible binary

Key Path	Recall, Data				
Remote Command	:MMEMory:LOAD:TRACe:DATA TRACE1\|TRACE2	TRACE3	TRACE4	TRACE5	TRACE6,<filename>
Example	:MMEM:LOAD:TRAC DATA TRACE2,"myTrace2.csv" imports the 2nd trace from the file myTrace2.csv in the current path. The default path is My Documents\SA\dataltraces				
Notes	For VSA Mode: The Open...dialog box has the following filter options when you are recalling trace data: - CSV (Comma delimited) (*.csv) - SDF (Fast) (*.sdf;*.dat) - Text (Tab delimited) (*.txt) - MAT-File (*.mat) - MAT-File (Version 4) (*.mat) - MAT-File (HDF5) (*.mat;*.hdf;*.h5) - N5110A Waveform (*.bin) The file format recalled depends on selection.				
Dependencies	Trace data is not available from all Measurements. When unavailable, the key will be grayed out. The key will not show if no measurements in the Mode support it. If any error occurs while trying to load a file manually (as opposed to during remote operation), the analyzer returns to the Import Data menu and the File Open dialog goes away.				
Couplings	When a trace is imported, Trace Update is always turned OFF for that trace and Trace Display is always turned ON.				
Readback	Other than VSA: $1\|2\| 3\|4\| 5 \mid 6$ VSA: Data 1\|Data 2	Data 3	Data 4	Data 5	Data 6
Initial S/W Revision	Prior to A.02.00				

Trace 1, 2, 3, 4, 5, 6

Enables you to select which Trace to import the data into either 1, 2, 3, 4, 5 or 6 . The default is the currently selected trace, which was selected in this menu or in the Trace/Det, Export Data, Recall Trace, or Save Trace menus. The exception is, if you have chosen All then it remains chosen until you specifically change it to a single trace.

Once selected, the key returns back to the Import Data menu and the selected Trace number is annotated on the key. Now you have selected exactly what needs to be imported. To trigger an import of the selected trace, you must select the Open key in the Import Data menu.

Recall

An example of using this menu is: If you select 4 and continue to the File Open dialog, then import Trace 4 from the file selected or entered in File Name option in the File Open dialog.

Key Path	Recall, Data, Trace
Initial S/W Revision	Prior to A.02.00

Display in Selected Trace

In Vector Signal Analyzer Mode, data registers are used as temporary storage places for trace data.
A register may be displayed in any trace. If the Display in Selected Trace key is set to "Yes" then the data register into which the file is recalled is then assigned to the currently selected trace.

Key Path	Recall, Data (Import), Trace (to)
Example	MMEM:LOAD:TRAC:DATA D1,"TRC1.TXT",TXT This command explicitly puts the data in the specified trace.
Mode	VSA
Initial S/W Revision	Prior to A.02.00

Capture Buffer

Capture Buffer functionality is not available for all measurements. The captured data is raw data (unprocessed).

Key Path	Recall, Data
Example	MMEM:LOAD:CAPT "MyCaptureData.bin" This loads the file of capture data (on the default file directory path) into the instrument.
Mode	WCDMA
Dependencies	Capture buffer data is not available from all Measurements. When unavailable, the key will be grayed out. The key will not show if no measurements in the Mode support it.
Initial S/W Revision	Prior to A.02.00

Mask

NOTE
This key is only valid on Spectrum Emission Mask and ACP measurements.
Recalls a preset mask file that will be provided by the XSA FW installer package. You can select one provided preset mask file from the list. Unlike in the case of the normal state file, the preset mask file contains the configuration for Carrier, Offset, Limit settings and preset profile BW only. When importing a preset mask file, it uses the XSA Recall function and overwrites the set of values with the contents of preset mask file. The other set of values that are not specified by the preset mask file are not changed. The file type is a binary file format and you cannot change or create the preset mask file. This feature
applies for Spectrum Emission Mask, and ACP measurements and will be grayed out when any other measurement is selected.

File type: The file type is a binary file.
File location: The preset mask file is located in "My Documents $<$ mode>\data\masks". The location "My Documents" is an alias to a directory and its place is dependant upon which user is logged in. At XSA start up, XSA will overwrite all of the limit mask files to the current user's "My Documents\<mode>\datalmasks" each time.

File Name: The file name is decided by following naming rules. Each specific keyword is connected with underscore.
<Direction>_<Bandwidth>_<Measurement>_<Condition>.mask
Where
<Direction>: This term means that the limit mask file is for which Direction, Downlink or Uplink.
<Bandwidth>: This term means that the limit mask file is for which Bandwidth.
<Measurement>: This term means that the limit mask file is applied on which measurement. It is SEM, ACP or Mode. Mode means it overwrites the values of some parameters in both ACP, and SEM measurement.
<Condition>: This term means that the limit mask file is applied on which condition. It is depends on the measurement. For example, in case of Spectrum Emission Mask measurement, CategoryB might be fine. In case of ACP, NS_02, etc.

File extension: The extension of the preset mask file is "mask" since it needs to distinguish between the state file and preset mask file.

When you press the open key under the Data menu, "My Documents\<mode>\data\masks" is opened. You can select one mask file. When you change the Bandwidth or Direction, all Power Suite measurement parameters are reset to the hard coded preset parameters in each case. Thus, you must recall the appropriate preset mask file again after the change.

You cannot read the contents of the provided preset mask file since its file is a binary file. Detailed contents of the file are provided by a PDF format file located in the same directory as preset mask file.
The set of variables in the following table are imported to the ACP measurement.

Offset	Start Freq (MHz)	Stop Freq (MHz)	Res BW (Hz)	Meas BW	Rel Start	Rel Stop	Fail Mask
A	5	7.14	30 k	1	-8	-25	Rel
B	7.14	10.57	30 k	1	-25	-27	Rel
C	10.57	20	30 k	1	-27	-50	Rel
D	20	25	30 k	1	-50	-50	Rel
E	25	30	30 k	1	-50	-50	Rel

Recall

Key Path	Recall, Data
Mode	LTE, LTETDD
Remote Command	:MMEMory: LOAD: MASK <string>
Example	MMEM:LOAD:MASK "File location path and filename"
Notes	Set of parameters related to Limit, Carrier and Offset are overwritten by contents of the Preset mask file.
Instrument S/W Revision	A.02.00

Zone map

A map file contains zone definitions that help simplify making measurements of frequently used signals. The OFDMA frame structure can contain multiple-zone definitions for the uplink and downlink subframes and multiple data burst allocations. You can recall map files in which you have saved complicated OFDMA frame analysis zone definitions. This can save you time and ensure the accuracy of repeat measurements. Map files are also useful for recreating measurement settings so they can be used by other users.

Key Path	Recall, Data
Example	MMEM:LOAD:ZMAP "MyZonemapFile.omf" This loads the file of zone map data (on the default file directory path) into the custom map.
Mode	OFDMA WIMAX
Dependencies	Zone map data is not available from all Measurements.When unavailable, the key will be grayed out. The key will not show if no measurements in the Mode support it.
Initial S/W Revision	Prior to A.02.00

Recorded Data

This allows you to recall previously saved, recorded data for analysis.
This feature is only available with 89601X VSA Option 200 and Option G01.

Key Path	Recall, Data (Import)
Example	MMEM:LOAD:REC "MyRecording.sdf"
Mode	VSA

Notes	Available file types are: - CSV (Comma delimited) (*.csv) - MAT-File (*.mat) - MAT-File (Version 4) (*.mat) - MAT-File (HDF5) (*.mat;*.hdf;*.h5) - N5110A Waveform (*.bin) - SDF (Fast) (*.sdf;*.dat) - SDF (Export) (*.sdf;*.dat) - Text (Tab delimited) (*.txt)
Initial S/W Revision	Prior to A.02.00

Open...

Accesses the standard Windows File Open dialog and the File Open key menu. When you navigate to this selection, you have already determinedyou are recalling a specific Data Type and now you want to specify which file to open.

When you first enter this dialog, the path in the Look In: field depends on which import data type you selected.

The only files that are visible are those specific to the file type being recalled.

Key Path	Recall, Data
Notes	The key location is mode-dependent and will vary. Brings up Open dialog for recalling a <mode specific> Save Type
Initial S/W Revision	Prior to A.02.00

Open

The import starts by checking for errors. Then the import can start. For all data types, the actual import starts by aborting the currently running measurement. Then the import does data type specific behavior:

File Open Dialog and Menu

The File Open is a standard Windows dialog and has a File Open key menu. Each key in this menu corresponds to the selectable items in the File Open dialog box. The menu keys can be used for easy navigation between the selections within the dialog or the standard Tab and Arrow keys can be used for dialog navigation. When you navigate to this selection, you have already limited the file recall type and now you want to specify which file to open.

Initial S/W Revision	Prior to A.02.00

Recall

Open

This selection and the Enter key, when a filename has been selected or specified, cause the load to occur. Open loads the specified or selected file to the previously selected recall type of either State or a specific import data type.

Notes	Advisory Event "File <file name> recalled" after recall is complete.
Initial S/W Revision	Prior to A.02.00

File/Folder List

This menu key navigates to the center of the dialog that contains the list of files and folders. Once hereyoucan get information about the file.

Key Path	Recall, <various>, Open...
Notes	Pressing this key navigates you to the files and folders list in the center of the dialog.
Initial S/W Revision	Prior to A.02.00

Sort

Accesses a menu that enables you to sort the files within the File Open dialog. Only one sorting type can be selected at a time and the sorting happens immediately.

Key Path	Recall, <various>, Open...
Notes	No SCPI command directly controls the sorting.
Initial S/W Revision	Prior to A.02.00

By Date

Accesses a menu that enables you to sort the list of files within the scope of the File Open dialog in ascending or descending data order. The date is the last data modified.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in the File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

By Name

Accesses a menu that enables you to sort the list of files within the scope of the File Open dialog in ascending or descending order based on the filename.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in the File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

By Extension

Accesses a menu that enables you to sort the list of files within the scope of the File Open dialog in ascending or descending order based on the file extension for each file.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in the File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

By Size

Accesses a menu that enables you to sort the list of files within the scope of the File Open dialog in ascending or descending order based on file size.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

Ascending

This causes the display of the file list to be sorted, according to the sort criteria, in ascending order.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

Descending

This causes the display of the file list to be sorted, according to the sort criteria, in descending order.

Key Path	Recall, <various>, Open..., Sort
Notes	Files in File Open dialog are sorted immediately in the selected order
Initial S/W Revision	Prior to A.02.00

Files Of Type

This menu key corresponds to the Files Of Type selection in the dialog. It follows the standard Windows supported Files Of Type behavior. It shows the current file suffix that corresponds to the type of file the user has selected to save. Ifyou navigated here from recalling State, "State File (*.state)" is in the dialog selection and is the only type available in the pull down menu. If you navigated here from recalling Trace, "Trace+State File (*.trace)" is in the dialog selection and is the only type available under the pull down menu.

If younavigated here from importing a data file, the data types available will be dependent on the current measurement and the selection you made under Import Data. For example:

Amplitude Corrections: pull down menu shows

Recall

- Amplitude Corrections (*.csv)
- Legacy Cable Corrections (*.cbl)
- Legacy User Corrections (*.amp)
- Legacy Other Corrections (*.oth)
- Legacy Antenna Corrections (*.ant)

Limit: pull down menu shows

- Limit Data (*.csv)
- Legacy Limit Data (*.lim)

Trace: pull down menu shows

- Trace Data (*.csv)

Key Path	Recall, <various>, Open...
Notes	Pressing this key causes the pull down menu to list all possible file types available in this context.
Initial S/W Revision	Prior to A.02.00

Up One Level

This menu key corresponds to the icon of a folder with the up arrow that is in the tool bar of the dialog. It follows the standard Windows supported Up One Level behavior. When pressed, it directs the file and folder list to navigate up one level in the directory structure.

Key Path	Recall, <various>, Open...
Notes	When pressed, the file and folder list is directed up one level of folders and the new list of files and folders is displayed.
Initial S/W Revision	Prior to A.02.00

Cancel

Cancels the current File Open request. It follows the standard Windows supported Cancel behavior.

Key Path	Recall, <various>, Open...
Notes	Pressing this key causes the Open dialog to go away and auto return.
Initial S/W Revision	Prior to A.02.00

Save

Accesses a menu that provides the save type options. The Save Type options are State, Trace, Data, or a Screen Image depending on the active mode.

Key Path	Front-panel key
Mode	All
Notes	No remote command for this key specifically.
Initial S/W Revision	Prior to A.02.00

State

Selects State as the save type and accesses a menu that provides the options of where to save. You can save either to a register or a file. This menu key will not actually cause the save until the location is chosen.

Saving the state is the only way to save this exact measurement context for the current active mode. The entire state of the active mode is saved in a way that when a recall is requested, the mode will return to as close as possible the context in which the save occurred. This includes all settings and data for only the current active mode.

It should be noted that the Input/Output settings will be saved when saving State, since these settings plus the state of the mode best characterize the current context of the mode, but the mode independent System settings will not be saved.

For rapid saving, the State menu lists registers to save to, or you can select a file to save to. Once they select he destination of the save in the State menu, the save will occur.

Key Path	Save
Mode	All
Example	MMEM:STOR:STATe "MyStateFile.state" This stores the current instrument state data in the file MyStateFile.state in the default directory.
Notes	See "Save" on page 175.
Initial S/W Revision	Prior to A.02.00

Register 1 thru Register 6

Selecting any one of these register menu keys causes the State of the currently active mode to be saved to the specified Register. The registers are provided for rapid saving and recalling, since you do not need to specify a filename or navigate to a file. Each of the register menu keys annotates whether it is empty or at what date and time it was last modified.

These 6 registers are all that is available from the front panel for all modes in the instrument. There are not 6 registers available for each mode. From remote, 127 Registers are available. Registers are files that

System Functions

Save

are visible to the user in the My Documents\System folder.

Key Path	Save, State
Mode	All
Example	*SAV 1
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, State
Mode	All
Example	*SAV 2
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, State
Mode	All
Example	*SAV 3
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, State
Mode	All
Example	*SAV 4
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, State
Mode	All
Example	*SAV 5
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, State
Mode	All
Example	*SAV 6
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

To File . . .

Accesses a menu that enables you to select the location for saving the State. This menu is similar to a standard Windows ${ }^{\circledR}$ Save As dialog.

The default path for all State Files is:
My Documents\<mode name>\state
where <mode name> is the parameter used to select the mode with the INST:SEL command (for example, SA for the Spectrum Analyzer). This path is the Save In: path in the Save As dialog for all State Files when they first enter this dialog.

Key Path	Save, State
Mode	All
Notes	Brings up Save As dialog for saving a State Save Type
Initial S/W Revision	Prior to A.02.00

Save As . . .

Accesses a menu that enables you to select the location where you can save the State. This menu is a standard Windows® dialog with Save As menu keys. The "File Name" field in the Save As dialog is initially loaded with an automatically generated filename specific to the appropriate Save Type. The automatically generated filename is guaranteed not to conflict with any filename currently in the directory. You may replace or modify this filename using the File Name softkey. See the Quick Save key documentation for more on the automatic file naming algorithm.

The default path for all State Files is:
My Documents\<mode name>\state
where <mode name> is the parameter used to select the mode with the INST:SEL command (for example, SA for the Spectrum Analyzer).
When you first enter this dialog, the path in the Save In: field depends on the data type. The only files that are visible are the *.state files and the Save As type is *.state, since .state is the file suffix for the State Save Type.

Key Path	Save, State
Mode	All

Save

Notes	Brings up Save As dialog for saving a State Save Type
Initial S/W Revision	Prior to A.02.00

Save

Saves all of the State of the currently active mode plus the system level Input/Output settings to the specified file.

While the save is being performed, the floppy icon shows up in the settings bar near the Continuous/Single sweep icon. After the save completes, the Advisory Event "File <register number> saved" is displayed.

Key Path	Save, State, To File...
Mode	All
Remote Command	:MMEMory:STORe:STATe <filename>
Example	:MMEM:STOR:STAT "myState.state" saves the file myState.state on the default path
Notes	If the file already exists, the file will be overwritten. Using the C: drive is strongly discouraged, since it runs the risk of being overwritten during an instrument software upgrade. Both single and double quotes are supported for any filename parameter over remote. Auto return to the State menu and the Save As dialog goes away.
Backwards Compatibility SCPI	For a backwards compatibility only, the following parameters syntax is supported: :MMEMory:STORe:STATe 1,<filename> The "1" is just ignored. The command is sequential.
Initial S/W Revision	Prior to A.02.00

Trace (+State)

Selects a state file which includes trace data for recalling as the save type and accesses a menu that enables you to select which trace to save. You can save to either a register or a file. Not all modes support saving trace data with the state, and for modes that do, not all measurements do. This key is grayed out for measurements that do not support trace saves. It is blanked for modes that do not support trace saves. Saving Trace is identical to saving State except a .trace extension is used on the file instead of .state, and internal flags are set in the file indicating which trace was saved. You may also select to save ALL traces.

This key will not actually cause the save, since the save feature still needs to know which trace to save and where to save it. Pressing this key accesses the Save Trace menu that provides the user with these options.

For rapid saving, the Trace menu lists registers to save to, or you can select a file to save to. Once you
pick the destination of the save in the Trace menu, the save will occur.

Key Path	Save
Mode	SA
Example	MMEM:STOR:STATe TRACE2,"MyTraceFile.trace" This stores trace 2 data in the file MyTraceFile.trace in the default directory. :MMEM:STOR:TRAC:REG TRACE1,2 stores trace 1 data in trace register 2 :MMEM:STOR:TRAC:REG ALL,3 saves the data for all 6 traces in trace register 3
Notes	See "Save" on page 175.
Initial S/W Revision	Prior to A.02.00

Register 1 thru Register 5

Selecting any one of these register menu keys causes the Trace(s) specified under From Trace, along with the state of the currently active mode, to be saved to the specified Trace Register. The registers are provided for rapid saving and recalling, since you do not need to specify a filename or navigate to a file. Each of the register menu keys annotates whether it is empty or at what date and time it was last modified.

These 5 trace registers are all that is available for all modes in the instrument. At present, only the Swept SA measurement of the Spectrum Analyzer mode supports saving to Trace+State files. Registers are files that are visible to the user in the My Documents\System folder.

Key Path	Save, Trace
Mode	SA
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, Trace
Mode	SA
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, Trace
Mode	SA
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.

Save

Initial S/W Revision	Prior to A.02.00

Key Path	Save, Trace
Mode	SA
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

Key Path	Save, Trace
Mode	SA
Readback	Date and time with seconds resolution are displayed on the key, or "(empty)" if no prior save operation performed to this register.
Initial S/W Revision	Prior to A.02.00

From Trace

Accesses a menu that enables you to select the trace to be saved. Once a trace is selected, the key returns to the Save Trace menu and the selected trace number is annotated on the key. The default is the currently selected trace, selected in this menu or in the Trace/Det, Export Data, Import Data or Recall Trace menus, except if you have chosen All then it remains chosen until you specifically change it to a single trace. To save the Trace you must select Save As.

These keys let you pick which trace to save. Now you have selected exactly what needs to be saved. To trigger a save of the selected Trace, you must select the Save As key in the Save Trace menu.

Key Path	Save, Trace + State
Mode	SA
Initial S/W Revision	Prior to A.02.00

Save As . . .

This menu lets you select the location where you can save the Trace. It is a standard Windows® dialog with Save As menu keys.

The "File Name" field in the Save As dialog is initially loaded with an automatically generated filename specific to the appropriate Save Type. The automatically generated filename is guaranteed not to conflict with any filename currently in the directory. You may replace or modify this filename using the File Name softkey. See the Quick Save key documentation for more on the automatic file naming algorithm.

The default path for all State Files including .trace files is:
My Documents\<mode name>\state
where <mode name> is the parameter used to select the mode with the INST:SEL command (for example, SA for the Spectrum Analyzer).

When you first enter this dialog, the path in the Save In: field depends on the data type. The only files
that are visible are the *.trace files and the Save As type is *.trace, since .trace is the file suffix for the Trace Save Type.

Key Path	Save, Trace (+State)
Mode	SA
Notes	Brings up the Save As dialog for saving a Trace Save Type
Initial S/W Revision	Prior to A.02.00

Save

This key initiates the save of the .trace file. All of the State of the currently active mode plus the system level Input/Output settings are saved to the specified file as well as all of the trace data, including internal flags set in the file indicating which trace is to be saved.

While the save is being performed, the floppy icon shows up in the settings bar near the Continuous/Single sweep icon. After the save completes, the Advisory Event "File <register number> saved" is displayed.
$\left.\left.\begin{array}{|l|l|}\hline \text { Key Path } & \text { Save, Trace, Save As... } \\ \hline \text { Mode } & \text { SA } \\ \hline \text { Remote Command } & \begin{array}{l}\text { :MMEMory:STORe:TRACe } \\ \text { TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6|ALL, <filename } \\ > \\ \text { :MMEMory: STORe:TRACe: REGister } \\ \text { TRACE1|TRACE2|TRACE3|TRACE4|TRACE5|TRACE6|ALL, <integer> }\end{array} \\ \hline \text { Example } & \begin{array}{l}\text { :MMEM:STOR:TRAC TRACE1,"myState.trace" saves the file myState.trace } \\ \text { on the default path and flags it as a "single trace" file with Trace 1 as the } \\ \text { single trace (even though all of the traces are in fact stored). } \\ \text { :MMEM:STOR:TRAC ALL,"myState.trace" saves the file myState.trace on } \\ \text { the default path and flags it as an "all traces" file } \\ \text { :MMEM:STOR:TRAC:REG TRACE1,2 stores trace 1 data in trace register } 2\end{array} \\ \hline \text { Notes } & \begin{array}{l}\text { Some modes and measurements do not have available all } 6 \text { traces. The Phase } \\ \text { Noise mode command, for example, is: MMEMory:STORe:TRACe } \\ \text { TRACE1|TRACE2|TRACE3|ALL, <filename> }\end{array} \\ \text { This command actually performs a save state, which in the Swept SA } \\ \text { measurement includes the trace data. However it flags it (in the file) as a "save } \\ \text { trace" file of the specified trace (or all traces). }\end{array}\right\} \begin{array}{l}\text { The range for the register parameter is 1-5 } \\ \text { If the file already exists, the file will be overwritten. Using the C: drive is } \\ \text { strongly discouraged, since it runs the risk of being overwritten during a } \\ \text { instrument software upgrade. Both single and double quotes are supported for } \\ \text { any filename parameter over remote. } \\ \text { Auto return to the State menu and the Save As dialog goes away. }\end{array}\right\}$

Save

Initial S/W Revision	Prior to A.02.00

Data (Export)

Exporting a data file stores data from the current measurement to mass storage files. The Export Menu only contains data types that are supported by the current measurement.

Since the commonly exported data files are in .csv format, the data can be edited by you prior to importing. This allows youto export a data file, manipulate the data in Excel (the most common PC Application for manipulating .csv files) and then import it.

Selecting an Export Data menu key will not actually cause the exporting to occur, since the analyzer still needs to know where you wish to save the data. Pressing the Save As key in this menu brings up the Save As dialog and Save As menu that allows you to specify the destination file and directory. Once a filename has been selected or entered in the Open menu, the export will occur as soon as the Save key is pressed.

Key Path	Save
Mode	All
Notes	The menu is built from whatever data types are available for the mode. So the key locations in the sub menu will vary. No SCPI command directly controls the Data Type that this key controls. The Data Type is included in the MMEM:STORe commands.
Dependencies	If a file type is not used by a certain measurement, that type is grayed out for that measurement. The key for a file type will not show at all if there are no measurements in the Mode that support it.
Preset	Is not affected by a Preset or shutdown, but is reset during Restore Mode Defaults
Readback	The data type that is currently selected
Initial S/W Revision	Prior to A.02.00

Trace

Enables you to select Traces as the data type to be exported. Pressing this key when it is already selected brings up the Trace menu, which allows you to select which Trace to save.

The trace file contains "meta" data, which describes the current state of the analyzer.

Key Path	Save, Data					
Remote Command	:MMEMory: STORe: TRACe: DATA TRACE1\|TRACE2	TRACE3	TRACE4	TRACE5	TRACE6	ALL, <filename $>$

Example	:MMEM:STOR:TRAC:DATA TRACE2,"myTrace2.csv" exports the 2nd trace to the file myTrace2.csv in the current path. The default path is My Documents\SA\|dataltraces VSA Example: MMEM:STOR:TRAC:DATA TRACE1,"Trc1.txt",TXT,ON																	
Notes	If the save is initiated via SCPI, and the file already exists, the file will be overwritten. Using the C: drive is strongly discouraged, since it runs the risk of being overwritten during an instrument software upgrade. Both single and double quotes are supported for any filename parameter over SCPI.																	
Dependencies	Trace data is not available from all Measurements. When unavailable, the key will be grayed out. The key will not show if no measurements in the Mode support it.																	
Readback	Swept SA: 1\|2	3	4	5	6	ALL Analog Demod Mode: RF Spectrum\|Demod	Demod Ave	Demod Max	Demod Min\|AF Spectrum Vector Signal Analyzer: Trace 1\|Trace 2 with header	Trace 2	Trace 2 with header\|Trace 3	Trace 3 with header	Trace 4	Trace 4 with header	Trace 5	Trace 5 with header\|Trace 6	Trace 6 with header	
Instrument S/W Revision	Prior to A.02.00																	

Trace selection

Enables you to select which Trace to save. The traces may have names, or they may be labeled 1, 2, 3, 4, 5 , or 6, depending on the current mode. Once selected, the key returns back to the Export Data menu and the selected trace name/number is annotated on the key. The default is the currently selected trace, selected in this menu or in the Trace/Det, Import Data, Recall Trace or Save Trace menus. The exception is, if you have chosen All then it remains chosen until you specifically change it to a single trace.
To trigger a save of the selected trace, you must select the Save As key in the Export Data menu.
Some measurements have an "ALL" selection. This saves all six traces in one .csv file with the x-axis data in the first column and the individual trace data in succeeding columns. The header data and x -axis data in this file reflect the current settings of the measurement. Note that any traces which are in View or Blank may have different x -axis data than the current measurement settings, but this data will not be output to the file.

Key Path	Save, Data, Trace	
Mode	SA\|Analog Demod	VSA
Preset	The first trace key shown.	
Instrument S/W Revision	Prior to A.02.00	

Include Header

The trace header information includes enough state information to display the trace data with the same

Save

formatting and scaling when it is recalled. However, no other instrument state information is saved. If headers are not saved, the scaling and format are set to defaults when the trace is recalled.

Key Path	Save, Data, Trace
Example	MMEM:STOR:TRAC:DATA TRACE1,"Trc1.txt",TXT,ON The On/Off setting is the last variable passed in the MMEMory:STORe:TRACe:DATA command.
Mode	VSA
Preset	On
Instrument S/W Revision	Prior to A.02.00

Measurement Results

Different types of results are available for each particular measurement. The results that are available are documented under the individual measurements. These measurement results are the same as the results that are returned when using the MEASure:<measurement> command (usually for sub-opcode 1).

Measurement results may not be available for all measurements.

Key Path	Save, Data						
Example	MMEM:STOR:RES "MyResultsFile.xml" This stores the measurement results data in the file MyResultsFile.xml in the default directory.						
Mode	SA\|ADEMOD	BASIC(IQ Analyzer)\|CDMA2K	GSMEDGE	PNOISE	WCDMA	WIMAXOFDMA	TDS CDMA
Notes	The key will not show if no measurements in the Mode support it.						
Instrument S/W Revision	Prior to A.02.00						

Capture Buffer

Capture Buffer functionality is not available for all measurements. The captured data is raw data (unprocessed).

Key Path	Save, Data
Example	MMEM:STOR:CAPT "MyCaptureData.bin" This stores the capture data in the file MyCaptureData.bin in the default directory.
Mode	WCDMA
Notes	The key will not show if no measurements in the Mode support it.
Instrument S/W Revision	Prior to A.02.00

Zone map

A map file contains zone definitions that will help simplify making measurements of frequently used signals. The OFDMA frame structure can contain multiple-zone definitions for the uplink and downlink subframes and multiple data burst allocations. You can store map files in which you have saved complicated OFDMA frame analysis zone definitions. This can save you time and ensure the accuracy of repeated measurements. map files are also useful for recreating measurement settings so they can be used by other users.

Key Path	Save, Data
Example	MMEM:STOR:ZMAP "MyZonemapFile.omf" This stores the zone map data in the file MyZonemapFile.omf in the default directory.
Mode	OFDMA WiMAX
Notes	The key will not show if no measurements in the Mode support it.
Instrument S/W Revision	Prior to A.02.00

Recorded Data

Saving recorded data is not available for all measurements. Recorded data, and the optional header info, may be recalled later (or transferred to another instrument) for analysis.

This function is available in 89601X VSA Option 200, but not in Option 205.

Key Path	Save, Data (Export)
Example	MMEM:STOR:REC "MyRecording.sdf",SDF,ON,ON,OFF
Mode	VSA
Notes	Grayed out unless there is recorded data in the buffer.
Instrument S/W Revision	Prior to A.02.00

Save As . . .

This menu lets you select the location where you can save Data Type files. It is a standard Windows® ${ }^{\circledR}$ dialog with Save As menu keys. The "File Name" field in the Save As dialog is initially loaded with an automatically generated filename specific to the appropriate Save Type. The automatically generated filename is guaranteed not to conflict with any filename currently in the directory. You may replace or modify this filename using the File Name key. See the Quick Save key documentation for more on the automatic file naming algorithm.

When you first enter this dialog, the path in the Save In: field depends on the data type. The only files that are visible are the files with the corresponding data type suffix, and the Save As type lists the same suffix.

For example, if the Data Type is Amplitude Corrections, the file suffix is .csv and the *.csv files are the only visible files in the Save As dialog and .csv is the Save As Type.

The default path for saving files is:

Save

For all of the Trace Data Files:
My Documents\<mode name>\dataltraces
For all of the Limit Data Files:
My Documents)<mode name>\datallimits
For all of the Measurement Results Data Files:
My Documents\<mode name>\datal<measurement name>\results
For all of the Capture Buffer Data Files:
My Documents\<mode name>\datalcaptureBuffer

Key Path	Save, Data
Mode	All
Notes	The key location is mode-dependent and will vary. Brings up the Save As dialog for saving a <mode specific $>$ Save Type
Initial S/W Revision	Prior to A.02.00

Save

Saves the specified Data Type. This section describes any specific save behavior relevant to Data that is common to all modes.

When a Save of a specific Data File is requested, the specified data is saved to the specified or selected file. The save is performed immediately and does not wait until the measurement is complete.

If the file already exists, a dialog will appear that allows you to replace the existing file by selecting $\mathbf{O K}$ or you can Cancel the request.

While the save is being performed, the floppy icon will show up in the settings bar near the Continuous/Single icon. After a register save completes, the corresponding register softkey annotation is updated with the date the time and an advisory message that the file was saved appears in the message bar.

Key Path	Save, Data, Save As...
Notes	If the file already exists, the file will be overwritten. Using the C: drive is strongly discouraged, since it runs the risk of being overwritten during a instrument software upgrade. Both single and double quotes are supported for any filename parameter over remote.
Initial S/W Revision	Prior to A.02.00

Screen Image

Accesses a menu of functions that enable you to specify a format and location for the saved screen image.

Pressing Screen Image brings up a menu that allows you to specify the color scheme of the Screen Image
(Themes) or navigate to the Save As dialog to perform the actual save.
Screen Image files contain an exact representation of the analyzer display. They cannot be loaded back onto the analyzer, but they can be loaded into your PC for use in many popular applications.

The image to be saved is actually captured when the Save front panel key is pressed, and kept in temporary storage to be used if the user asks for a Screen Image save. When the Screen Image softkey is pressed, a "thumbnail" of the captured image is displayed, as shown below:

When you continue on into the Save As menu and complete the Screen Image save, the image depicted in the thumbnail is the one that gets saved, showing the menus that were on the screen before going into the Save menus.

After you have completed the save, the Quick Save front-panel key lets you quickly repeat the last save performed, using an auto-named file, with the current screen data.

NOTE	For versions previous to A.01.55, if you initiate a screen image save by navigating through the Save menus, the image that is saved will contain the Save menu
softkeys, not the menus and the active function that were on the screen when you	
first pressed the Save front panel key.	

Key Path	Save

Save

Mode	All
Example	MMEM:STOR:SCR "MyScreenFile.png" This stores the current screen image in the file MyScreenFile.png in the default directory.
Notes	See
Initial S/W Revision	Prior to A.02.00

Themes

Accesses a menu of functions that enable you to choose the theme to be used when saving the screen image.

The Themes option is the same as the Themes option under the Display and Page Setup dialogs. It allows you to choose between themes to be used when saving the screen image.

Key Path	Save, Screen Image		
Remote Command	:MMEMory:STORe:SCReen:THEMe TDColor \|TDMonochrome	FCOLor	FMONochrome :MMEMory:STORe:SCReen:THEMe?
Example	:MMEM:STOR:SCR:THEM TDM		
Preset	3D Color; Is not part of Preset, but is reset by Restore Misc Defaults or Restore System Defaults All and survives subsequent running of the modes.		
Readback	3D Color \| 3D Mono	Flat Color	Flat Mono
Initial S/W Revision	Prior to A.02.00		

3D Color

Selects a standard color theme with each object filled, shaded and colored as designed.

Key Path	Save, Screen Image, Themes
Example	MMEM:STOR:SCR:THEM TDC
Readback	3D Color
Initial S/W Revision	Prior to A.02.00

3D Monochrome

Selects a format that is like 3D color but shades of gray are used instead of colors.

Key Path	Save, Screen Image, Themes
Example	MMEM:STOR:SCR:THEM TDM
Readback	3D Mono

Initial S/W Revision	Prior to A.02.00

Flat Color

Selects a format that is best when the screen is to be printed on an ink printer.

Key Path	Save, Screen Image, Themes
Example	MMEM:STOR:SCR:THEM FCOL
Readback	Flat Color
Initial S/W Revision	Prior to A.02.00

Flat Monochrome

Selects a format that is like Flat Color. But only black is used (no colors, not even gray), and no fill.

Key Path	Save, Screen Image, Themes
Example	MMEM:STOR:SCR:THEM FMON
Readback	Flat Mono
Initial S/W Revision	Prior to A.02.00

Save As...

Accesses a menu that enables you to select the location where you can save the Screen Image. This menu is a standard Windows ${ }^{\circledR}$ dialog with Save As menu keys. The Save As dialog is loaded with the file information related to the Screen Image Type. The filename is filled in using the auto file naming algorithm for the Screen Image Type and is highlighted. The only files that are visible are the *.png files and the Save As Type is *.png, since .png is the file suffix for the Screen Image Type.

The default path for Screen Images is
My Documents \backslash mode name $>$ \screen.
where <mode name> is the parameter used to select the mode with the INST:SEL command (for example, SA for the Spectrum Analyzer).

This path is the Save In: path in the Save As dialog for all Screen Files when you first enter this dialog.

Key Path	Save, Screen Image
Notes	Brings up Save As dialog for saving a Screen Image Save Type
Initial S/W Revision	Prior to A.02.00

Save

Saves the screen image to the specified file using the selected theme. The image that is saved is the measurement display prior to when the Save As dialog appeared. The save is performed immediately

Save

and does not wait until the measurement is complete.

Key Path	Save, Screen Image, Save As...
Remote Command	:MMEMory:STORe: SCReen <filename>
Example	:MMEM:STOR:SCR "myScreen.png"
Notes	If the file already exists, the file will be overwritten. Using the C: drive is strongly discouraged, since it runs the risk of being overwritten during a instrument software upgrade. Both single and double quotes are supported for any filename parameter over remote. Auto return to the Screen Image menu and the Save As dialog goes away. Advisory Event "File <file name> saved" after save is complete.
Initial S/W Revision	Prior to A.02.00

Save As . . .

Accesses a standard Windows dialog with the Save As key menu. The "File Name" field in the Save As dialog is initially loaded with an automatically generated filename specific to the appropriate Save Type. The automatically generated filename is guaranteed not to conflict with any filename currently in the directory. You may replace or modify this filename using the File Name key. See the Quick Save key documentation for more on the automatic file naming algorithm.

The Save As dialog has the last path loaded in Save In: for this particular file type. User specified paths are remembered and persist through subsequent runs of the mode. These remembered paths are mode specific and are reset back to the default using Restore Mode Defaults.

Initial S/W Revision:	Prior to A.02.00

Save

Performs the actual save to the specified file of the selected type. The act of saving does not affect the currently running measurement and does not require you to be in single measurement mode to request a save. It performs the save as soon as the currently running measurement is in the idle state; when the measurement completes. This ensures the State or Data that is saved includes complete data for the current settings. The save only waits for the measurement to complete when the state or data that depends on the measurement setup is being saved. The save happens immediately when exporting corrections or when saving a screen image.

If the file already exists, a dialog appears with corresponding menu keys that allowyou to replace the existing file with an OK or to Cancel the request.

While the save is being performed, the floppy icon shows up in the settings bar near the Continuous/Single icon. After the save completes, the corresponding register menu key annotation is
updated with the date the time and the message "File <file name> saved" appears in the message bar.

Notes	If the file already exists, the File Exist dialog appears and allows you to replace it or not by selecting the Yes or No menu keys that appear with the dialog.Then the key causes an auto return and Save As dialog goes away. Advisory Event "File <file name> saved" after save is complete.
Initial S/W Revision	Prior to A.02.00

File/Folder List

Enables you to navigate to the center of the dialog that contains the list of files and folders. Once here you can get information about the file.

Key Path	Save, <various>, Save As...
Notes	Pressing this key enables you to navigate to the files and folders list in the center of the dialog.
Initial S/W Revision	Prior to A.02.00

File Name

Accesses the Alpha Editor. Use the knob to choose the letter to add and the Enter front-panel key to add the letter to the file name. In addition to the list of alpha characters, this editor includes a Space key and a Done key. The Done key completes the filename, removes the Alpha Editor and returns back to the File Open dialog and menu, but does not cause the save to occur. You can also use Enter to complete the file name entry and this will cause the save to occur.

Key Path	Save, <various>, Save As...
Notes	Brings up the Alpha Editor. Editor created file name is loaded in the File name field of the Save As dialog.
Initial S/W Revision	Prior to A.02.00

Save As Type

This key corresponds to the Save As Type selection in the dialog. It follows the standard Windows® supported Save As Type behavior. It shows the current file suffix that corresponds to the type of file you have selected to save. If you navigated here from saving State, "State File (*.state)" is in the dialog selection and is the only type available under the pull down menu. If you navigated here from saving Trace, "Trace+State File (*.trace)" is in the dialog selection and is the only type available under the pull down menu. If you navigated here from exporting a data file, "Data File (*.csv)" is in the dialog and is available in the pull down menu. Modes can have other data file types and they would also be listed in the pull down menu.

Key Path	Save, <various>, Save As...
Notes	Pressing this key causes the pull down menu to list all possible file types available in this context. All types available are loaded in a 1-of-N menu key for easy navigation.

Save

Initial S/W Revision	Prior to A.02.00

Up One Level

This key corresponds to the icon of a folder with the up arrow that is in the tool bar of the dialog. It follows the standard Windows® supported Up One Level behavior. When pressed, it causes the file and folder list to navigate up one level in the directory structure.

Key Path	Save, <various>, Save As...
Notes	When pressed, the file and folder list is directed up one level of folders and the new list of files and folders is displayed
Initial S/W Revision	Prior to A.02.00

Create New Folder

This key corresponds to the icon of a folder with the "*" that is in the tool bar of the dialog. It follows the standard Windows ${ }^{\circledR}$ supported Create New Folder behavior. When pressed, a new folder is created in the current directory with the name New Folder and allows you to enter a new folder name using the Alpha Editor.

Key Path	Save, <various>, Save As...
Notes	Creates a new folder in the current folder and lets the user fill in the folder name using the Alpha Editor.
Initial S/W Revision	Prior to A.02.00

Cancel

This key corresponds to the Cancel selection in the dialog. It follows the standard Windows supported Cancel behavior. It causes the current Save As request to be cancelled.

Key Path	Save, <various>, Save As...
Notes	Pressing this key causes the Save As dialog to go away and auto return.
Initial S/W Revision	Prior to A.02.00

Mass Storage Catalog (Remote Command Only)

$\left.\begin{array}{|l|l|}\hline \text { Remote Command: } & \text { :MMEMory:CATalog? [<directory_name>] } \\ \hline \text { Notes: } & \begin{array}{l}\text { The string must be a valid logical path. } \\ \text { Query disk usage information (drive capacity, free space available) and obtain } \\ \text { a list of files and directories in a specified directory in the following format: } \\ \text { <numeric_value>,<numeric_value>, \{<file_entry>\} }\end{array} \\ \begin{array}{ll}\text { It shall return two numeric parameters and as many strings as there are files } \\ \text { and directories. The first parameter shall indicate the total amount of storage } \\ \text { currently used in bytes. The second parameter shall indicate the total amount } \\ \text { of storage available, also in bytes. The <file_entry> is a string. Each } \\ \text { <file_entry> shall indicate the name, type, and size of one file in the directory } \\ \text { list_ } \\ \text { <file_name>_<file_type>,<file_size> }\end{array} \\ \text { As windows file system has an extension that indicates file type, <file_type> } \\ \text { is always empty. <file_size> provides the size of the file in bytes. In case of } \\ \text { directories, <file_entry> is surrounded by square brackets and both } \\ \text { <file_type> and <file_size> are empty. }\end{array}\right\}$

Mass Storage Change Directory (Remote Command Only)

$\left.\begin{array}{|l|l|}\hline \text { Remote Command: } & \begin{array}{l}\text { :MMEMory:CDIRectory [<directory_name>] } \\ \text { :MMEMory:CDIRectory? }\end{array} \\ \hline \text { Notes: } & \begin{array}{l}\text { The string must be a valid logical path. } \\ \text { Changes the default directory for a mass memory file system. The } \\ \text { <directory_name> parameter is a string. If no parameter is specified, the } \\ \text { directory is set to the *RST value. }\end{array} \\ \text { At *RST, this value is set to the default user data storage area, that is defined } \\ \text { as System.Environment.SpecialFolder.Personal. } \\ \text { Query returns full path of the default directory. }\end{array}\right\}$

Mass Storage Copy (Remote Command Only)

Remote Command:	:MMEMory: COPY <string>,<string>[,<string>,<string>]

Save

Notes:	The string must be a valid logical path. Copies an existing file to a new file or an existing directory to a new directory. Two forms of parameters are allowed. The first form has two parameters. In this form, the first parameter specifies the source, and the second parameter specifies the destination. The second form has four parameters. In this form, the first and third parameters specify the source. The second and fourth parameters specify the directories. The first pair of parameters specifies the source. The second pair specifies the destination. An error is generated if the source doesn’t exist or the destination file already exists.

Mass Storage Delete (Remote Command Only)

Remote Command:	:MMEMory: DELete <file_name>[,<directory_name>]
Notes:	The string must be a valid logical path. Removes a file from the specified directory. The <file_name> parameter specifies the file name to be removed.
Initial S/W Revision:	Prior to A.02.00

Mass Storage Data (Remote Command Only)

Creates a file containing the specified data OR queries the data from an existing file.

Remote Command:	:MMEMory: DATA <file_name>, <data> :MMEMory: DATA? <file_name>
Notes:	The string must be a valid logical path. The command form is MMEMory:DATA <file_name>, <data>. It loads <data> into the file <file_name>. <data> is in 488.2 block format. <file_name> is string data. The query form is MMEMory:DATA? <file_name> with the response being the associated <data> in block format.
Initial S/W Revision:	Prior to A.02.00

Mass Storage Make Directory (Remote Command Only)

Remote Command:	:MMEMory:MDIRectory <directory_name>
Notes:	The string must be a valid logical path. Creates a new directory. The <directory_name> parameter specifies the name to be created.
Initial S/W Revision:	Prior to A.02.00

Mass Storage Move (Remote Command Only)

Remote Command:	:MMEMory: MOVE <string>, <string>[,<string>,<string>]
Notes:	The string must be a valid logical path. Moves an existing file to a new file or an existing directory to a new directory. Two forms of parameters are allowed. The first form has two parameters. In this form, the first parameter specifies the source, and the second parameter specifies the destination. The second form has four parameters. In this form, the first and third parameters specify the source. The second and fourth parameters specify the directories. The first pair of parameters specifies the source. The second pair specifies the destination. An error is generated if the source doesn’t exist or the destination file already exists.
Initial S/W Revision:	Prior to A.02.00

Mass Storage Remove Directory (Remote Command Only)

Remote Command:	:MEMMory:RDIRectory <directory_name>
Notes:	The string must be a valid logical path. Removes a directory. The <directory_name> parameter specifies the directory name to be removed. All files and directories under the specified directory shall also be removed.
Initial S/W Revision:	Prior to A.02.00

System

Opens a menu of keys that access various configuration menus and dialogs.

Key Path	Front-panel key
Notes	No remote command for this key specifically.
Initial S/W Revision	Prior to A.02.00

Show

Accesses a menu of choices that enable you to select the information window you want to view.

Key Path	System						
Mode	All						
Remote Command	:SYSTem: SHOW OFF \|ERRor	SYSTem	HARDware	LXI	HWSTatistics	ALIGnment	SO FTware\|CAPPlication $:$ SYSTem: SHOW?
Example	:SYST:SHOW SYST						
Notes	This command displays (or exits) the various System information screens.						
Preset	OFF						
State Saved	No						
Range	OFF\|ERRor	SYSTem	HARDware	LXI	HWSTatistics	ALIGNment	 SOFTware\|CAPPlication
Initial S/W Revision	Prior to A.02.00						

Errors

There are two modes for the Errors selection, History and Status.
The list of errors displayed in the Errors screen does not automatically refresh. You must press the Refresh key or leave the screen and return to it to refresh it.

History brings up a screen displaying the event log in chronological order, with the newest event at the top. The history queue can hold up to 100 messages (if a message has a repeat count greater than 1 it only counts once against this number of 100). Note that this count bears no relation to the size of the SCPI queue. If the queue extends onto a second page, a scroll bar appears to allow scrolling with a mouse. Time is displayed to the second.

Status brings up a screen summarizing the status conditions currently in effect. Note that the time is displayed to the second.

The fields on the Errors display are:

Type (unlabelled) - Displays the icon identifying the event or condition as an error or warning.
ID - Displays the error number.
Message - Displays the message text.
Repeat (RPT) - This field shows the number of consecutive instances of the event, uninterrupted by other events. In other words, if an event occurs 5 times with no other intervening event, the value of repeat will be 5 .

If the value of Repeat is 1 the field does not display. If the value of Repeat is >1, the time and date shown are those of the most recent occurrence. If the value of repeat reaches 999,999 it stops there.

Time - Shows the most recent time (including the date) at which the event occurred.

Key Path	System, Show
Mode	All
Remote Command	:SYSTem:ERRor [: NEXT]?
Example	:SYST:ERR?
Notes	The return string has the format: "<Error Number>,<Error>" Where <Error Number> and <Error> are defined in the Master Error Messages document.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Next Page

Next Page and Previous Page menu keys move you between pages of the log, if it fills more than one page. These keys are grayed out in some cases:

- If on the last page of the log, the Next Page key is grayed out
- If on the first page of the log, the Previous Page key is grayed out.
- If there is only one page, both keys are grayed out.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

Previous Page

See "Next Page" on page 191.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

History

The History and Status keys select the Errors view. The Status key has a second line which shows a number in [square brackets]. This is the number of currently open status items.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

Status

See "History" on page 192

Verbose SCPI On/Off

This is a capability that will allow the SCPI data stream to be displayed when a SCPI error is detected, showing the characters which stimulated the error and several of the characters preceding the error.

Key Path	System, Show, Errors		
Mode	All		
Remote Command	:SYSTem: ERRor :VERBose OFF\|ON	0	1 $:$ SYSTem:ERRor :VERBose?
Example	:SYST:ERR:VERB ON		
Preset	OFF		
Preset	This is unaffected by Preset but is set to OFF on a "Restore System Defaults->Misc"		
State Saved	No		
Range	On \mid Off		
Initial S/W Revision	Prior to A.02.00		

Refresh

When pressed, refreshes the Show Errors display.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

Clear Error Queue

This clears all errors in all error queues.
Note the following:
Clear Error Queue does not affect the current status conditions.
Mode Preset does not clear the error queue.
Restore System Defaults will clear all error queues.
*CLS only clears the queue if it is sent remotely and *RST does not affect any error queue.
Switching modes does not affect any error queues.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

System

The System screen is formatted into three groupings: product descriptive information, options tied to the hardware, and software products:

```
<Product Name> <Product Description>
Product Number: N9020A
Serial Number: US46220924
Firmware Revision: A.01.01
Computer Name: <hostname>
Host ID: N9020A,US44220924
\begin{tabular}{lll} 
N9020A-503 & Frequency Range to 3.6 GHz & \\
N9020A-PFR & Precison Frequency Reference & \\
N9020A-P03 & Preamp 3.6 GHz & \\
& & \\
N9060A-2FP & Spectrum Analysis Measurement Suite & 1.0 .0 .0 \\
N9073A-1FP & WCDMA & 1.0 .0 .0 \\
N9073A-2FP & WCDMA with HSDPA & 1.0 .0 .0
\end{tabular}
```

The Previous Page is grayed-out if the first page of information is presently displayed. The Next Page menu key is grayed-out if the last page is information is presently displayed.

Key Path	System, Show
Mode	All
Example	SYST:SHOW SYST
Initial S/W Revision	Prior to A.02.00

Hardware

The show hardware screen is used to view details of the installed hardware. This information can be used to determine versions of hardware assemblies and field programmable devices, in the advent of future upgrades or potential repair needs.

The screen is formatted into two groupings: product descriptive information and hardware information. The hardware information is listed in a table format:

System

Hardware Inform MXA Signal Analyzer Product Number N9 Serial Number USA Firmware Revision	ion						
Assembly Name	Part \#	Serisa \#	Mat Rev	Rev	OFRev	Hw Id	Msc
Andog If	E441060104	78060200131	003	0	c	15	
YIG Tuned Fiter	50877305	11051500550	005	0	A	11	
Digtal IF	E441060105	78060100559	003	0	F	14	
Front End Controler	E441060101	78060100147	004	2	A	8	
Low Bond Swith	E441060170	78050500346	005	1	A	10	
LO Synthesier	E441060102	78060100226	003	3	G	2	
Reference	E441060108	78050800420	004	1	C	16	
Front End	E441060154	13062800820	010	2	B	9	

The Previous Page is grayed-out if the first page of information is presently displayed. The Next Page menu key is grayed-out if the last page is information is presently displayed.

Key Path	System, Show
Mode	All
Example	SYST:SHOW HARD
Initial S/W Revision	Prior to A.02.00

LXI

This key shows you the product number, serial number, firmware revision, computer name, IP address, Host ID, LXI Class, LXI Version, MAC Address, and the Auto-MDIX Capability.

Key Path	System, Show
Initial S/W Revision	Prior to A.02.00

LXI Event Log

The event log records all of the LXI LAN event activity. As LXI LAN events are sent or received, the activity is noted in the Event Log with an IEEE 1588 timestamp. When the event log is selected, the current contents of the event log are displayed in the system information screen.

The fields recorded in the Event Log are:

- The date the event occurred (GMT)
- The time the event occurred (GMT)
- The type of event: LAN Input, LAN Output, Status, Alarm, Trigger Alarm, Trigger LAN
- The name of the event
- The edge associated with the event
- The event's identifier: This is the string that appears on the LAN.
- The source event: This is only valid for LAN Output, Trigger LAN, and Trigger Alarm event types.
- The source address: This is only valid for LAN Input event types. It is the address from which the message originated.
- The destination address: This is only valid for LAN Output event types. It is the address (or addresses) that the message will be sent to. For UDP messages, this field reads "ALL."

Key Path	System, Show, LXI
Initial S/W Revision	Prior to A.02.00

Next Page

See "Next Page" on page 191.

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

Previous Page

See "Next Page" on page 191

Key Path	System, Show, Errors
Initial S/W Revision	Prior to A.02.00

Circular

Sets the behavior for entries that occur while the LXI Event Log is full.

- If Circular is set to 1 , incoming events overwrite the oldest events in the log.
- If Circular is set to 0 , incoming events are discarded.

Key Path	System, Show, LXI, LXI Event Log		
Remote Command	:LXI:EVENt:LOG:CIRCular[:ENABle] ON\|OFF	1	0
	$:$ LXI:EVENt:LOG:CIRCular [:ENABle]?		
Example	$:$ LXI:EVEN:LOG:CIRC 1		
Preset	ON		

Preset	Not affected by a Preset. The default value of "ON" can be restored by pressing System, Restore Defaults, Misc.
State Saved	Saved in instrument state.
Range	OFF \mid ON $\|0\| 1$
Initial S/W Revision	Prior to A.02.00

Clear

Clears the event log of all entries.

Key Path	System, Show, LXI, LXI Event Log
Remote Command	$:$ LXI:EVENt:LOG:CLEar
Example	:LXI:EVEN:LOG:CLE
Initial S/W Revision	Prior to A.02.00

Size

Sets the maximum number of entries the LXI Event Log can hold.

Key Path	System, Show, LXI, LXI Event Log
Remote Command	$:$ LXI :EVENt :LOG:SIZE <size> $:$ LXI :EVENt :LOG:SIZE?
Example	$:$ LXI:EVEN:LOG:SIZE 256
Preset	64
Preset	Not affected by a Preset. The default value of "64" can be restored by pressing System, Restore Defaults, Misc.
State Saved	Saved in instrument state.
Range	$>=0$
Initial S/W Revision	Prior to A.02.00

Enabled

Enables and disables the logging of LXI Events.

Key Path	System, Show, LXI, LXI Event Log		
Remote Command	$:$ LXI:EVENt:LOG:ENABle ON\|OFF	1	0 $:$ LXI :EVENt:LOG:ENABle?
Example	$:$ LXI:EVEN:LOG:ENAB ON		
Preset	ON		

Preset	Not affected by a Preset. The default value of "ON" can be restored by pressing System, Restore Defaults, Misc.
State Saved	Saved in instrument state.
Range	ON $\|\mathrm{OFF}\| 0 \mid 1$
Initial S/W Revision	Prior to A.02.00

Count (Remote Command Only)

Returns the number of entries currently in the LXI Event Log.

Remote Command	$:$ LXI:EVENt:LOG:COUNt?
Example	$:$ LXI:EVEN:LOG:COUN?
Range	$0-$ Size
Initial S/W Revision	Prior to A.02.00

Next Entry (Remote Command Only)

Returns the oldest entry from the LXI Event Log and removes it from the log. If the log is empty, an empty string is returned.

Remote Command	$:$ LXI :EVENt:LOG[:NEXT]?
Example	$:$ LXI:EVEN:LOG?
Initial S/W Revision	Prior to A.02.00

All (Remote Command Only)

Non-destructively retrieves the entire contents of the event log. Entries are returned as separate strings, surrounded by double quote marks, and separated by a comma. Fields within each entry are also comma delimited.

Remote Command	: LXI : EVENt : LOG : ALL?
Example	$:$ LXI:EVEN:LOG:ALL? Returns the entire event log contents.
	An example may look like the following:
	$" 11 / 12 / 2007,18: 14: 10.770385$, Error,LogOverwrite,Rise,,,",","11/12/2007,18:1
	$4: 10.592105$, Status,Measuring,Rise,,","11/12/2007,18:14:10.597758,Status,
	Measuring,Fall,,,","11/12/2007,18:14:10.597786,Status,Sweeping,Fall,,,","1
	$1 / 12 / 2007,18: 14: 10.599030$, Status,WaitingForTrigger,Rise,,,"
	The contents of the Event Log vary, based on the operation of the instrument.
Initial S/W Revision	Prior to A.02.00

Specific Entry (Remote Command Only)

Non-destructively retrieves a specifically indexed entry from the event log. Fields within an entry are comma

System

delimited.

Remote Command	:LXI :EVENt:LOG:ENTRy? <intIndex>
Example	:LXI:EVEN:LOG:ENTR? 0 Returns the first entry in the event log.
	An example may look like the following:
	$" 11 / 12 / 2007,18: 14: 10.770385$, Error,LogOverwrite,Rise,,,""
	The contents of the Event Log vary, based on the operation of the instrument.
Initial S/W Revision	Prior to A.02.00

Beginning Entry (Remote Command Only)

Sets or freezes the beginning entry of the log when in circular mode to the most recently added entry at the time of the command. This is so that the :LXI:EVENt:LOG:ENTtry? command has a reference entry for indexing individual entries in the log.

Remote Command	$:$ LXI :EVENt:LOG:CIRCular :FBENtry
Example	:LXI:EVEN:LOG:CIRC:FBEN
Initial S/W Revision	Prior to A.02.00

Power On

Enables you to select how the instrument should power on. The options are: Mode and Input/Output Defaults, User Preset and Last State.

Key Path	System		
Mode	All		
Remote Command	:SYSTem:PON:TYPE MODE\|USER	LAST	PRESet :SYSTem:PON:TYPE?
Example	:SYST:PON:TYPE MODE		
Preset	MODE		
Preset	This is unaffected by a Preset but is set to Mode on a "Restore System Defaults->All"		
State Saved	No		
Initial S/W Revision	Prior to A.02.00		

Mode and Input/Output Defaults

When the analyzer is powered on in Mode and Input/Output Defaults, it performs a Restore Mode Defaults to all modes in the instrument and also performs a Restore Input/Output Defaults.

Persistent parameters (such as Amplitude Correction tables or Limit tables) are not affected at poweron,
even though they are normally cleared by Restore Input/Output Defaults and/or Restore Mode Defaults.

Key Path	System, Power On
Mode	All
Example	SYST:PON:TYPE MODE
Readback Text	Defaults
Initial S/W Revision	Prior to A.02.00

User Preset

Sets Power On to User Preset. When the analyzer is powered on in User Preset, it will User Preset each mode and switch to the power-on mode. Power On User Preset will not affect any settings beyond what a normal User Preset affects.

$$
\text { NOTE } \quad \text { An instrument could never power up for the first time in User Preset. }
$$

Key Path	System, Power On
Mode	All
Example	SYST:PON:TYPE USER
Readback Text	User Preset
Initial S/W Revision	Prior to A.02.00

Last State

Sets Power On to Last. When the analyzer is powered on, it will put all modes in the last state they were in prior to when the analyzer was put into Power Standby and it will wake up in the mode it was last in prior to powering off the instrument. The saving of the active mode prior to shutdown happens behind the scenes when a controlled shutdown is requested by using the front panel power Standby key or by using the remote command SYSTem: PDOWn. The non-active modes are saved as they are deactivated and recalled by Power On Last State.

NOTE An instrument could never power up for the first time in Last.

If line power to the analyzer is interrupted, for example by pulling the line cord plug or by switching off power to a test rack, Power On Last State will not work properly.

Key Path	System, Power On
Mode	All
Example	SYST:PON:TYPE LAST

System

Notes	Power on Last State only works if the user has done a controlled shutdown prior to powering on in Last. If a controlled shutdown is not done when in Power On Last State, the instrument will power up in the last active mode, but it may not power up in the active mode’s last state. If an invalid mode state is detected, a Mode Preset will occur. To control the shutdown under remote control use the :SYSTem:PDOWn command.
Readback Text	Last State
Initial S/W Revision	Prior to A.02.00

Power On Application

Accesses a menu that lists the available Modes and lets you select which Mode is to be the power-on application.

This application is used for Power On Type "Mode and Input/Output Defaults" and Restore System Defaults All.

Key Path	System, Power On									
Mode	All									
Remote Command	```:SYSTem:PON:MODE SA\|BASIC	ADEMOD	NFIGURE	PNOISE	CDMA2K	TDSCDMA	VSA	VSA89 601	WCDMA	WIMAXOFDMA :SYSTem:PON:MODE?```
Example	SYST:PON:MODE SA									
Notes	The list of possible modes (and remote parameters) to choose from is dependent on which modes are installed in the instrument.									
Preset	SA									
Preset	This is unaffected by a Preset but is set on a "Restore System Defaults->All" to SA.									
State Saved	No									
Initial S/W Revision	Prior to A.02.00									

Configure Applications

The Configure Applications utility lets you do two things:

1. specify a subset of the available applications (Modes) to preload into memory at startup time
2. specify the order in which the Modes appear in the Mode menu

There are several reasons you might want to specify a subset of the available applications (Modes) to preload:

- During runtime, if a Mode which is not preloaded is selected by the user, there will be a pause while the Application is loaded. Configure Applications lets you decide whether you want that delay at startup of the analyzer program or the first time you select the Mode.
- In addition, there are more applications available for the X-Series than can fit into Windows Virtual Memory. The Configure Application utility allows you to choose which licensed applications to load into memory, if you have more licensed than can fit.

The Configure Applications utility can be used to select applications for preload and/or to determine how many applications can fit in memory at one time. This utility consists of a window with instructions, a set of "Select Application" checkboxes, a "fuel bar" style memory guage, and softkeys that help you set up your configuration.

Preloading Applications

During operation of the analyzer, you select applications from the Mode menu. After startup of the analyzer program, the first time you select a particular application that application must be loaded into memory. Once loaded, the application stays loaded, so the next time you select it during a session, there is no delay. During runtime, if an application which is not yet loaded into memory is selected using the Mode menu or sending SCPI commands, there will be a pause while the Application is loaded. During this pause a message which says "Loading application, please wait ..." is displayed.

You can use the Configure Applications utility to choose applications to "preload" at startup, to eliminate the runtime delay; if you do this, the delay will instead increase the time it takes to start up the analyzer program, but for many users this is preferable to having to wait the first time they select an application. Asking for an application to be preloaded will cause it to be loaded into the analyzer's memory when the analyzer program starts up. Once it is loaded into memory, it cannot be unloaded without exiting and restarting the analyzer program.

Virtual memory usage

There are more applications available for the X -Series than can fit into memory at any one time, so the Configure Applications utility includes a memory tracker that serves two purposes:

1. It will not let you preload more applications than will fit into memory at once.
2. You can determine how many of your favorite applications can reside in memory at one time.

The utility provides a graphical representation of the amount of memory (note that the memory in question here is Virtual memory and is a limitation imposed by the oprating system, not by the amount of physical memory you have in your analyzer). You select applications to preload by checking the boxes on the left. Checked applications preload at startup. The colored fuel bar indicates the total memory required when all the checked applications are loaded (either preloaded or selected during runtime).

Here is what the fuel bar colors mean:
RED: the applications you have selected cannot all fit into the analyzer's memory. You must deselect applications until the fuel bar turns yellow.

YELLOW: the applications you have selected can all fit into the analyzer's memory, but there is less than 10% of the memory left, probably not enough to load any other applications, either via preload or by selecting a Mode while the analyzer is running..

GREEN: The indicator is green when $<90 \%$ of the memory limit is consumed. This means the applications you have selected can all fit into the analyzer's memory with room to spare. You will likely be able to load one or more other applications without running out of memory.

System

Access to Configure Applications utility

You may, at any time, manually call up the Configure Applications utility by pressing System, Power On, Configure Applications, to find a configuration that works best for you, and then restart the analyzer program.

The utility may also be called if, during operation of the analyzer, you attempt to load more applications than can fit in memory at once.

A version of the utility also runs the first time you power up the analyzer after purchasing it from Agilent. In this case the utility automatically configures preloads so that as many licensed applications as possible are preloaded while keeping the total estimated virtual memory usage below the limit. This auto-configuration only takes place at the very first run, and after analyzer software upgrades.

Key Path	System, Power On
Example	:SYST:SHOW CAPP Displays the Config Applications screen
Initial S/W Revision	A.02.00

Select All

Marks all applications in the selection list. This allows you to enable all applications licensed on the instrument for pre-loading, or is a convenience for selecting all applications in one operation and then letting you deselect individual applications.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A. 02.00

Deselect All

Clears the marks from all applications in the selection list, with the exception of the Power On application. The Power On application cannot be eliminated from the pre-load list.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A. 02.00

Move Up

The application list is the order in which applications appear in the Mode Menu. This key enables you to shift the selected application up in the list, thus moving the selected application earlier in the Mode Menu.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A.02.00

Move Down

The application list is the order in which applications appear in the Mode Menu. This key enables you to shift the selected application down in the list, thus moving the selected application later in the Mode

Menu.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A. 02.00

Select/Deselect

Toggles the currently highlighted application in the list.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A.02.00

Save Changes and Exit

Applies the configuration of the applications list. The marked applications will be pre-loaded in memory the next time the instrument application is started, and the order of the applications in the list will be the order of the applications in the Mode Menu.

After saving your changes, the analyzer asks you if you would like it to restart so that your changes can take effect (see dialog box, below). If you choose not to restart, no memory will be released until the next time you shut down and restart the analyzer.

Exit Configure Applications Utility
Your changes have been saved.
You must restart the analyzer for your changes to take effect. Would you like to restart now? [This will close the analyzer program and you will lose all unsaved traces and results].

Press Enter to proceed, or Cancel (Esc) to exit without restarting.

> OK Cancel

Key Path	System, Power On, Configure Applications
Remote Command	:SYSTem:PUP: PROCess
Example	:SYST:PUP:PROC This is the SCPI command for restarting the analyzer. You must Wait after this command for the instrument application to restart
Notes	The softkey will be grayed-out when the virtual memory of the selected applications exceeds 100\% of the limit.
Notes	You cannot use *WAI or *OPC? to synchronize operation after a restart. This command stops and restarts the instrument application, thus the SCPI operation is terminated and restarted. A remote program must use fixed wait time to resume sending commands to the instrument. The wait time will be dependent upon which applications are pre-loaded.
Initial S/W Revision	A.02.00
Modified at S/W Revision	A.04.00

Exit Without Saving

Pressing this key will exit the Configure Applications utility without saving your changes.

Key Path	System, Power On, Configure Applications
Initial S/W Revision	A.02.00
Modified at S/W Revision	A. 04.00

Configure Applications - Instrument boot-up

At start-up of the analyzer programa dialog box similar to the one under the System, Power On, Configure Applications key will be displayed allowing you to choose which licensed applications are to be loaded. This dialog will only be displayed if the memory required to pre-load all of the licensed applications exceeds the Virtual Memory available.

Configure Applications - Windows desktop

The Configure Applications Utility may be run from the Windows Desktop. The utility is launched by
 icon on the desktop, which brings-up a dialog box similar to the one under the System, Power On, Configure Applications key, allowing you to choose which licensed applications are to be loaded whe the analyzer program starts up. This dialog box has mouse buttons on it which do the job that the softkeys normally do in the System, Power On, Configure Applications menu.

Configure Applications - Remote Commands

The following topics provide details on the using remote commands to configure the list of applications want to load into the instrument memory or query the Virtual Memory utilization for your applications.

- "Configuration list (Remote Command Only)" on page 204
- "Configuration Memory Available (Remote Command Only)" on page 205
- "Configuration Memory Total (Remote Command Only)" on page 205
- "Configuration Memory Used (Remote Command Only)" on page 205
- "Configuration Application Memory (Remote Command Only)" on page 206

Configuration list (Remote Command Only)

This remote command is used to set or query the list of applications to be loaded in-memory.

Remote Command	:SYSTem:PON:APPLication:LLISt <string of INSTrument:SELect names> :SYSTem:PON:APPLication:LLISt?
Example	:SYST:PON:APPL:LLIS "SA,BASIC,WCDMA"

Notes	<string of INSTrument:SELect names> are from the enums of the :INSTrument:SELect command. The order of the <INSTrument:SELect names> is the order in which the applications are loaded into memory, and the order in which they appear in the Mode Menu. Error -225 "Out of Memory" is reported when more applications are listed than can reside in Virtual Memory. When this occurs, the existing applications load list is unchanged.
Preset	Not affected by Preset
State Saved	Not saved in instrument state
Initial S/W Revision	A.02.00

Configuration Memory Available (Remote Command Only)

This remote command is used to query the amount of Virtual Memory remaining.

Remote Command	:SYSTem:PON:APPLication:VMEMory[:AVAilable]?
Example	:SYST:PON:APPL:VMEM?
Preset	Not affected by Preset
Initial S/W Revision	A. 02.00

Configuration Memory Total (Remote Command Only)

This remote command is used to query the limit of Virtual Memory allowed for applications.

Remote Command	:SYSTem:PON:APPLication:VMEMory:TOTal?
Example	:SYST:PON:APPL:VMEM:TOT?
Preset	Not affected by Preset
Initial S/W Revision	A.02.00

Configuration Memory Used (Remote Command Only)

This remote command is a query of the amount of Virtual Memory used by all measurement applications.

Remote Command	$:$ SYSTem:PON : APPLication:VMEMory:USED?
Example	$:$ SYST:PON:APPL:VMEM:USED?
Preset	Not affected by Preset
Initial S/W Revision	A.02.00

Configuration Application Memory (Remote Command Only)

This remote command is used to query the amount of Virtual Memory a particular application consumes.

Remote Command	:SYSTem:PON:APPLication:VMEMory:USED: NAME? <INSTrument : SELect name>
Example	:SYST:PON:APPL:VMEM:USED:NAME? CDMA2K
Notes	<INSTrument:SELect name> is from the enums of the :INSTrument:SELect command in Meas Common section 13.3 Value returned will be 0 (zero) if the name provided is invalid.
Preset	Not affected by Preset
Initial S/W Revision	Prior to A.02.00

Restore Power On Defaults

This selection causes the Power On Type and Power On Application settings to be a reset to their default values. This level of Restore System Defaults does not affect any other system settings, mode settings and does not cause a mode switch. The Power On key, under the Restore System Defaults menu, causes the same action.

If you press any key other than OK or Enter, it is construed as a Cancel, because the only path that will actually cause the reset to be executed is through OK or Enter.

Key Path	System, Power On
Example	:SYST:DEF PON
Initial S/W Revision	Prior to A.02.00

Alignments

The Alignments Menu controls and displays the automatic alignment of the instrument, and provides the ability to restore the default alignment values.

The current setting of the alignment system is displayed in the system Settings Panel along the top of the display, including a warning icon for conditions that may cause specifications to be impacted.

: ALIGN PARTIAL

Key Path	System
Initial S/W Revision	Prior to A.02.00

Auto Align

Configures the method for which the automatic background alignment is run.
Automatic background alignments are run periodically between measurement acquisitions. The instrument's software determines when alignments are to be performed to maintain warranted operation. The recommended setting for Auto Align is Normal.

An Auto Align execution cannot be aborted with the Cancel (ESC) key. To interrupt an Auto Align execution, select Auto Align Off.

Key Path	System, Alignments	
Mode	All	
Remote Command	:CALibration: AUTO ON\|PARTial	OFF :CALibration: AUTO?
Example	:CAL:AUTO ON	
Notes	While Auto Align is executing, bit 0 of Status Operation register is set.	
Couplings	Auto Align is set to Off if Restore Align Data is invoked.	
Preset	ON	
Preset	This is unaffected by Preset but is set to ON upon a "Restore System Defaults->Align".	
State Saved	No	
Status Bits/OPC dependencies	When Auto Align is executing, bit 0 in the Status Operational register is set.	
Initial S/W Revision	Prior to A.02.00	

Normal

Auto Align, Normal turns on the automatic alignment of all measurement systems. The Auto Align, Normal selection maintains the instrument in warranted operation across varying temperature and over time.

If the condition "Align Now, All required" is set, transition to Auto Align, Normal will perform the required alignments and clear the "Align Now, All required" condition and then continue with further alignments as required to maintain the instrument adequately aligned for warranted operation.

When Auto Align, Normal is selected the Auto Align Off time is set to zero.

System

When Auto Align, Normal is selected the Settings Panel indicates ALIGN AUTO.

Key Path	System, Alignments, Auto Align
Mode	All
Example	:CAL:AUTO ON
Notes	Alignment processing as a result of the transition to Normal will be executed sequentially. Thus, *OPC? or *WAI following CAL:AUTO ON will return when the alignment processing is complete. The presence of an external signal may interfere with the RF portion of the alignment. If so, the Error Condition "Align skipped: 50 MHz interference" or "Align skipped: 4.8 GHz interference" is reported, and bit 11 is set in the Status Questionable Calibration register. After the interfering signal is removed, subsequent alignment of the RF will clear the condition, and clear bit 11 in the Status Questionable Calibration register.
Readback Text	Normal
Status Bits/OPC dependencies	An interfering user signal may prevent automatic alignment of the RF subsystem. If this occurs, the Error Condition "Align skipped: 50 MHz interference" or "Align skipped: 4.8 GHz interference" is reported, the Status Questionable Calibration bit 11 is set, and the alignment proceeds. When a subsequent alignment of the RF subsystem succeeds, either by the next cycle of automatic alignment or from an Align Now, RF, the Error Condition and Status Questionable Calibration bit 11 are cleared.
Initial S/W Revision	Prior to A.02.00

Partial

Auto Align, Partial disables the full automatic alignment and the maintenance of warranted operation for the benefit of improved measurement throughput. Accuracy is retained for the Resolution Bandwidth filters and the IF Passband which is critical to FFT accuracy, demodulation, and many measurement applications. With Auto Align set to Partial, you are now responsible for maintaining warranted operation by updating the alignments when they expire. The Auto Align, Alert mechanism will notify you when alignments have expired. One solution to expired alignments is to perform the Align All, Now operation. Another is to return the Auto Align selection to Normal.

Auto Align, Partial is recommended for measurements where the throughput is so important that a few percent of improvement is more valued than an increase in the accuracy errors of a few tenths of a decibel. One good application of Auto Align, Partial would be an automated environment where the alignments can be called during overhead time when the device-under-test is exchanged.

When Auto Align, Partial is selected the elapsed time counter begins for Auto Align Off time.
When Auto Align, Partial is selected the Settings Panel indicates ALIGN PARTIAL with a warning icon. The warning icon is to inform the operator that they are responsible for maintaining the warranted operation of the instrument

Key Path	System, Alignments, Auto Align
Mode	All

Example	:CAL:AUTO PART
Notes	Auto Align Partial begins the elapsed time counter for Auto Align Off time.
Readback Text	Partial
Initial S/W Revision	Prior to A.02.00

Off
Auto Align, Off disables automatic alignment and the maintenance of warranted operation, for the benefit of maximum measurement throughput. With Auto Align set to Off, you are now responsible for maintaining warranted operation by updating the alignments when they expire. The Auto Align, Alert mechanism will notify you when alignments have expired. One solution to expired alignments is to perform the Align All, Now operation. Another is to return the Auto Align selection to Normal.

The Auto Align, Off setting is rarely the best choice, because Partial gives almost the same improvement in throughput while maintaining the warranted performance for a much longer time. The Off choice is intended for unusual circumstances such as the measurement of radar pulses where you might like the revisit time to be as consistent as possible.

When Auto Align, Off is selected the Auto Align Off time is initialized and the elapsed time counter begins.

When Auto Align, Off is selected the Settings Panel indicates ALIGN OFF with a warning icon. The warning icon is to inform the operator that they are responsible for maintaining the warranted operation of the instrument:

Key Path	System, Alignments, Auto Align
Mode	All
Example	:CAL:AUTO OFF
Notes	Auto Align Off begins the elapsed time counter for Auto Align Off time.
Couplings	Auto Align is set to Off if Restore Align Data is invoked.
Readback Text	Off
Initial S/W Revision	Prior to A.02.00

All but RF

Auto Align, All but RF, configures automatic alignment to include or exclude the RF subsystem. (Eliminating the automatic alignment of the RF subsystem prevents the input impedance from changing. The normal input impedance of 50 ohms can change to an open circuit when alignments are being used. Some devices under test do not behave acceptably under such circumstances, for example by showing instability.) When Auto Align, All but RF ON is selected, the operator is responsible for performing an Align Now, RF when RF-related alignments expire. The Auto Align, Alert mechanism will notify the operator to perform an Align Now, All when the combination of time and temperature variation is exceeded.

When Auto Align, All but RF ON is selected the Settings Panel indicates ALIGN AUTO/NO RF with a warning icon (warning icon is intended to inform the operator they are responsible for the maintaining

System

the RF alignment of the instrument):

Key Path	System, Alignments, Auto Align
Mode	All
Remote Command	:CALibration: AUTO: MODE ALL \|NRF :CALibration:AUTO: MODE?
Example	:CAL:AUTO:MODE NRF
Preset	ALL
Preset	This is unaffected by Preset but is set to ALL on a "Restore System Defaults->Align".
State Saved	No
Readback Text	RF or NRF
Initial S/W Revision	Prior to A.02.00

Alert

The instrument will signal an Alert when conditions exist such that you will need to perform a full alignment (for example, Align Now, All). The Alert can be configured in one of four settings; Time \& Temperature, $\mathbf{2 4}$ hours, $\mathbf{7}$ days, or None. A confirmation is required when a selection other than Time \& Temperature is chosen. This prevents accidental deactivation of alerts.

With Auto Align set to Normal, the configuration of Alert is not relevant because the instrument's software maintains the instrument in warranted operation.

Key Path	System, Alignments, Auto Align		
Mode	All		
Remote Command	:CALibration: AUTO: ALERt TTEMperature \|DAY	WEEK	NONE :CALibration: AUTO: ALERt?
Example	:CAL:AUTO:ALER TTEM		
Notes	The alert that alignment is needed is the setting of bit 14 in the Status Questionable Calibration register.		
Preset	TTEMperature		
Preset	This is unaffected by Preset but is set to TTEMperature on a "Restore System Defaults->Align".		
State Saved	No		
Status Bits/OPC dependencies	The alert is the Error Condition "Align Now, All required" and bit 14 is set in the Status Questionable Calibration register.		
Initial S/W Revision	Prior to A.02.00		

Time \& Temperature

With Auto Align Alert set to Time \& Temperature the instrument will signal an alert when alignments expire due to the combination of the passage of time and changes in temperature. The alert is the Error Condition "Align Now, All required". If this choice for Alert is selected, the absence of an alert means that the analyzer alignment is sufficiently up-to-date to maintain warranted accuracy.

Key Path	System, Alignments, Auto Align, Alert
Mode	All
Example	:CAL:AUTO:ALER TTEM
Readback Text	Time \& Temp
Status Bits/OPC dependencies	Bit 14 is set in the Status Questionable Calibration register.
Initial S/W Revision	Prior to A.02.00

24 hours

With Auto Align Alert set to $\mathbf{2 4}$ Hours the instrument will signal an alert after a time span of 24 hours since the last successful full alignment (for example, Align Now, All or completion of a full Auto Align). You may choose this selection in an environment where the temperature is stable on a daily basis at a small risk of accuracy errors in excess of the warranted specifications. The alert is the Error Condition "Align Now, All required".

For front-panel operation , confirmation is required to transition into this setting of Alert. The confirmation dialog is:

Modification of Alignment Alert configuration

x

This will suppress alerts from notifying when Alignment is required to maintain warranted operation. You are responsible for performing an Align Now, All.

Are you sure you want to do this?
Press Enter to proceed, or ESC to Cancel

No confirmation is required when Alert is configured through a remote command.

Key Path	System, Alignments, Auto Align, Alert
Mode	All
Example	:CAL:AUTO:ALER DAY
Readback Text	24 hours
Status Bits/OPC dependencies	Bit 14 is set in the Status Questionable Calibration register.
Initial S/W Revision	Prior to A.02.00

System

7 days

With Auto Align Alert is set to 7 days the instrument will signal an alert after a time span of 168 hours since the last successful full alignment (for example, Align Now, All or completion of a full Auto Align). You may choose this selection in an environment where the temperature is stable on a weekly basis, at a modest risk of accuracy degradations in excess of warranted performance. The alert is the Error Condition "Align Now, All required".

For front panel operation, confirmation is required for the customer to transition into this setting of Alert. The confirmation dialog is:

No confirmation is required when Alert is configured through a remote command.

Key Path	System, Alignments, Auto Align, Alert
Mode	All
Example	:CAL:AUTO:ALER WEEK
Readback Text	7 days
Status Bits/OPC dependencies	Bit 14 is set in the Status Questionable Calibration register.
Initial S/W Revision	Prior to A.02.00

None

With Auto Align Alert set to None the instrument will not signal an alert. This is provided for rare occasions where you are making a long measurement which cannot tolerate Auto Align interruptions, and must have the ability to capture a screen image at the end of the measurement without an alert posted to the display. Agilent does not recommends using this selection in any other circumstances, because of the risk of accuracy performance drifting well beyond expected levels without the operator being informed.

For front panel operation, confirmation is required to transition into this setting of Alert. The confirmation dialog is:

No confirmation is required when Alert is configured through a remote command.

Key Path	System, Alignments, Auto Align, Alert
Mode	All
Example	:CAL:AUTO:ALER NONE
Initial S/W Revision	Prior to A.02.00

Align Now

Accesses alignment processes that are immediate action operations. They perform complete operations and run until they are complete.

Key Path	System, Alignments
Initial S/W Revision	Prior to A.02.00

All

Immediately executes an alignment of all subsystems. The instrument stops any measurement currently underway, performs the alignment, then restarts the measurement from the beginning (similar to pressing the Restart key).

If an interfering user signal is present at the RF Input, the alignment is performed on all subsystems except the RF. After completion, the Error Condition "Align skipped: 50 MHz interference" or "Align skipped: 4.8 GHz interference" is set. In addition the Error Condition "Align Now, RF required" is set, and bits 11 and 12 are set in the Status Questionable Calibration register.

The query form of the remote commands (:CALibration[:ALL]? or *CAL?) invokes the alignment of all subsystems and returns a success or failure value. An interfering user signal is not grounds for failure; if the alignment was able to succeed on all portions but unable to align the RF because of an interfering signal, the resultant will be the success value.

Successful completion of Align Now, All will clear the "Align Now, All required" Error Condition, and clear bit 14 in the Status Questionable Calibration register. It will also begin the elapsed time counter for Last Align Now, All Time, and capture the Last Align Now, All Temperature.

If the Align RF subsystem succeeded in aligning (no interfering signal present), the elapsed time counter begins for Last Align Now, RF Time, and the temperature is captured for the Last Align Now, RF

System

Temperature. In addition the Error Conditions "Align skipped: 50 MHz interference" and "Align skipped: 4.8 GHz interference" are cleared, the Error Condition "Align Now, RF required" is cleared, and bits 11 and 12 are cleared in the Status Questionable Calibration register

Align Now, All can be interrupted by pressing the Cancel (ESC) front-panel key or remotely with Device Clear followed by the :ABORt SCPI command. When this occurs the Error Condition "Align Now, All required" is set, and bit 14 is set in the Status Questionable Condition register. This is because new alignment data may be employed for an individual subsystem, but not a cohesive set of data for all subsystems.

In many cases, you might find it more convenient to change alignments to Normal, instead of executing Align Now, All. When the Auto Align process transitions to Normal, the analyzer will immediately start to update only the alignments that have expired, thus efficiently restoring the alignment process.
$\left.\begin{array}{|l|l|}\hline \text { Key Path } & \text { System, Alignments, Align Now } \\ \hline \text { Mode } & \text { All } \\ \hline \text { Remote Command } & \begin{array}{l}\text { :CALibration[:ALL] } \\ \text { :CALibration[:ALL]? }\end{array} \\ \hline \text { Example } & \text { :CAL } \\ \hline \text { Notes } & \begin{array}{l}\text { :CALibration[:ALL]? returns 0 if successful } \\ \text { :CALibration[:ALL]? returns 1 if failed } \\ \text { :CALibration[:ALL]? is the same as *CAL? } \\ \text { While Align Now, All is performing the alignment, bit 0 in the Status } \\ \text { Operation register is set. Completion, or termination, will clear bit 0 in the } \\ \text { Status Operation register. } \\ \text { This command is sequential; it must complete before further SCPI commands } \\ \text { are processed. Interrupting the alignment from remote is accomplished by } \\ \text { invoking Device Clear followed by the :ABORt command. } \\ \text { Successful completion will clear bit 14 in the Status Questionable Calibration } \\ \text { register. } \\ \text { An interfering user signal is not grounds for failure of Align Now, All. } \\ \text { However, bits 11 and 12 are set in the Status Questionable Calibration register } \\ \text { to indicate Align Now, RF is required. } \\ \text { An interfering user supplied signal will result in the instrument requiring an } \\ \text { Align Now, RF with the interfering signal removed. }\end{array} \\ \hline \text { Status Bits/OPC dependencies } & \begin{array}{l}\text { Bits 11, 12, or 14 may be set in the Status Questionable Calibration register. }\end{array} \\ \hline \text { Initializes the time for the Last Align Now, All Time. } \\ \text { Records the temperature for the Last Align Now, All Temperature. } \\ \text { If Align RF component succeeded, initializes the time for the Last Align Now, } \\ \text { RF Time. } \\ \text { If Align RF component succeeded, records the temperature for the Last Align } \\ \text { Now, RF Temperature. }\end{array}\right\}$

\mid Initial S/W Revision
 Mode Prior to A.02.00 Remote Command *CAL? Example *CAL? Notes *CAL? returns 0 if successful *CAL? returns 1 if failed :CALibration[:ALL]? is the same as *CAL? See additional remarks described with :CALibration[:ALL]? Everything about :CALibration[:ALL]? is synonymous with *CAL? including all conditions, status register bits, and couplings
Initial S/W Revision

All but RF

Immediately executes an alignment of all subsystems except the RF subsystem. The instrument will stop any measurement currently underway, perform the alignment, and then restart the measurement from the beginning (similar to pressing the Restart key). This can be used to align portions of the instrument that are not impacted by an interfering user input signal.

This operation might be chosen instead of All if you do not want the device under test to experience a large change in input impedance, such as a temporary open circuit at the analyzer input.

The query form of the remote commands (:CALibration:NRF?) will invoke the alignment and return a success or failure value.

Successful completion of Align Now, All but RF will clear the "Align Now, All required" Error Condition, and clear bit 14 in the Status Questionable Calibration register. If "Align Now, All required" was in effect prior to executing the All but RF, the Error Condition "Align Now, RF required" is asserted and bit 12 in the Status Questionable Calibration register is set. It will also begin the elapsed time counter for Last Align Now, All Time, and capture the Last Align Now, All Temperature.

Align Now, All but RF can be interrupted by pressing the Cancel (ESC) front-panel key or remotely with Device Clear followed by the :ABORt SCPI command. When this occurs the Error Condition "Align Now, All required" is set, and bit 14 is set in the Status Questionable Condition register. This is because new alignment data may be used for an individual subsystem, but not a full new set of data for all subsystems.

Key Path	System, Alignments, Align Now
Mode	All
Remote Command	:CALibration: NRF
:CALibration: NRF?	
Example	:CAL:NRF

System

Notes	:CALibration:NRF? returns 0 if successful :CALibration:NRF? returns 1 if failed While Align Now, All but RF is performing the alignment, bit 0 in the Status Operation register is set. Completion, or termination, will clear bit 0 in the Status Operation register. This command is sequential; it must complete before further SCPI commands are processed. Interrupting the alignment from remote is accomplished by invoking Device Clear followed by the :ABORt command. Successful completion will clear bit 14 in the Status Questionable Calibration register and set bit 12 if invoked with "Align Now, All required".
Couplings	Initializes the time for the Last Align Now, All Time. Records the temperature for the Last Align Now, All Temperature.
Status Bits/OPC dependencies	Bits 12 or 14 may be set in the Status Questionable Calibration register.
Initial S/W Revision	Prior to A.02.00

RF

Immediately executes an alignment of the RF subsystem. The instrument stops any measurement currently underway, performs the alignment, then restarts the measurement from the beginning (similar to pressing the Restart key).

This operation might be desirable if the alignments had been set to not include RF alignments, or if previous RF alignments could not complete because of interference which has since been removed.

If an interfering user signal is present at the RF Input, the alignment will terminate and raise the Error Condition "Align skipped: 50 MHz interference" or "Align skipped: 4.8 GHz interference", and Error Condition "Align Now, RF required". In addition, bits 11 and 12 will be set in the Status Questionable Calibration register.

The query form of the remote commands (:CALibration:RF?) will invoke the alignment of the RF subsystem and return a success or failure value. An interfering user signal is grounds for failure.

A failure encountered during alignment will set the Error Condition "Align RF failed" and set bit 3 in the Status Questionable Calibration register.

Successful completion of Align Now, RF clears the Error Conditions "Align skipped: 50 MHz interference" and "Align skipped: 4800 MHz interference" and the Error Conditions "Align RF failed" and "Align Now, RF required", and clears bits 3, 11, and 12 in the Status Questionable Calibration register. It will also begin the elapsed time counter for Last Align Now, RF Time, and capture the Last Align Now, RF Temperature.

Align Now, RF can be interrupted by pressing the Cancel (ESC) front-panel key or remotely with Device Clear followed by the :ABORt SCPI command. When this occurs, the Error Condition "Align Now, RF required" is set, and bit 12 is set in the Status Questionable Condition register. None of the new alignment data is used.

Key Path	System, Alignments, Align Now
Mode	All

Remote Command	:CALibration:RF :CALibration:RF?
Example	:CAL:RF
Notes	:CALibration:RF? returns 0 if successful :CALibration:RF? returns 1 if failed (including interfering user signal) While Align Now, RF is performing the alignment, bit 0 in the Status Operation register is set. Completion, or termination, will clear bit 0 in the Status Operation register. This command is sequential; it must complete before further SCPI commands are processed. Interrupting the alignment from remote is accomplished by invoking Device Clear followed by the :ABORt command. Successful completion will clear bits 3, 11, and 12 in the Status Questionable Calibration register. A failure encountered during alignment will set the Error Condition "Align RF failed" and set bit 3 in the Status Questionable Calibration register. An interfering user signal will result in bits 11 and 12 to be set in the Status Questionable Calibration register to indicate Align Now, RF is required. An interfering user supplied signal will result in the instrument requiring an Align Now, RF with the interfering signal removed.
Couplings	Initializes the time for the Last Align Now, RF Time. Records the temperature for the Last Align Now, RF Temperature.
Status Bits/OPC dependencies	Bits 11, 12, or 14 may be set in the Status Questionable Calibration register.
Initial S/W Revision	Prior to A.02.00

Show Alignment Statistics

Shows alignment information you can use to ensure that the instrument is operating in a specific manner. The Show Alignment Statistics screen is where you can view time and temperature information.

Values which are displayed are only updated when the Show Alignment Statistics screen is invoked, they are not updated while the Show Alignment Statistics screen is being displayed. The remote commands which access this information obtain current values.

An example of the Show Alignment Statistics screen would be similar to:

A successful Align Now, RF will set the Last Align RF temperature to the current temperature, and reset the Last Align RF time. A successful Align Now, All or Align Now, All but RF will set the Last Align Now All temperature to the current temperature, and reset the Last Align Now All time. A successful Align Now, All will also reset the Last Align RF items if the RF portion of the Align Now succeeded.

Key Path	System, Alignments
Mode	All
Notes	The values displayed on the screen are only updated upon entry to the screen and not updated while the screen is being displayed.
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:SYSTem:PON:TIME?
Example	:SYST:PON:TIME?
Notes	Value is the time since the most recent start-up in seconds.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration:TEMPerature: CURRent?

Example	:CAL:TEMP:CURR?
Notes	Value is in degrees Centigrade. Value is invalid if using default alignment data (Align Now, All required)
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration: TIME : LALL?
Example	:CAL:TIME:LALL?
Notes	Value is the elapsed time, in seconds, since the last successful Align Now, All or Align Now, All but RF was executed.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration: TEMPerature: LALL?
Example	:CAL:TEMP:LALL?
Notes	Value is in degrees Centigrade at which the last successful Align Now, All or Align Now, All but RF was executed.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration: TIME: LRF?
Example	:CAL:TIME:LRF?
Notes	Value is the elapsed time, in seconds, since the last successful Align Now, RF was executed, either individually or as a component of Align Now, All.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen

System

Mode	All
Remote Command	:CALibration: TEMPerature: LRF?
Example	:CAL:TEMP:LRF?
Notes	Value is in degrees Centigrade at which the last successful Align Now, RF was executed, either individually or as a component of Align Now, All.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration:TIME: LPReselector?
Example	:CAL:TIME:LPR?
Notes	Value is date and time the last successful Characterize Preselector was executed. The date is separated from the time by a space character. Returns """ if no Characterize Preselector has ever been performed on the instrument.
Dependencies	In models that do not include preselectors, this command is not enabled and any attempt to set or query will yield an error.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration: TEMPerature: LPReselector?
Example	:CAL:TEMP:LPR?
Notes	Value is in degrees Centigrade at which the last successful Characterize Preselector was executed.
Dependencies	In models that do not include preselectors, this command is not enabled and any attempt to set or query will yield an error.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Key Path	Visual annotation in the Show Alignment Statistics screen
Mode	All
Remote Command	:CALibration:AUTO:TIME: OFF?
Example	:CAL:AUTO:TIME:OFF?

Notes	Value is the elapsed time, in seconds, since Auto Align has been set to Off or Off with Alert. The value is 0 if Auto Align is ALL or NORF.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Restore Align Defaults

Initializes the alignment user interface settings, not alignment data, to the factory default values. Align Now, All must be executed if the value of the Timebase DAC results in a change.

For front panel operation, you are prompted to confirm action before setting the alignment parameters to factory defaults:

Restore Alignment Settings x

The parameters affected are:

Parameter	Setting
Timebase DAC	Calibrated
Timebase DAC setting	Calibrated value
Auto Align State	Normal (if the instrument is not operating with default alignment data, Off otherwise)
Auto Align All but RF	Off
Auto Align Alert	Time \& Temperature

Key Path	System, Alignments
Mode	All
Example	:SYST:DEF ALIG
Notes	Alignment processing that results as the transition to Auto Alignment Normal will be executed sequentially; thus *OPC? or *WAI will wait until the alignment processing is complete.
Initial S/W Revision	Prior to A.02.00

Backup and Restore Alignment Data

Alignment data for the instrument resides on the hard drive in a database. Agilent uses high quality hard drives; however it is highly recommended the alignment data be backed-up to storage outside of the instrument. Additionally, for customers who use multiple CPU Assemblies or multiple disk drives, the alignment that pertains to the instrument must be transferred to the resident hard drive after a CPU or hard drive is replaced. This utility facilitates backing-up and restoring the alignment data.

NOTE This utility allows the operator to navigate to any location of the Windows file

 system. It is intended that the operator use a USB memory device or Mapped Network Drive to backup the alignment data to storage outside of the instrument.
Backup or Restore Align Data...

Opens the utility for backing-up or restoring the alignment data.

Key Path	System, Alignments
Initial S/W Revision	A.02.00

Key Path	System, Alignments
Mode	All
Remote Command	:CALibration: DATA: DEFault
Example	:CAL:DATA:DEF
Couplings	Sets Auto Align to Off. Sets bit 14 in the Status Questionable Calibration register. The Error Condition "Align Now, All required" is set.
Initial S/W Revision	Prior to A.02.00

Alignment Data Wizard

The Backup or Restore Alignment Data wizard will guide you through the operation of backing-up or restoring the alignment data.

The following dialogue boxes operate without a mouse or external keyboard when you use the default file names.

The backup screen will indicate the approximate amount of space required to contain the backup file.
The default file name will be AlignDataBackup_<model number>_<serial number>_<date in YYYYMMDDHHMMSS>.bak.

For the N9030A the default backup location will be the internal F: drive which is a solid-state memory device
located internally on the instrument.

Changing the drive letter will also modify the path displayed in the box below. When this step is first loaded, the drive drop-down is populated with connected drives which provide the user with write access. If there are many unreachable network drives connected to the instrument, this step can take a few seconds. If a USB drive is present, it will be selected by default. The path defaults to the AlignmentBackups folder, and a filename will be automatically created in the form of AlignDataBackup_<model>_<serial number>_<date><time>. When the "Next >" button is pressed, the user will be prompted to create a new folder if the chosen path does not yet exist.

The restore operation will check the validity of the restore file using the database's built-in file validation. If the restore file is corrupt, the existing alignment data will remain in use.

If the serial number information in the backup file being restored is different from that of the instrument, the

System

following message appears (the serial number shown are examples):

For the N9030A, the default restore location will be the internal F: drive which is a solid-state memory device located internally on the instrument. The default restore file will be the most recent file that matches the default backup file name format: AlignDataBackup_N9030A_<serial number>_<date>.bak

Changing the drive letter will also modify the path displayed in the box below. When this step is first loaded, the drive drop-down is populated with connected drives which provide the user with read access. The path defaults to the AlignBackups folder. The most recent *.bak file in the folder will also be selected by default.

Perform Backup (Remote Command Only)

Invokes an alignment data backup operation to the provided Folder.

NOTE It is recommended that the Folder provided is outside of the instrument (USB or Mapped Network Drive).

Remote Command	:CALibration:DATA: BACKup <filename>
Example	:CAL:DATA:BACK "F:\AlignDataBackup_N9020A_US00000001_2008140100.bak"
Initial S/W Revision	A.02.00

Perform Restore (Remote Command Only)

Invokes an alignment data restore operation from the provided filename.

Remote Command	:CALibration:DATA:RESTore <filename>
Example	:CAL:DATA:REST "F: AlignDataBackup_N9020A_US00000001_2008140100.bak "
Initial S/W Revision	A.02.00

Advanced

Accesses alignment processes that are immediate action operations that perform operations that run until complete. Advanced alignments are performed on an irregular basis, or require additional operator interaction

Key Path	System, Alignments
Initial S/W Revision	Prior to A.02.00

Characterize Preselector (Only with Option 507, 508, 513, or 526)

The Preselector tuning curve drifts over temperature and time. Recognize that the Amplitude, Presel Center function adjusts the preselector for accurate amplitude measurements at an individual frequency. Characterize Preselector improves the amplitude accuracy by ensuring the Preselector is approximately centered at all frequencies without the use of the Amplitude, Presel Center function. Characterize Preselector can be useful in situations where absolute amplitude accuracy is not of utmost importance, and the throughput savings or convenience of not performing a Presel Center is desired. Presel Center is required prior to any measurement for best (and warranted) amplitude accuracy.

Agilent recommends that the Characterize Preselector operation be performed yearly as part of any calibration, but performing this operation every three months can be worthwhile.

Characterize Preselector immediately executes a characterization of the Preselector, which is a YIG-tuned filter (YTF). The instrument stops any measurement currently underway, performs the characterization, then restarts the measurement from the beginning (similar to pressing the Restart key).

The query form of the remote commands (:CALibration:YTF?) will invoke the alignment of the YTF
subsystem and return a success or failure value.
A failure encountered during alignment will generate the Error Condition message "Characterize Preselector failure" and set bit 3 in the STATus:QUEStionable:CALibration:EXTended:FAILure status register. Successful completion of Characterize Preselector will clear this Condition. It will also begin the elapsed time counter for Last Characterize Preselector Time, and capture the Last Characterize Preselector Temperature.

The last Characterize Preselector Time and Temperature survives across the power cycle as this operation is performed infrequently.

NOTE

Characterize Preselector can be interrupted by pressing the Cancel (ESC) front-panel key or remotely with Device Clear followed by the :ABORt SCPI command. None of the new characterization data is then used. However, since the old characterization data is purged at the beginning of the characterization, you now have an uncharacterized preselctor. You should re-execute this function and allow it to finish before making any further preselected measurements.

Key Path	System, Alignments, Advanced
Mode	All
:Cmote Command	:CALibration: YTF :CALibration:YTF?
Example	:CAL:YTF
Notes	:CALibration:YTF? returns 0 if successful :CALibration:YTF? returns 1 if failed (including interfering user signal) While Advanced, Characterize Preselector is performing the alignment, bit 0 in the Status Operation register is set. Completion, or termination, will clear bit 0 in the Status Operation register. This command is sequential; it must complete before further SCPI commands are processed. Interrupting the alignment from remote is accomplished by invoking Device Clear followed by the :ABORt command. Successful completion will clear bit 9 in the Status Questionable Calibration register. A failure encountered during alignment will generate the Error Condition message "Characterize Preselector failed" and set bit 9 in the Status Questionable Calibration register. For Option 507, 508, 513, and 526 only.
Couplings	This key does not appear in models that do not contain preselectors. In these models the SCPI command is accepted without error but no action is taken.
Dependencies	Initializes the time for the Last Characterize Preselector Time. Records the temperature for the Last Characterize Preselector Temperature.

Initial S/W Revision	Prior to A.02.00

Timebase DAC

Allows control of the internal 10 MHz reference oscillator timebase. This may be used to adjust for minor frequency alignment between the signal and the internal frequency reference. This adjustment has no effect if the instrument is operating with an External Frequency Reference.

If the value of the Timebase DAC changes (by switching to Calibrated from User with User set to a different value, or in User with a new value entered) an alignment may be necessary. The alignment system will take appropriate action; which will either invoke an alignment or cause an Alert.

Key Path	System, Alignments
Mode	All
Remote Command	:CALibration: FREQuency: REFerence: MODE CALibrated\|USER :CALibration: FREQuency: REFerence: MODE?
Example	:CAL:FREQ:REF:MODE CAL
Notes	If the value of the timebase is changed the alignment system automatically performs an alignment or alerts that an alignment is due. If the value of the timebase is changed the alignment system automatically performs an alignment or alerts that an alignment is due.
Preset	CAL
Preset	This is unaffected by Preset but is set to CALibrated on a "Restore System Defaults->Align".
State Saved	No
Initial S/W Revision	Prior to A.02.00

Calibrated

Sets the Timebase DAC to the value established during factory or field calibration. The value displayed on the menu key is the calibrated value.

Key Path	System, Alignments, Timebase DAC
Mode	All
Example	:CAL:FREQ:REF:MODE CAL
Readback Text	[xxx] < where xxx is the calibrated value
Initial S/W Revision	Prior to A.02.00

User

Allows setting the Timebase DAC to a value other than the value established during the factory or field
calibration. The value displayed on the menu key is the calibrated value.

Key Path	System, Alignments, Timebase DAC
Mode	All
Example	:CAL:FREQ:REF:MODE USER
Readback Text	xxx < where xxx is the Timebase DAC setting
Initial S/W Revision	Prior to A.02.00

Key Path	System, Alignments, Timebase DAC
Mode	All
Remote Command	:CALibration:FREQuency:REFerence:FINE <integer> :CALibration:FREQuency:REFerence:FINE?
Example	:CAL:FREQ:REF:FINE 8191
Notes	If the value of the timebase is changed the alignment system automatically performs an alignment or alerts that an alignment is due.
Couplings	Setting :CAL:FREQ:REF:FINE sets :CAL:FREQ:REF:MODE USER
Preset	This is unaffected by Preset but is set to the factory setting on a "Restore System Defaults->Align".
State Saved	No
Min	0
Max	16383
Initial S/W Revision	Prior to A.02.00

Remote Command	:CALibration:FREQuency:REFerence:COARse <integer> :CALibration:FREQuency:REFerence:COARse?
Example	:CAL:FREQ:REF:COAR 8191
Notes	This is an alias for CAL:FREQ:REF:FINE any change to COARse is reflected in FINE and vice-versa. See CAL:FREQ:REF:FINE for description of functionality.
Couplings	Setting :CAL:FREQ:REF:COAR sets :CAL:FREQ:REF:MODE USER
Initial S/W Revision	Prior to A.02.00

I/O Config

Activates a menu for identifying and changing the I/O configuration for remote control.

Key Path	System

Initial S/W Revision	Prior to A.02.00

GPIB

Activates a menu for configuring the GPIB I/O port.

Key Path	System, I/O Config
Initial S/W Revision	A.02.00

GPIB Address

Select the GPIB remote address.

Key Path	System, I/O Config, GPIB
Mode	All
Remote Command	:SYSTem:COMMunicate :GPIB[1] [:SELF] : ADDRess <integer> :SYSTem: COMMunicate: GPIB[1] [:SELF] : ADDRess?
Example	:SYST:COMM:GPIB:ADDR 17
Notes	Changing the Address on the GPIB port requires all further communication to use the new address.
Preset	18
Preset	This is unaffected by Preset but is set to 18 on a "Restore System Defaults->Misc"
State Saved	No
Range	0 to 30
Initial S/W Revision	Prior to A.02.00

GPIB Controller

Sets the GPIB port into controller or device mode. In the normal state, GPIB controller is disabled, which allows the analyzer to be controlled by a remote computer. When GPIB Controller is enabled, the instrument can run software applications that use the instrument's computer as a GPIB controller; controlling devices connected to the instrument's GPIB port.

NOTE

When GPIB Controller is enabled, the analyzer application itself cannot be controlled over GPIB. In this case it can easily be controlled via LAN or USB. The GPIB port cannot be a controller and device at the same time. Only one controller can be active on the GPIB bus at any given time. If the analyzer is the controller, an external PC cannot be a controller.

To control the instrument from the software that is performing GPIB controller operation, you can use an internal TCP/IP connection to the analyzer application. Use the address TCPIP0:localhost:inst0:INSTR
to send SCPI commands to the analyzer application.

Key Path	System, I/O Config, GPIB		
Mode	All		
Scope	Mode Global		
Remote Command	```:SYSTem:COMMunicate:GPIB[1][:SELF]:CONTroller[:ENABle] ON\|OFF	0	1 :SYSTem:COMMunicate:GPIB[1][:SELF]:CONTroller[:ENABle]?```
Example	:SYST:COMM:GPIB:CONT ON Will set GPIB port to Controller		
Notes	When the instrument becomes the Controller bit 0 in the Standard Event Status Register is set (and when the instrument relinquishes Controller capability bit 0 is cleared in the Standard Event Status Register).		
Preset	OFF		
Preset	This is unaffected by Preset but is set to OFF on a "Restore System Defaults->Misc"		
State Saved	No		
Range	Disabled\|Enabled		
Initial S/W Revision	A.02.00		

Disabled

Disables the GPIB Controller capability, this is the default (or normal) setting.

Key Path	System, I/O Config, GPIB, GPIB Controller
Example	:SYST:COMM:GPIB:CONT OFF Will set GPIB port to Device
Initial S/W Revision	A.02.00

Enabled

Enables the GPIB Controller capability.

Key Path	System, I/O Config, GPIB, GPIB Controller
Example	:SYST:COMM:GPIB:CONT ON Will set GPIB port to Controller
Initial S/W Revision	A.02.00

SCPI LAN

Activates a menu for identifying and changing the SCPI over a LAN configuration. There are a number of different ways to send SCPI remote commands to the instrument over LAN. It can be a problem to have multiple users simultaneously accessing the instrument over the LAN. These keys limit that
somewhat by disabling the telnet, socket, and/or SICL capability.

Key Path	System, I/O Config
Initial S/W Revision	Prior to A.02.00

SCPI Telnet

Turns the SCPI LAN telnet capability On or Off allowing you to limit SCPI access over LAN through telnet.

Key Path	System, I/O Config, SCPI LAN		
Mode	All		
Remote Command	:SYSTem: COMMunicate : LAN : SCPI :TELNet : ENABle OFF\|ON	0	1 $:$ SYSTem: COMMunicate: LAN : SCPI :TELNet : ENABle?
Example	:SYST:COMM:LAN:SCPI:TELN:ENAB OFF		
Preset	ON		
Preset	This is unaffected by Preset but is set to ON with a "Restore System Defaults->Misc"		
State Saved	No		
Range	On \mid Off		
Initial S/W Revision	Prior to A.02.00		

SCPI Socket

Turns the capability of establishing Socket LAN sessions On or Off. This allows you to limit SCPI access over LAN through socket sessions.

Key Path	System, I/O Config, SCPI LAN		
Mode	All		
Remote Command	:SYSTem: COMMunicate : LAN : SCPI : SOCKet : ENABle OFF \|ON	0	1 :SYSTem : COMMunicate : LAN : SCPI : SOCKet : ENABle?
Example	:SYST:COMM:LAN:SCPI:SOCK:ENAB OFF		
Preset	ON		
Preset	This is unaffected by a Preset but is set to ON with a "Restore System Defaults->Misc"		
State Saved	No		
Range	On \| Off		
Initial S/W Revision	Prior to A.02.00		

SCPI Socket Control Port (Remote Command Only)

Returns the TCP/IP port number of the control socket associated with the SCPI socket session. This query enables you to obtain the unique port number to open when a device clear is to be sent to the instrument. Every time a connection is made to the SCPI socket, the instrument creates a peer control socket. The port number for this socket is random. The user must use this command to obtain the port number of the control socket. To force a device clear on this socket, open the port and send the string "DCL " to the instrument.

If this SCPI command is sent to a non SCPI Socket interface, then 0 is returned.

Mode	All
Remote Command	:SYSTem: COMMunicate: LAN: SCPI : SOCKet: CONTrol?
Example	:SYST:COMM:LAN:SCPI:SOCK:CONT?
Preset	This is unaffected by Preset or "Restore System Defaults->Misc".
State Saved	No
Range	0 to 65534
Initial S/W Revision	Prior to A.02.00

SICL Server

Turns the SICL server capability On or Off, enabling you to limit SCPI access over LAN through the SICL server. (SICL IEEE 488.2 protocol.)

Parameter	Description	Setting
Maximum Connections	The maximum number of connections that can be accessed simultaneously	5
Instrument Name	The name (same as the remote SICL address) of your analyzer	inst0
Instrument Logical Unit	The unique integer assigned to your analyzer when using SICL LAN	8
Emulated GPIB Name	The name (same as the remote SICL address) of the device used when communicating with your analyzer	gpib7
Emulated GPIB Logical Unit	The unique integer assigned to your device when it is being controlled using SICL LAN	8
Emulated GPIB Address	The emulated GPIB address assigned to your transmitter tester when it is a SICL server (the same as your GPIB address)	18

Key Path	System, I/O Config, SCPI LAN
Mode	All

| Remote Command | :SYSTem: COMMunicate:LAN:SCPI:SICL:ENABle OFF\|ON|0|1
 $:$ SYSTem:COMMunicate:LAN:SCPI:SICL:ENABle? |
| :--- | :--- |
| Example | :SYST:COMM:LAN:SCPI:SICL:ENAB OFF |
| Preset | ON |
| Preset | This is unaffected by Preset, but is set to ON with a "Restore System
 Defaults->Misc" |
| State Saved | No |
| Range | On \| Off |
| Initial S/W Revision | Prior to A.02.00 |

Reset Web Password

The embedded web server contains certain capability which are password protected; modifying the LAN configuration of the instrument, and access to web pages that can change the settings of the instrument. The default password from the factory is 'agilent' (without the quotes). The control provided here is the means to set the web password as the user desires, or to reset the password to the factory default.

Selecting Reset web password brings up a control for resetting the password as the user desires, or to the factory default. A keyboard is required to change the password from the factory default of 'agilent' or to set a new password that contains alphabetic characters. The control is:

If this control is entered without an external keyboard or mouse connected, you can cancel the control by pressing the Cancel (ESC) front-panel key.

Key Path	System, I/O Config
Mode	All
Initial S/W Revision	Prior to A.02.00

LXI

Opens a menu that allows you to access the various LXI configuration properties.

Key Path	System, I/O Config
Initial S/W Revision	Prior to A.02.00

LAN Reset

Resets the LAN connection.

Key Path	System, I/O Config, LXI
Initial S/W Revision	Prior to A.02.00

LXI Domain

The instrument only receives LXI LAN Events sent by members of the same LXI Domain. Conversely, LXI Output LAN Events sent by the instrument can only be received by members of the same LXI Domain. This is not the same as the IEEE 1588 domain (see "Domain (Remote Command Only)" on page 255).

Key Path	System, I/O Config, LXI
Remote Command	$:$ LXI : EVENt : DOMain <intDomain> $:$ LXI : EVENt : DOMain?
Example	$:$ LXI:EVEN:DOM 128 $:$ LXI:EVEN:DOM?
Preset	0
Preset	Not affected by a Preset. The default value of "0" can be restored by pressing Restore Defs, Input/Output Settings
State Saved	Saved in instrument state.
Range	$0-255$
Initial S/W Revision	Prior to A.02.00

LXI Output LAN Events

The device can be configured to send LXI LAN Events as the instrument's state changes. Specifically, it can notify other devices as the status signals WaitingForTrigger, Sweeping, Measuring, OperationComplete, and Recalling transition. Additionally, Output LAN Events can be sent in response to the receipt of any of the Input LAN Events.

This is the entry point for the LXI Output LAN Event system. This key branches to a list of events that can be sent out on the LAN in response to instrument events.

Key Path	System, I/O Config, LXI

System

Initial S/W Revision	Prior to A.02.00

Disable All

This command causes the Enable property of all members of the LXI Output LAN Event List to be set to OFF.

Key Path	System, I/O Config, LXI, LXI Output LAN Events
Remote Command	$:$ LXI :EVENt [: OUTPut] : LAN : DISable : ALL
Example	:LXI:EVEN:LAN:DIS:ALL
Initial S/W Revision	Prior to A.02.00

Output LAN Event List

This is the list of LXI Output LAN events that can be sent in response to an instrument event such as sweeping or waiting for a trigger. Each member of this list has a key in the LXI Output LAN Events panel. The list can grow and shrink in response to Add and Remove commands respectively. New pages must be added and removed automatically as the list size changes. Only the first 14 characters of an LXI Output LAN Event name are displayed on the key.

Key Path	System, I/O Config, LXI, LXI Output LAN Events			
Remote Command	:LXI : EVENt [: OUTPut] : LAN : LIST?			
Example	:LXI:EVEN:LAN:LIST? Returns the complete list of Output LAN Events which is, at minimum: "LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7", "WaitingForTrigger", "Measuring", "Sweeping", OperationComplete", "Recalling"			
Preset	"LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7", "WaitingForTrigger", Measuring", Sweeping", OperationComplete", "Recalling"			
Preset	Not affected by a Preset. The default values can be restored by pressing Restore Defs, Input/Output Settings. Preset/Default values: "LAN0", "LAN1", "LAN2", "LAN3", "LAN4",			
State Saved	"LAN5", "LAN6", "LAN7", "WaitingForTrigger", Measuring", Sweeping", OperationComplete", "Recalling"			
Readback Text	Saved in instrument state.			
Initial S/W Revision	Displays the value of the LXI Output LAN Event Enabled parameter (Enabled \| Disabled). Also displays the value of the LXI Output LAN Event Source parameter (WaitingForTrig \| Sweeping	Measuring	OpComplete	Recalling)

Add (Remote Command Only)

Adds the provided string to the list of possible LAN events to output as a response to instrument events. As new LAN events are added, keys are generated in the LXI Output LAN Events menu. New key panels are generated as the number of possible LAN events increases past a multiple of six, and the "More" keys are updated to reflect the
new number of key panels in the LXI Output LAN Events menu.

Remote Command	$:$ LXI :EVENt [: OUTPut] : LAN: ADD "LANEVENT"
Example	:LXI:EVEN:LAN:ADD "LANEVENT"
Notes	The maximum length of the string is 16 characters. Longer strings are concatenated and added to the LXI Output LAN Event list. No event is added if the LAN Event already exists.
State Saved	No
Range	Uppercase, Lowercase, Numeric, Symbol except for comma or semicolon
Initial S/W Revision	Prior to A.02.00

Remove (Remote Command Only)

Removes the provided string from the list of possible LAN events to output as a response to instrument events. As new LAN events are removed, keys are removed from the LXI Output LAN Events menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LXI Output LAN Events menu. Events from the default list cannot be removed.

Remote Command	:LXI:EVENt[:OUTPut] : LAN: REMove[:EVENt] "LANEVENT"
Example	:LXI:EVEN:LAN:REM "LANEVENT"
Notes	The maximum length of the string is 16 characters. Longer strings are concatenated and the resulting LAN Event is removed from the LXI Output LAN Event list. Nothing happens if the LAN event was not introduced using the Add command.
State Saved	No
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Remove All (Remote Command Only)

Clears the list of custom LAN events (those introduced using the Add command) that are available to output as a response to instrument events. As new LAN events are removed, keys are removed from the LXI Output LAN Events menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LXI Output LAN Events menu.

Remote Command	$:$ LXI:EVENt [: OUTPut] : LAN: REMove:ALL
Example	$:$ LXI:EVEN:LAN:REM:ALL
Notes	Only LAN Events added with the Add command are removed. Default events cannot be removed.

Initial S/W Revision	Prior to A.02.00

Source

Sets the instrument event that this LXI Output LAN event is tied to.
The possible instrument events are "WaitingForTrigger", "Sweeping", "Measuring", "OperationComplete", and "Recalling".

The key is labeled with the value of the selected source.
For the instrument event specific LXI Output LAN Events "WaitingForTrigger," "Sweeping," "Measuring," "OperationComplete," and "Recalling," this parameter is set to the corresponding source value and cannot be changed. For these events, the Source key does not appear.

WaitingForTrigger, Measuring, and Sweeping correspond to the standard trigger state machine activities for which they are named.

OperationComplete is low when a measurement operation is underway. For example, OperationComplete is low throughout a list sweep measurement, even though Sweeping, Measuring, and WaitingForTrigger will undergo a number of transitions. In this case, OperationComplete goes high when the entire list sweep is finished.

Recalling is high while the instrument is actively recalling a state.
Additionally, the Source parameter can be set to the name of any Input LAN Event. This causes the Output LAN Event to be sent upon receipt of the named Input LAN Event. There is no front panel support for these events.

The default list of available Input LAN Events is:

- "LAN0"
- "LAN1"
- "LAN2"
- "LAN3"
- "LAN4"
- "LAN5"
- "LAN6"
- "LAN7"

Key Path	System, I/O Config, LXI, LXI Output LAN Events, LAN[n]
Remote Command	:LXI : EVENt [: OUTPut] : LAN [: SET] : SOURce "LANEVENT", "SourceEvent" $: L X I ~: ~ E V E N t ~[~: ~ O U T P u t] ~: ~ L A N[~: ~ S E T] ~: ~ S O U R c e ? ~ " L A N E V E N T " ~$
Example	:LXI:EVEN:LAN:SOUR "LANEVENT","WaitingForTrigger"
Notes	The maximum length of the string is 45 characters.
Preset	"Sweeping" (The Output LAN Events "WaitingForTrigger", "Sweeping", "Measuring", "OperationComplete", and "Recalling" all have default source parameters that match their names)

Preset	Not affected by a Preset. The default values can be restored by pressing Restore Defs, Input/Output Settings. Preset/Default values: "Sweeping" (The Output LAN Events "WaitingForTrigger", "Sweeping", "Measuring", "OperationComplete", and "Recalling" all have default source parameters that match their names)										
State Saved	Saved in instrument state.										
Range	"WaitingForTrigger"\|"Sweeping"	"Measuring"	"OperationComplete"	"Recall ing"\|"LAN0"	"LAN1"	"LAN2"	"LAN3"	"LAN4"	"LAN5"	"LAN6"	 "LAN7"\| any user-added Input LAN Event
Initial S/W Revision	Prior to A.02.00										

Destination (Remote Command Only)

Outgoing LAN events are sent to the hosts enumerated in the destination expression. This expression takes the form of "host1:port1, host2:port2, ..." where port numbers are optional, and default to the IANA assigned TCP port (5044). To designate a UDP broadcast at the default port, set the destination string to "" or "ALL". To designate a UDP broadcast at a specific port, set the destination string to ":port" or "ALL:port".

Examples:

- "192.168.0.1:23"
- "agilent.com, soco.agilent.com"
- "agilent.com:80, 192.168.0.1"

Remote Command	```:LXI:EVENt[:OUTPut]:LAN[:SET]:DESTination "LANEVENT","destinationExpression" :LXI:EVENt[:OUTPut]:LAN[:SET]:DESTination? "LANEVENT"```
Example	:LXI:EVEN:LAN:DEST "LANEVENT","host1, 192.168.0.1:80"
Notes	The maximum length of the string is 45 characters.
Preset	"ALL"
Preset	Not affected by a Preset. The default value of "ALL" can be restored by using the command: :SYSTem:DEFault INPut
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A. 02.00

Drive

Determines the behavior of an output event.

- Normal designates typical operation, where both edges of the instrument event are transmitted,
- Off disables the LAN event.
- Wired-OR causes only one edge to be transmitted.

Key Path	System, I/O Config, LXI, LXI Output LAN Events, LAN[n]	
Remote Command	$:$ LXI : EVENt [: OUTPut] : LAN[: SET] : DRIVe "LANEVENT", OFF\|NORMal	WOR $:$ LXI : EVENt [: OUTPut] : LAN[: SET] : DRIVe? "LANEVENT"
Example	:LXI:EVEN:LAN:DRIV "LANEVENT",WOR	
Preset	NORMal	
Preset	Not affected by a Preset. The default value of "NORMal" can be restored by using the command: $: S Y S T e m: D E F a u l t ~ I N P u t ~$	
State Saved	Saved in instrument state.	
Range	OFF\|NORMal	WOR
Initial S/W Revision	Prior to A.02.00	

Slope

Determines which instrument event transition results in a LAN packet being sent and whether or not that edge is inverted.

When the Drive parameter is set to Normal, a Slope of Negative causes both edges to be inverted before they are transmitted. A Positive Slope transmits the edges unaltered.

When the Drive parameter is set to WOR, only Positive edges are transmitted. When the Slope is Negative, a falling edge is inverted and sent as a rising edge. When the Slope is Positive, a rising edge is sent normally.

The following table illustrates the effects of the Slope and Drive parameters.

Instrument Event Edge	Slope Parameter	Drive Parameter	Action
0	Negative	Off	Not sent
0	Positive	Off	Not sent
1	Negative	Off	Not sent
1	Positive	Off	Not sent
0	Pogative	Normal	1
0	Negative	Normal	0
1	Positive	Normal	0
1	Pogative	Wired OR	1
0	Wired OR	1	
0			Not sent

Instrument Event Edge	Slope Parameter	Drive Parameter	Action
1	Negative	Wired OR	Not sent
1	Positive	Wired OR	0

Key Path	System, I/O Config, LXI, LXI Output LAN Events, LAN[n]
Remote Command	:LXI:EVENt [: OUTPut] : LAN[: SET] :SLOPe "LANEVENT", POSitive\|NEGative $:$ LXI :EVENt [: OUTPut] : LAN[: SET] : SLOPe? "LANEVENT"
Example	:LXI:EVEN:LAN:SLOP "LANEVENT",POS
Preset	POSitive
Preset	Not affected by a Preset. The default value of "Positive" can be restored by using the command: :SYSTem:DEFault INPut
State Saved	Saved in instrument state.
Range	POSitive\|NEGative
Initial S/W Revision	Prior to A.02.00

Timestamp Delta

This parameter represents a time in seconds to add to the timestamp of the Output LAN Event. This timestamp delta allows the receiving instrument to delay its response until the time specified in the timestamp.

Key Path	System, I/O Config, LXI, LXI Output LAN Events, LAN[n]
Remote Command	$:$ LXI : EVENt [: OUTPut] : LAN [: SET] : TSDelta "LANEVENT", <Seconds> $:$ LXI : EVENt [: OUTPut] : LAN [: SET] : TSDelta? "LANEVENT"
Example	:LXI:EVEN:LAN:TSD "LANEVENT",10.5 s
Preset	0.0 s
Preset	Not affected by a Preset. The default value of "0.0 s" can be restored by using the command: :SYSTem:DEFault INPut
State Saved	Saved in instrument state.
Range	$0.0-1.7976931348623157 \mathrm{x} 10308 \mathrm{~s}($ Max Double)
Initial S/W Revision	Prior to A.02.00

Enabled

If this parameter is set to ON, this LAN Event is sent when the selected Source instrument event occurs.

Otherwise, this LAN Event is never output.

Key Path	System, I/O Config, LXI, LXI Output LAN Events, LAN[n]		
Remote Command	$:$ LLXI : EVENt [: OUTPut] : LAN[: SET] : ENABled "LANEVENT", ON\|OFF	1	0 $:$ LXI : EVENt [: OUTPut] : LAN[: SET] : ENABled? "LANEVENT"
Example	:LXI:EVEN:LAN:ENAB "LAN0",ON		
Preset	OFF		
Preset	Not affected by a Preset. The default value of "OFF" can be restored by using the command: $: S Y S T e m: D E F a u l t ~ I N P u t ~$		
State Saved	Saved in instrument state.		
Range	OFF\|ON	0	1
Initial S/W Revision	Prior to A.02.00		

Count (Remote Command Only)

Returns the number of items in the LXI Output LAN Event List.

Remote Command	$:$ LXI:EVENt [:OUTPut] : LAN: COUNt?
Example	$:$ LXI:EVEN:LAN:COUN?
Initial S/W Revision	Prior to A.02.00

Configure (Remote Command Only)

Allows the configuration of some parameters from a single SCPI command.

Remote Command	:LXI:EVENt[:OUTPut]: LAN[:SET]: CONFigure "lanEvent", <enabled>, <source>,<slope>, <drive>, <destinat ion>
Example	:LXI:EVEN:LAN:CONF "LAN0",1,"WaitingForTrigger",POS,NORM,"ALL"
Initial S/W Revision	Prior to A.02.00

Send (Remote Command Only)

Forces the instrument to send the requested LAN Event. The LAN Event must be enabled, otherwise this command is ignored.

Remote Command	:LXI:EVENt[:OUTPut] :LAN:SEND""LANEVENT"", RISE\|FALL
Example	:LXI:EVEN:LAN:SEND "LANEVENT", FALL
Initial S/W Revision	Prior to A.02.00

Identifier (Remote Command Only)

Sets the string that will be placed in the peer-to-peer packet when the Output LAN Event is transmitted. The Identifier is variable to allow for easier system debugging. The Identifier must be unique, for example the "LAN0" and "LAN1" output events cannot have identical identifiers.

Remote Command	$:$ LXI:EVENt[:OUTPut] :LAN[:SET]:IDENtifier "LANEVENT", "identifier" $: L X I: E V E N t[: O U T P u t]: L A N[: S E T]: ~ I D E N t i f i e r ? ~ " L A N E V E N T " ~$
Example	:LXI:EVEN:LAN:IDEN"LANO","debugstring"
Notes	The maximum length of the string is 16 characters. Nothing happens if the LAN event does not exist. The default value is that the identifier is equivalent to the name of the LAN Event.
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

System IDN Response

This key allows you to specify a response to the *IDN? query, or to return the analyzer to the Factory response if you have changed it.

To choose the factory-set response, press the Factory key.
To specify your own response, press the User key, and enter your desired response.

Key Path	System, I/O Config
Mode	All
Remote Command	:SYSTem: IDN <string> :SYSTem: IDN?
Notes	• This affects the response given in all Modes of the Analyzer, unless the current Mode has also specified a custom response, in which case the current Mode's custom IDN response takes precedence over the System's, but only while that Mode is the current Mode.. - It survives shutdown and restart of the software and therefore survives a power cycle
• Null string as parameter restores the Factory setting	

System

Factory

This key selects the factory setting, for example:
"Agilent Technologies,N9020A,MY00012345,A.05.01"
where the fields are manufacturer, model number, serial number, firmware revision.

Key Path	System, I/O Config, IDN Response
Example	:SYST:IDN "" null string, restores the factory setting
Initial S/W Revision	A.06.0

User

This key allows you to specify your own response to the *IDN? query. You may enter your desired response with the Alpha Editor or a plugin PC keyboard.

When you press this key, the active function becomes the current User string with the cursor at the end. This makes it easy to edit the existing string.

If you enter a null string (for example, by clearing the User String while editing and then pressing Done) the analyzer automatically reverts to the Factory setting.

Key Path	System, I/O Config, IDN Response
Example	:SYST:IDN "XYZ Corp,Model 12,012345,A.01.01" user specified response
Initial S/W Revision	A.06.00

Query USB Connection (Remote Command Only)

Enables you to determine the speed of the USB connection.

Mode	All		
Remote Command	:SYSTem: COMMunicate: USB: CONNection?		
Example	:SYST:COMM:USB:CONN?		
Notes	NONE - Indicates no USB connection has been made. LSPeed - Indicates a USB low speed connection (1.5 Mbps). This is reserved for future use, the T+M488 protocol is not supported on low speed connections. HSPeed - Indicates that a USB high speed connection (480 Mbps) has been negotiated. FSPeed - Indicates that a USB full speed connection (12 Mbps) has been negotiated.		
State Saved	No		
Range	NONE\|LSPeed	HSPeed	FSPeed
Initial S/W Revision	Prior to A.02.00		

USB Connection Status (Remote Command Only)

Enables you to determine the current status of the USB connection.

Mode	All
Remote Command	:SYSTem: COMMunicate: USB: STATus?
Example	:SYST:COMM:USB:STAT?
Notes	SUSPended - Indicates that the USB bus is currently in its suspended state. The bus is in the suspended state when: The bus is not connected to any controller The controller is currently powered off The controller has explicitly placed the USB device into the suspended state. When in the suspended state, no USB activity, including start of frame packets are received. ACTive - Indicates that the USB device is in the active state. When the device is in the active state, it is receiving periodic start of frames but it isn't necessarily receiving or transmitting data.
State Saved	No
Range	SUSPended\|ACTive
Initial S/W Revision	Prior to A.02.00

USB Packet Count (Remote Command Only)

Enables you to determine the number of packets received and transmitted on the USB bus.

Mode	All
Remote Command	:SYSTem: COMMunicate: USB:PACKets?
Example	:SYST:COMM:USB:PACK?
Notes	Two integers are returned. The first is the number of packets received since application invocation, the second is the number of packets transmitted since application invocation. If no packets have been received or transmitted the response is $0,0$. The packet count is initialized to 0,0 when the instrument application is started.
State Saved	No
Initial S/W Revision	Prior to A.02.00

System

IEEE 1588 Time (Remote Command Only)

Time

Epoch Time (Remote Command Only)

If the device is selected as the IEEE 1588 master clock, this sets the clock using the number of seconds elapsed since January, 1 1970 at 00:00:00 in International Atomic Time (TAI). Epoch time is time zone invariant. Otherwise, this allows the user to query the epoch time.

Remote Command	:LXI:CLOCk[:TIME][:VALue] <seconds>,<fractionalSeconds>
Example	:LXI:CLOC $10020304.0 \mathrm{~s}, 0.123456 \mathrm{~s}$
Notes	The seconds argument must only contain values representing whole seconds. For example 1243.0 s is acceptable, but 1243.01 results in an error. Ignored when the device is not selected as the IEEE 1588 master clock. The fractional portion is only accurate to the microseconds position. Error generated if the seconds argument contains a fractional portion.
Preset	System time
Preset	Not affected by a Preset. The default value of "System Time" can be restored by using the command: $: S Y S T e m: D E F a u l t ~ I N P u t ~$
State Saved	No
Range	Seconds: $0.0-1.7976931348623157$ x 10308 s (Max Double)
Fraction: 0.0 s - 0.999999 s	

Remote Command	$:$ LXI:CLOCk[:TIME][:VALue]?
Example	:LXI:CLOC?
Notes	The seconds argument must only contain values representing whole seconds. For example 1243.0 s is acceptable, but 1243.01 results in an error. Ignored when the device is not selected as the IEEE 1588 master clock. The fractional portion is only accurate to the microseconds position. Error generated if the seconds argument contains a fractional portion.
Preset	System time
State Saved	No
Range	Seconds: $0.0-1.7976931348623157 \times 10308 \mathrm{~s}$ (Max Double)
Fraction: $0.0 \mathrm{~s}-0.999999 \mathrm{~s}$	
Initial S/W Revision	Prior to A.02.00

Seconds (Remote Command Only)

If the device is selected as the IEEE 1588 master clock, this sets the seconds portion of the clock. Otherwise, this allows the user to query the seconds portion of the epoch time. Valid values are in discrete increments of whole seconds.

Remote Command	$:$ LXI:CLOCk[:TIME] : SEConds <seconds> $:$ LXI:CLOCk[:TIME] : SEConds?
Example	$:$ LXI:CLOC:SEC 10020304.0
Notes	Ignored when the device is not selected as the IEEE 1588 master clock. Error generated if the argument contains a fractional portion. For example 1243.0 s is acceptable, but 1243.01 results in an error.
Preset	System time
Preset	Not affected by a Preset. The default value of "System Time" can be restored by using the command: $: S Y S T e m: D E F a u l t ~ I N P u t ~$
State Saved	No
Range	$0.0-1.7976931348623157 \times 10308$ s (Max Double)
Initial S/W Revision	Prior to A.02.00

Fraction (Remote Command Only)

If the device is selected as the IEEE 1588 master clock, this sets the sub-second value of the clock. Otherwise, this allows the user to query the sub-second value of the epoch time.

Remote Command	$:$ LXI:CLOCk[:TIME]:FRACtion <fraction> $:$ LXI:CLOCk[:TIME] :FRACtion?
Example	:LXI:CLOC:FRAC 10 ms
Notes	Ignored when the device is not selected as the IEEE 1588 master clock. Only accurate to the microseconds position.
Preset	Sub-second value of system time
State Saved	No
Range	$[0.0,1.0)$
Initial S/W Revision	Prior to A.02.00

Local Time (Remote Command Only)

Returns the current local time formatted as a date time string.

Remote Command	:LXI:CLOCk[:TIME] : LOCal?
Example	:LXI:CLOC:LOC? Returns "5/15/2007 6:23:34.123456"

Notes	LXI:CLOCk[:TIME]:LOCal? Returns Any string constituting a valid date and time
Initial S/W Revision	Prior to A.02.00

Leap Second Offset (Remote Command Only)

Enables you to set the leap second offset between the UTC and TAI time standards.

Remote Command	$:$ LXI:CLOCk[:TIME] :LSOFfset <integer> $:$ LXI:CLOCk[:TIME]: LSOFfset?
Example	$:$ LXI:CLOC:LSOF 55
Range	$0-2147483647$ (Max Integer)
Initial S/W Revision	Prior to A.02.00

International Atomic Time (Remote Command Only)

Retrieves the current time using the TAI format.

Remote Command	:LXI:CLOCk[:TIME]:TAI?
Example	:LXI:CLOC:TAI? "5/15/2007 6:23:34.123456"
Notes	:LXI:CLOCk[:TIME]:TAI? Returns Any string constituting a valid date and time
Initial S/W Revision	Prior to A.02.00

Time Zone (Remote Command Only)

Retrieves the current local time zone as an offset in hours, minutes, and seconds from Greenwich Mean Time.

Remote Command	$:$ LXI:CLOCk[:TIME]:TZONe?
Example	:LXI:CLOC:TZON?
Notes	$:$:LXI:CLOC:TZON? returns "01:00:00" if the current local time zone is 1 hour ahead from Greenwich Mean Time
Initial S/W Revision	Prior to A.02.00

Daylight Savings (Remote Command Only)

Retrieves the current status of the Windows System setting for Daylight Savings Time. Whether or not daylight savings time is in effect influences the time zone parameter.

Remote Command	:LXI:CLOCk[:TIME] : DLSavings?
Example	:LXI:CLOC:DLS?
Notes	:LXI:CLOC:DLS? Returns 1 when Daylight Savings Time is On and 0 if the when Daylight Savings Time is Off

Preset	The Windows system Daylight Savings setting.
Initial S/W Revision	Prior to A.02.00

Coordinated Universal Time (Remote Command Only)

Retrieves the current time using the UTC format.

Remote Command	:LXI:CLOCk[:TIME] :UTC?
Example	:LXI:CLOC:UTC? "5/15/2007 6:23:34.123456"
Notes	:LXI:CLOC:UTC? Returns Any string constituting a valid date and time
Initial S/W Revision	Prior to A.02.00

Time Marker (Remote Command Only)

Records the PTP time as a marker that can later be measured against the current PTP time. Typical use is to time the length of a sequence of instrument operations. There are 9 available markers with indices $1-9$.

Remote Command	$:$ LXI:CLOCk[:TIME] :MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9[:$ SET $]$
Example	$:$ LXI:CLOC:MARK1
	$:$ LXI:CLOC:MARK2
	$:$ LXI:CLOC:MARK3
	$:$ LXI:CLOC:MARK4
	$:$ LXI:CLOC:MARK5
	$:$ LXI:CLOC:MARK6
	$:$ LXI:CLOC:MARK7
	$:$ LXI:CLOC:MARK8
	$:$ LXI:CLOC:MARK9
	$:$ LXI:CLOC:MARK
Initial S/W Revision	Prior to A.02.00

Time Marker Clear (Remote Command Only)

Clears the recorded PTP time marker used to measure against the current PTP time. There are 9 available markers with indices 1-9.

| Remote Command | $:$ LXI:CLOCk[:TIME] :MARKer[1]\|2|3|4|5|6|7|8|9:CLEAr |
| :--- | :--- |

Example	:LXI:CLOC:MARK1:CLEA
	$:$ LXI:CLOC:MARK2:CLEA
	$:$ LXI:CLOC:MARK3:CLEA
	$:$ LXI:CLOC:MARK4:CLEA
	$:$ LXI:CLOC:MARK5:CLEA
	$:$ LXI:CLOC:MARK6:CLEA
	$:$ LXI:CLOC:MARK7:CLEA
	$:$ LXI:CLOC:MARK8:CLEA
	$:$ LXI:CLOC:MARK9:CLEA
	$:$ LXI:CLOC:MARK:CLEA
Prior to A.02.00	

Time Marker Delta (Remote Command Only)

Calculates and returns the delta time from the marker to the present PTP time. Also returns the seconds and sub-seconds portions of the start and end times. There are 9 available markers with indices $1-9$.

| Remote Command | :LXI:CLOCk[:TIME]:MARKer[1]\|2|3|4|5|6|7|8|9:DELTa? |
| :---: | :---: |
| Example | :LXI:CLOC:MARK1:DELT? returns
 <deltaTime>,<startSeconds>,<startFractionalSeconds>,<endSeconds>,<endF ractionalSeconds>
 :LXI:CLOC:MARK2:DELT?
 :LXI:CLOC:MARK3:DELT?
 :LXI:CLOC:MARK4:DELT?
 :LXI:CLOC:MARK5:DELT?
 :LXI:CLOC:MARK6:DELT?
 :LXI:CLOC:MARK7:DELT?
 :LXI:CLOC:MARK8:DELT?
 :LXI:CLOC:MARK9:DELT?
 :LXI:CLOC:MARK:DELT? |
| Notes | :LXI:CLOCk[:TIME]:MARKer[1]\|2|3|4|5|6|7|8|9:DELTa? Returns a value between $0.0-1.7976931348623157 \times 10^{308} \mathrm{~s}$ (Max Double) |
| Range | 0.0-1.7976931348623157 x 10308 s (Max Double) |
| Initial S/W Revision | Prior to A.02.00 |

Measurement Data Timestamp (Remote Command Only)

Returns the beginning and ending times of the last measurement cycle. This command also returns the duration of the measurement cycle. These values correspond to the last rising and falling transition of the Measuring
instrument event.

Remote Command	$:$ LXI :CLOCk[:TIME] : MEASure[: DELTa]?
Example	:LXI:CLOC:MEAS? Returns 2.0,1145902.0,0.123456, ,1145904.0,0.123456
Notes	:LXI:CLOCk[:TIME]:MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9:$ DELTa? Returns a value between $0.0-1.7976931348623157 \times 10^{308} \mathrm{~s}$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Clear Measurement Data Timestamp (Remote Command Only)

Forces the return values of the Measurement Data Timestamp to zero until the next measurement cycle occurs. This command need not be issued for the Measurement Data Timestamp to be refreshed.

Remote Command	:LXI:CLOCk[:TIME]:MEASure:CLEar
Example	:LXI:CLOC:MEAS:CLE
Initial S/W Revision	Prior to A.02.00

Precision Time Protocol

Precision Time Protocol, as defined by IEEE 1588, is a method for synchronizing the time across a network. Instruments participating in the PTP network can coordinate activities using this common time base.

Accuracy (Remote Command Only)

Sets the typical offset from the correct time that a user can expect from the instrument PTP clock. This parameter is used when the instrument is selected as the Master clock. It should be set along with the time when configuring a master clock.

The value should be chosen by judging how precisely the clock can be set to the exact TAI time and the accuracy and drift of the clock's underlying oscillator.

This is an input to the IEEE 1588 Best Master Clock algorithm.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Remote Command } & \begin{array}{l}\text { :LXI:CLOCk: PTP:ACCuracy } \\
\text { NS25|NS100|NS250|NS1000|NS2500|US10|US25|US100|US250|US } \\
1000|U S 2500| M S 10|M S 25| M S 100|M S 1000| S 10|G T 10 S| U N K N o w n ~\end{array}
$$

: :LXI:CLOCk:PTP:ACCuracy?\end{array}\right]\)\begin{tabular}{ll|}
\hline :LXI:CLOC:PTP:ACC US25

\hline Example \& GT10S

\hline Preset \& | Not affected by a Preset. The default value of "GT10S" can be restored by |
| :--- |
| using the command: |
| SYSTem:DEFault INPut |

\hline Range \& | NS25\|NS100|NS250|NS1000|NS2500|US10|US25|US100|US250|US1000|US |
| :--- |
| $2500\|M S 10\| M S 25\|M S 100\| M S 1000\|S 10\| G T 10 S \mid U N K N o w n ~$ |

\hline
\end{tabular}

Initial S/W Revision	Prior to A.02.00

Announce Interval (Remote Command Only)

Sets the time in seconds between PTP announce packets. A shorter interval makes the system more responsive to changes in the master clock at the cost of network bandwidth and packet processing time. The announce interval should be constant across all the instruments in the network. The announce interval will be rounded to the nearest non-negative integer power of two, with a maximum value of 16 .

Remote Command	$:$ LXI:CLOCk:PTP:ANNounce: INTerval <interval> $:$ LXI:CLOCk:PTP:ANNounce: INTerval?
Example	$:$ LXI:CLOC:PTP:ANN:INT 1
Preset	2
Preset	Not affected by a Preset. The default value of "4" can be restored by using the command: SYSTem:DEFault INPut
Range	$1\|2\| 4\|8\| 16$
Initial S/W Revision	Prior to A.02.00

Announce Receipt Time Out (Remote Command Only)

Sets the number of announce intervals that the instrument waits to receive an announce packet while in the Slave or Listening. After this number of announce intervals, the instrument will transition to the Master state.

Remote Command	$:$ LXI:CLOCk:PTP:ANNounce:RTOut <numberOfIntervals> $:$ LXI:CLOCk:PTP:ANNounce:RTOut?
Example	$:$ LXI:CLOC:PTP:ANN:RTO 5
Preset	3
Preset	Not affected by a Preset. The default value of "3" can be restored by using the command: SYSTem:DEFault INPut
Min	2
Max	10
Initial S/W Revision	Prior to A.02.00

Clock Class (Remote Command Only)

Returns a ranking of the master clock suitability relative to other clocks on the network. A lower value represents a more suitable clock.

Suitability is defined by the IEEE 1588 standard section 7.6.2.4

Remote Command	$:$ LXI:CLOCk:PTP:CCLass?

Example	:LXI:CLOC:PTP:CCL?
Preset	248
Preset	Not affected by a Preset. The default value of "248" can be restored by using the command: SYSTem:DEFault INPut
Min	6
Max	248
Initial S/W Revision	Prior to A.02.00

Deviation (Remote Command Only)

Returns the standard deviation of the instrument's PTP time from the Grandmaster's PTP time.

Remote Command	$:$ LXI:CLOCk:PTP:DEViation?
Example	:LXI:CLOC:PTP:DEV?
Initial S/W Revision	Prior to A.02.00

Domain (Remote Command Only)

The instrument synchronizes its clock only with other clocks in the same domain.

Remote Command	$:$ LXI:CLOCk:PTP:DOMain <domainNumber> $:$ LXI:CLOCk:PTP:DOMain?
Example	$:$ LXI:CLOC:PTP:DOM 0
Preset	0
Preset	Not affected by a Preset. The default value of "0" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	127
Initial S/W Revision	Prior to A.02.00

Offset (Remote Command Only)

Returns the difference between the instrument clock PTP time and the Master clock PTP time.

Remote Command	$:$ LXI :CLOCk:PTP:OFFSet?
Example	$:$ LXI:CLOC:PTP:OFFS?
Range	0.0 to $-1.7976931348623157 \times 10308 \mathrm{~s}$ (Min Double)
Initial S/W Revision	Prior to A.02.00

System

First Priority (Remote Command Only)

Setting this parameter overrides the IEEE 1588 Best Master Clock algorithm. If an instrument’s First Priority parameter is smaller than all other clocks in its domain, it is chosen as the Master clock.

Remote Command	$:$ LXI:CLOCk:PTP:PRIority:FIRSt <priority> $:$ LXI:CLOCk:PTP:PRIority:FIRSt?
Example	$:$ LXI:CLOC:PTP:PRI:FIRS 50
Preset	128
Preset	Not affected by a Preset. The default value of "128" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	255
Initial S/W Revision	Prior to A.02.00

Second Priority (Remote Command Only)

When two or more clocks are determined to be equally good by the Best Master Clock algorithm, the clock with the lowest Second Priority value is chosen to be the Master Clock.

Remote Command	$:$ LXI:CLOCk:PTP:PRIority:SECond <priority> $:$ LXI:CLOCk:PTP:PRIority:SECond?
Example	:LXI:CLOC:PTP:PRI:SEC 50
Preset	128
Preset	Not affected by a Preset. The default value of "128" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	255
Initial S/W Revision	Prior to A.02.00

State (Remote Command Only)

Returns the current state of the instrument's PTP clock as defined in the IEEE 1588 standard.

Remote Command	:LXI:CLOCk:PTP:STATe?						
Example	:LXI:CLOC:PTP:STAT?						
Range	INITializing\|FAULty	DISabled	LISTening	PREMaster	 MASTer\|PASSive	UNCalibrated	SLAVe
Initial S/W Revision	Prior to A.02.00						

Traceability (Remote Command Only)

Returns the quality of the instrument's PTP clock source of time when chosen as the Grand Master clock.
This parameter is used by the Best Master Clock algorithm.

Remote Command	$:$ LXI:CLOCk:PTP:TRACeability?						
Example	:LXI:CLOC:PTP:TRAC?						
Range	ATOMic\|GPS	RADio	PTP	NTP	HANDset	OTHer	OSCillator
Initial S/W Revision	Prior to A.02.00						

Variance (Remote Command Only)

Returns the variance of the instrument's PTP clock time relative to the Master's PTP clock time.

Remote Command	$:$ LXI:CLOCk:PTP:VARiance?
Example	$:$ LXI:CLOC:PTP:VAR?
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Sync Interval (Remote Command Only)

Sets the rate at which PTP sync packets are transmitted when this instrument is acting as a Master PTP clock. The values must be integer powers of 2 .

Remote Command	$:$ LXI:CLOCk:PTP:SINTerval <seconds>
Example	$:$ LXI:CLOC:PTP:SINT 0.25 s
Preset	1
Preset	Not affected by a Preset. The default value of "1" can be restored by using the command: SYSTem:DEFault INPut
Range	$0.0625 \mathrm{~s}\|0.125 \mathrm{~s}\| 0.25 \mathrm{~s}\|0.5 \mathrm{~s}\| 1 \mathrm{~s} \mid 2 \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

Remote Command	$:$ LXI:CLOCk:PTP:SINTerval?
Example	$:$ LXI:CLOC:PTP:SINT?
Preset	1
Range	$0.0625 \mathrm{~s}\|0.125 \mathrm{~s}\| 0.25 \mathrm{~s}\|0.5 \mathrm{~s}\| 1 \mathrm{~s} \mid 2 \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

System

Delay Request Interval (Remote Command Only)

This property is used by the master clock to specify the interval between delay request packets sent from the slave to the master clock. Slaves use a randomly-chosen interval, with mean equal to this property.

The value for this parameter must be an integer power of two.

Remote Command	$:$ LXI:CLOCk:PTP:DRINterval <seconds>
Example	$:$ LXI:CLOC:PTP:DRIN 15 ms
Preset	8 s
Preset	Not affected by a Preset. The default value of "8 s" can be restored by using the command: SYSTem:DEFault INPut
Range	$1 \mathrm{~s}\|2 \mathrm{~s}\| 4 \mathrm{~s}\|8 \mathrm{~s}\| 16 \mathrm{~s} \mid 32 \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

Remote Command	$:$ LXI:CLOCk:PTP:DRINterval?
Example	$:$ LXI:CLOC:PTP:DRIN 15 ms
Preset	8 s
Min	0.0 s
Max	$2^{\wedge} 32=4294967296 \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

Grand Master

In the IEEE 1588 the best clock in the system, as determined by the Best Master Clock algorithm, is chosen as the Grand Master clock. The Grand Master clock is the ultimate source of time which all other clocks attempt to synchronize to. If the network is limited to a single subnet, the Master clock and the Grand Master clock are synonymous.

If a network spans multiple subnets, boundary clocks must be utilized to segment the network. Each subnet then selects a Master Clock using the Best Master Clock algorithm. From this population of Master Clocks, the best clock is selected to be the Grand Master clock.

Accuracy (Remote Command Only)

Returns the relative accuracy of the Grand Master clock.

Remote Command	$:$ LXI :CLOCk:PTP:GMASter:ACCuracy?					
Example	:LXI:CLOC:PTP:GMAS:ACC? For example, this might return GT10S.					
Range	$25 N S\|100 N S\| 250 N S\|1 U S\| 2.5 U S\|10 U S\| 25 U S\|100 U S\| 250 U S\|1 M S\| 2.5 M S \mid 10 M ~$ S\|25MS	100MS	1S	10S	GT10S	UNKNown
Initial S/W Revision	Prior to A.02.00					

MAC Address (Remote Command Only)

Returns the Grand Master’s MAC Address.

Remote Command	$:$ LXI:CLOCk:PTP:GMASter : MADDress?
Example	:LXI:CLOC:PTP:GMAS:MADD? For example, this might return "00-00-50-1e-ca-ad".
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Traceability (Remote Command Only)

Describes the quality of the Grand Master PTP clock's source of time.

Remote Command	$:$ LXI:CLOCk:PTP:GMASter : TRACeability?						
Example	:LXI:CLOC:PTP:GMAS:TRAC? For example, this might return OSC.						
Range	ATOMic\|GPS	RADio	PTP	NTP	HANDset	OTHer	OSCillator
Initial S/W Revision	Prior to A.02.00						

Master

Instruments on the same subnet use the Best Master Clock algorithm to select a Master clock. The Master clock is used as the basis for synchronization.

MAC Address (Remote Command Only)

Returns the Master’s MAC Address.

Remote Command	:LXI:CLOCk:PTP:MASTer :MADDress?
Example	:LXI:CLOC:PTP:MAST:MADD?
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Servo Algorithm (Remote Command Only)

The Servo Algorithm parameters are considered advanced settings for tweaking IEEE 1588 performance.

Log (Remote Command Only)

The Servo Log records measurements of the offset between the instrument's PTP clock and the Master's PTP clock. It also records the packet travel time for Master-to-Slave and Slave-to-Master transactions.

Next (Remote Command Only)

Retrieves and removes the oldest entry from the Servo Log. The format for a servo log entry is as follows

Sample Index:	integer representing entry order

Time Seconds:	seconds portion of the entry timestamp
Time Fraction:	sub-second portion of the entry timestamp
Offset Seconds:	offset between the instrument's PTP clock and the Master's PTP clock
Average Delay Seconds:	the average measured transmission delay
Master Delay Seconds:	Master-to-Slave packet travel time
Slave Delay Seconds:	Slave-to-Master packet travel time

Remote Command	$:$ LXI:CLOCk:SALGorithm:LOG[:NEXT]?
Example	:LXI:CLOC:SALG:LOG?
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Circular (Remote Command Only)

Sets the behavior for entries occurring while the Servo Log is full.

- If Circular is set to 1 , incoming events overwrite the oldest events in the log.
- If Circular is set to 0 , incoming events are discarded.

| Remote Command | $:$ LXI:CLOCk:SALGorithm:LOG:CIRCular[:ENABled] ON\|OFF|0|1
 $:$ LXI:CLOCk:SALGorithm:LOG:CIRCular[:ENABled]? |
| :--- | :--- |
| Example | :LXI:CLOC:SALG:LOG:CIRC 1 |
| Preset | 1 |
| Preset | Not affected by a Preset. The default value of "1" can be restored by using the
 command:
 SYSTem:DEFault INPut |
| Range | ON\|OFF|0|1 |
| Initial S/W Revision | Prior to A.02.00 |

Beginning Entry (Remote Command Only)

Sets or freezes the beginning entry of the log when in circular mode to the most recently added entry at the time of the command. This is so that the :LXI:EVENt:LOG:ENTtry? command has a reference entry for indexing individual entries in the log.

Remote Command	$:$ LXI:CLOCk:SALGorithm:LOG:CIRCular:FBENtry
Example	LXI:CLOCk:SALG:LOG:CIRC:FBEN
Initial S/W Revision	Prior to A.02.00

Clear (Remote Command Only)

Clears all entries from the Servo Log.

Remote Command	$:$ LXI:CLOCk:SALGorithm:LOG:CLEar
Example	$:$ LXI:CLOC:SALG:LOG:CLE
Initial S/W Revision	Prior to A.02.00

Count (Remote Command Only)

Returns the number of unread entries in the Servo Log.

Remote Command	$:$ LXI :CLOCk:SALGorithm:LOG:COUNt?
Example	$:$ LXI:CLOC:SALG:LOG:COUN?
Range	0 - IEEE 1588 Servo Log Size
Initial S/W Revision	Prior to A.02.00

Enabled (Remote Command Only)

- When the Servo Log is disabled, no events are recorded.
- When it is enabled, the Servo Log is active.

| Remote Command | $:$ LXI:CLOCk:SALGorithm:LOG:ENABled ON\|OFF|0|1
 $:$ LXI:CLOCk:SALGorithm:LOG:ENABled? |
| :--- | :--- |
| Example | $:$ LXI:CLOC:SALG:LOG:ENAB 1 |
| Preset | 0 |
| Preset | Not affected by a Preset. The default value of "0" can be restored by using the
 command:
 SYSTem:DEFault INPut |
| Range | ON\|OFF|0|1 |
| Initial S/W Revision | Prior to A.02.00 |

Size (Remote Command Only)

Sets the maximum number of entries to store in the Servo Log.

Remote Command	$: L X I: C L O C k: S A L G o r i t h m: L O G: S I Z E ~<m a x L o g E n t r i e s>~$ $: L X I: C L O C k: S A L G o r i t h m: L O G: S I Z E ? ~$
Example	$:$ LXI:CLOC:SALG:LOG:SIZE 100
Preset	256

Preset	Not affected by a Preset. The default value of "256" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	1024
Initial S/W Revision	Prior to A.02.00

All (Remote Command Only)

Non-destructively returns the entire contents of the Servo Log.

Remote Command	$:$ LXI:CLOCk:SALGorithm:LOG:ALL?
Example	:LXI:CLOC:SALG:LOG?
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Specific Entry (Remote Command Only)

Non-destructively returns a specifically indexed entry from within the Servo Log.

Remote Command	$:$ LXI:CLOCk:SALGorithm: LOG: ENTRy? <intIndex>
Example	$:$:LXI:CLOC:SALG:LOG? 0 Returns the oldest entry in the Servo Log.
	Example of result:
	"1,1208978798,139644871,0.000000000,3.393600e $+038,0.000000000,0.000$
	$000000,0.000000000 "$
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Statistics (Remote Command Only)

Returns the long-term statistics of the servo log that characterizes the performance of the instrument PTP clock's offset from the master PTP clock. The statistics include the following values:

- Number of samples (an integer)
- Mean offset (a double)
- Standard deviation of the offset (a double)
- Maximum offset (a double)
- Minimum offset (a double)

Remote Command	:LXI:CLOCk:SALGorithm:LOG:STATistics [:DATA]?
Example	:LXI:CLOC:SALG:LOG:STAT? Example of result :
	"3643,0.000000000,0.000000000,0.000000000,0.00000000"

Initial S/W Revision	Prior to A.02.00

Clear Statistics (Remote Command Only)

Resets the long-term servo performance statistics.

Remote Command	:LXI:CLOCk:SALGorithm:LOG:STATistics:CLEar
Example	$: L X I: C L O C: S A L G: L O G: S T A T ? ~ E x a m p l e ~ o f ~ r e s u l t ~: ~$ "3643,0.000000000,0.000000000,0.000000000,0.000000000"
Initial S/W Revision	Prior to A.02.00

Asymmetry (Remote Command Only)

Sets the difference in seconds between the Master-to-Slave packet travel time and the Slave-to-Master packet travel time.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET] :ASYMmetry <seconds> $:$ LXI:CLOCk:SALGorithm[:SET] :ASYMmetry?
Example	:LXI:CLOC:SALG:ASYM 15 ns
Preset	Not affected by a Preset. The default value of "0.0 s " can be restored by using the command: SYSTem:DEFault INPut
Min	-1
Max	1
Initial S/W Revision	Prior to A.02.00

Coarse/Fine Threshold (Remote Command Only)

Determines when the PTP clock Servo algorithm uses the 'Fine' or 'Coarse' parameters for adjusting the instrument's PTP clock time. The threshold is measured against a running estimate of the servo variance.

Coarse mode causes a slave clock to converge with the master clock more quickly, but it is more sensitive to noise, while Fine mode filters out noise more effectively, but takes longer to converge.

Remote Command	:LXI:CLOCk: SALGorithm[:SET]: CFTHreshold <secondsSquared> $:$ LXI:CLOCk: SALGorithm[:SET] : CFTHreshold?
Example	:LXI:CLOC:SALG:CFTH 0.25
Preset	Not affected by a Preset. The default value of "1.0e-11 " can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	1

System

Initial S/W Revision	Prior to A.02.00

Coarse Proportional Constant (Remote Command Only)

This constant is used by the servo when above the Coarse/Fine Threshold variance. Decreasing this constant causes the servo to become less responsive to both noise in the system and changes in the Master Clock's rate. Conversely, increasing this constant causes the servo to respond more energetically to both system noise and changes in the Master Clock's rate.

The ratio between the Proportional and Integral constants should remain roughly constant.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET]:CPConstant <servoConstant> $:$ LXI:CLOCk:SALGorithm[:SET]:CPConstant?
Example	:LXI:CLOC:SALG:CPC 0.5
Preset	Not affected by a Preset. The default value of "0.4 " can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	1
Initial S/W Revision	Prior to A.02.00

Coarse Integral Constant (Remote Command Only)

This constant is used by the servo when above the Coarse/Fine Threshold variance. Decreasing this constant causes the servo to become less responsive to both noise in the system and changes in the Master Clock's rate. Conversely, increasing this constant causes the servo to respond more energetically to both system noise and changes in the Master Clock's rate.

The ratio between the Proportional and Integral constants should remain roughly constant.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET]:CIConstant <servoConstant> $:$ LXI:CLOCk:SALGorithm[:SET] :CIConstant?
Example	:LXI:CLOC:SALG:CIC 0.5
Preset	Not affected by a Preset. The default value of "0.2 " can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	1
Initial S/W Revision	Prior to A.02.00

Fine Proportional Constant (Remote Command Only)

This constant is used by the servo when below the Coarse/Fine Threshold variance. Decreasing this constant causes the servo to become less responsive to both noise in the system and changes in the Master Clock’s rate. Conversely, increasing this constant causes the servo to respond more energetically to both system noise and changes in the

Master Clock's rate.
The ratio between the Proportional and Integral constants should remain roughly constant.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET] :FPConstant <servoConstant> $:$ LXI:CLOCk:SALGorithm[:SET] :FPConstant?
Example	$:$ LXI:CLOC:SALG:FPC 1
Preset	0.35
Min	0
Max	1
Initial S/W Revision	Prior to A.02.00
Preset/	Not affected by a Preset. The default value of "0.35 " can be restored by using the command: SYSTem:DEFault INPut

Fine Integral Constant (Remote Command Only)

This constant is used by the servo when below the Coarse/Fine Threshold variance. Decreasing this constant causes the servo to become less responsive to both noise in the system and changes in the Master Clock's rate. Conversely, increasing this constant causes the servo to respond more energetically to both system noise and changes in the Master Clock's rate.

The ratio between the Proportional and Integral constants should remain roughly constant.

Remote Command	:LXI:CLOCk:SALGorithm[:SET] : FIConstant <servoConstant> $:$ LXI:CLOCk:SALGorithm[:SET] : FIConstant?
Example	:LXI:CLOC:SALG:FIC 0.6
Preset	Not affected by a Preset. The default value of "0.05" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	1
Initial S/W Revision	Prior to A.02.00

Maximum Outlier Discard Count (Remote Command Only)

Sets the maximum number of outlier packets to ignore. After this maximum is exceeded, the next packet is accepted, regardless of whether or not it is flagged as an outlier.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET]: OMAXimum <consecutiveSamples> $:$:LXI:CLOCk:SALGorithm[:SET] : OMAXimum?
Example	:LXI:CLOC:SALG:OMAX 3

Preset	Not affected by a Preset. The default value of "5" can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	25
Initial S/W Revision	Prior to A.02.00

Outlier Threshold (Remote Command Only)

Defines the threshold for determining whether a packet is considered a statistical outlier. If a sync or delay request is held up in a switch for a significant amount of time, the quality of synchronization will be perturbed. The servo ignores anything outside the outlier threshold. This parameter is expressed as a number of standard deviations from the currently measured average packet latency. Note that the value can be set to fractional standard deviations.

Remote Command	:LXI:CLOCk:SALGorithm[:SET]:OTHReshold <standardDeviations> $:$ LXI:CLOCk:SALGorithm[:SET] : OTHReshold?
Example	:LXI:CLOC:SALG:OTHR 1.0
Preset	Not affected by a Preset. The default value of "5.0" can be restored by using the command: SYSTem:DEFault INPut
Min	0.25
Max	6.0
Initial S/W Revision	Prior to A.02.00

Outlier Threshold Enable (Remote Command Only)

Enables the outlier threshold to determine whether or not outliers are discarded.

Remote Command	$: L X I: C L O C k: S A L G o r i t h m[: S E T]: O T E N a b l e ~ O N\|O F F\| 1 \mid 0$ $: L X I: C L O C k: S A L G o r i t h m[: S E T]: O T E N a b l e ? ~$
Example	:LXI:CLOC:SALG:OTEN OFF
Preset	Not affected by a Preset. The default value of "OFF" can be restored by using the command: SYSTem:DEFault INPut
Initial S/W Revision	Prior to A.02.00

Set/Steer Threshold (Remote Command Only)

If the instrument's clock deviates from the master by an amount equal to or greater than this threshold, it is reset to
match the master rather than being gradually steered toward it.

Remote Command	$:$ LXI:CLOCk:SALGorithm[:SET] :STHReshold <seconds> $:$ LXI:CLOCk:SALGorithm[:SET] :STHReshold?
Example	$:$ LXI:CLOC:SALG:STHR 15 ms
Preset	0.1 s
Preset	Not affected by a Preset. The default value of "0.1 s " can be restored by using the command: SYSTem:DEFault INPut
Min	0.0001
Max	10.0
Initial S/W Revision	Prior to A.02.00

Configure (Remote Command Only)

Allows the configuration of some of the above parameters from a single SCPI command.

Remote Command	:LXI:CLOCk:SALGorithm[:SET]:CONFigure <asymmetry>, <coarse fine threshold>, <cpc>, <cic>, <fpc>, <fic>, <maximum outlier discard>, <outlier threshold>, <set/steer threshold>
Example	:LXI:CLOC:SALG:CONF 0.0, 2.0E-13, 0.4, 0.2, 0.35, 0.05, 5, 2.0E-4, 0.1s
Initial S/W Revision	Prior to A.02.00

Synchronization (Remote Command Only)

Synchronization parameters are used to control the behavior of the LAN communication used to achieve converging times across the system.

Master (Remote Command Only)

Reports whether or not the device has been selected as the PTP master clock.

Remote Command	$:$ LXI :CLOCk:SYNC:MASTer?
Example	:LXI:CLOC:SYNC:MAST?
Range	ON $\|\mathrm{OFF}\| 0 \mid 1$
Initial S/W Revision	Prior to A.02.00

Local Enabled (Remote Command Only)

Enable steering of the local clock with the PTP IEEE 1588 clock.

| Remote Command | $:$ LXI:CLOCk:SYNC:LOCal:ENABled ON\|OFF|0|1 |
| :--- | :--- |
| $: L X I: C L O C k: S Y N C: L O C a l: E N A B l e d ? ~$ | |

System

Example	:LXI:CLOC:SYNC:LOC:ENAB ON
Preset	OFF
Preset	Not affected by a Preset. The default value of "ON" can be restored by using the command: SYSTem:DEFault INPut
Range	ON\|OFF $\|0\| 1$
Initial S/W Revision	Prior to A.02.00

Local Interval (Remote Command Only)

The local clock is updated after the time set in the Local Interval elapses.

Remote Command	$:$ LXI:CLOCk:SYNC:LOCal: INTerval $:$ LXI:CLOCk:SYNC:LOCal: INTerval?
Example	$:$ LXI:CLOC:SYNC:LOC:INT 60
Preset	60
Preset	Not affected by a Preset. The default value of "60 " can be restored by using the command: SYSTem:DEFault INPut
Min	0
Max	3600
Initial S/W Revision	Prior to A.02.00

Instrument Status Events

Instrument status events represent internal state changes that are important for synchronization. The recognized Status Events are:

WaitingForTrigger:	Transitions high when the measurement is awaiting a trigger event. Transitions low when the trigger event occurs or the measurement is aborted.
Sweeping:	Transitions high when the instrument begins sweeping. Transitions low when the sweep is completed.
Measuring:	Transitions high when measurement data is being recorded. Transitions low when measurement data is no longer being recorded.
OperationComplete:	Transitions low when a measurement operation is in progress. In some cases (for example, ListSweep), multiple sweeps are taken during a single measurement operation. Transitions high when the measurement operation is finished or aborted.
Recalling:	Transitions high while the instrument is recalling a previous state. Transitions low when a recall is not in progress.

Enable (Remote Command Only)

Setting the enabled parameter to ON enables the selected instrument event to be used as a source for Output LAN Events. Enabling an Instrument Status Event also causes the event to appear in the Event Log.

| Remote Command | $:$ LXI :EVENt : STATus[:ENABled] "STATUSEVENT", ON \|OFF |1|0 |
| :--- | :--- |
| Example | :LXI:EVEN:STAT "WaitingForTrigger",1 |
| Preset | ON |
| Preset | Not affected by a Preset. The default value of "1" can be restored by using the
 command, :SYSTem:DEFault INPut. |
| State Saved | Saved in instrument state. |
| Range | $1\|0\| O N \mid O F F$ |
| Initial S/W Revision | Prior to A.02.00 |

Remote Command	$:$ LXI : EVENt : STATus[:ENABled]? "STATUSEVENT"
Example	:LXI:EVEN:STAT? "WaitingForTrigger" Returns 1 if previously enabled. Otherwise, returns 0.
Preset	ON
State Saved	Saved in instrument state.
Range	$1\|0\| \mathrm{ON} \mid \mathrm{OFF}$
Initial S/W Revision	Prior to A.02.00

LXI State Recall

The LXI Event system can be used to recall states upon receipt of LXI Input LAN Events.

Location (Remote Command Only)

This parameter is used to store the file paths of the state files to be recalled when each Input LAN Event is received. Since each LAN Event has its own Location entry, a given state is capable of branching to at least 8 different states. If custom Input events are added, an even greater branching factor is possible.

When setting up state transitions, it is important to set the location of the next state before saving. This way, when the saved state is recalled, the next state locations are also automatically recalled.

Remote Command	$:$ LXI :EVENt : INPut : LAN : LOCation "LANEVENT", "path"
Example	:LXI:EVEN:INP:LAN:LOC "LANEVENT","c:\states\state01.state"
Notes	The maximum length of the string is 512 characters.
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Remote Command	$:$ LXI :EVENt : INPut : LAN : LOCation? "LANEVENT"
Example	:LXI:EVEN:INP:LAN:LOC? "LANEVENT" Returns "c:Istates "state01.state" if that value was previously entered
Notes	The maximum length of the string is 512 characters.
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Disable All (Remote Command Only)

Causes all LXI Input LAN Events to go into the disabled state (Enabled = OFF).

Remote Command	$:$ LXI:EVENt : INPut:LAN:DISable:ALL
Example	$:$ LXI:EVEN:INP:LAN:DIS:ALL
Initial S/W Revision	Prior to A.02.00

Add (Remote Command Only)

Adds the provided string to the list of possible LAN events to Input as a response to instrument events. As new LAN events are added, keys are generated in the LXI Input LAN Events menu. New key panels are generated as the number of possible LAN events increases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LXI Input LAN Events menu.

Remote Command	:LXI :EVENt : INPut : LAN : ADD "LANEVENT"
Example	:LXI:EVEN:INP:LAN:ADD "LANEVENT"
Notes	The maximum length of the string is 16 characters. Longer strings are concatenated and added to the LXI Input LAN Event list. No event is added if the LAN Event already exists.
State Saved	No
Range	Uppercase, Lowercase, Numeric, Symbol except for comma or semicolon
Initial S/W Revision	Prior to A.02.00

Remove (Remote Command Only)

Removes the provided string from the list of LXI Input LAN Events. As new LAN events are removed, keys are removed from the LXI Input LAN Events menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LXI Input LAN Events menu. Events from the default list cannot be removed.

Remote Command	:LXI :EVENt : INPut : LAN: REMove[:EVENt] "LANEVENT"
Example	:LXI:EVEN:INP:LAN:REM "LANEVENT"

Notes	The maximum length of the string is 16 characters. Longer strings are concatenated and the resulting LAN Event is removed from the LXI Input LAN Event list. Nothing happens if the LAN event was not introduced using the Add command.
State Saved	No
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Remove All (Remote Command Only)

Clears the list of custom LAN events (those introduced using the Add command). As new LAN events are removed, keys are removed from the LXI Input LAN Events menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LXI Input LAN Events menu.

Remote Command	$:$ LXI :EVENt : INPut : LAN : REMove :ALL
Example	:LXI:EVEN:INP:LAN:REM:ALL
Notes	Only LAN Events added with the Add command are removed. Default events cannot be removed.
Initial S/W Revision	Prior to A.02.00

Filter (Remote Command Only)

Only LXI Input LAN Events coming from hosts matching the filter string are processed. There is no Key Path to this command

The syntax for specifying a filter is as follows:
Filter $==($ [host[:port]] | [ALL[:port]] $)$ [,Filter]
Specifying an empty string means that LXI trigger packets are accepted as an Input from any port on any host on the network via either TCP or UDP.

Specifying only the port means that any host communicating over that port can send events.
Specifying ALL indicates that UDP multicast packets are accepted if they are directed to the IANA assigned multicast address on the IANA assigned default port, or the designated port if specified.

Examples:

- "192.168.0.1:23"
- "agilent.com, soco.agilent.com"
- "agilent.com:80, 192.168.0.1"
- The LXI:EVENt:INPut:LAN:FILTer command applies only to state events and will have no effect on trigger events, even when both are tied to the same event name (like "LAN0"). Similarly, the

System

TRIGger:LXI:LAN:FILTer command applies only to trigger events and will have no effect on state events.

Remote Command	$:$ LXI :EVENt: INPut : LAN: FILTer "LANEVENT", "filterString" $:$ LXI:EVENt : INPut : LAN:FILTer?
Example	:LXI:EVEN:INP:LAN:FILT "LAN0","agilent.com" $: L X I: E V E N: I N P: L A N: F I L T ? ~$
Notes	The maximum length of the string is 45 characters. Nothing happens if the LAN event does not exist.
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Identifier (Remote Command Only)

Sets the string that is expected to arrive over the LAN for a given Input LAN Event to occur. The Identifier is variable to allow for easier system debugging.

Remote Command	$: L X I: E V E N t: I N P u t: L A N: I D E N t i f i e r ~ " L A N E V E N T ", " i d e n t i f i e r " ~$ $: L X I: E V E N t: I N P u t: L A N: ~ I D E N t i f i e r ? ~ " L A N E V E N T " ~$
Example	:LXI:EVEN:INP:LAN:IDEN "LAN0","debugstring"
Notes	The maximum length of the string is 16 characters. Nothing happens if the LAN event does not exist. The default value is that the identifier is equivalent to the name of the LAN Event.
State Saved	Saved in instrument state.
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Detection (Remote Command Only)

Selects the triggering option..

- Selecting "Rise" causes the instrument to trigger on the receipt of a signal low LAN Event followed by a signal high LAN Event.
- Selecting "Fall" causes the instrument to trigger on the receipt of a signal high LAN Event followed by a signal low LAN Event.
- Selecting "High" causes the instrument to trigger on every signal high LAN Event.
- Selecting "Low" causes the instrument to trigger on every signal low LAN Event.

| Remote Command | :LXI:EVENt:INPut:LAN[:SET]:DETection "LANEVENT",
 HIGH\|LOW|RISE|FALL |
| :--- | :--- |

Example	:LXI:EVENt:INP:LAN:DET "LANEVENT",HIGH		
Notes	If a non existent LAN event is passed in the lanEvent argument, the command is ignored		
Preset	Not affected by a Preset. The default value of "HIGH" can be restored by using the remote command: $:$ SYSTem:DEFault INPut		
State Saved	Saved in instrument state.		
Range	HIGH \| LOW	RISE	FALL
Readback Text	Currently selected detection type		
Initial S/W Revision	Prior to A.02.00		

Remote Command	$:$ LXI :EVENt : INPut : LAN [: SET] : DETection? "LANEVENT"		
Example	$:$ LXI:EVEN:INP:LAN:DET? "LANEVENT"		
Notes	If a non existent LAN event is passed in the lanEvent argument, the command is ignored		
Preset	HIGH		
State Saved	Saved in instrument state.		
Range	HIGH \| LOW	RISE	FALL
Readback Text	Currently selected detection type		
Initial S/W Revision	Prior to A.02.00		

Enabled (Remote Command Only)

When the Enabled parameter is set to ON, receiving the given LAN Event causes the instrument to transition to the state held in the Next State Slot.

When the Enabled parameter is OFF, the Input LAN Event is ignored.

Remote Command	$:$ LXI :EVENt:INPut : LAN[: SET] : ENABled "LANEVENT", ON \mid OFF $\|1\| 0$
Example	:LXI:EVEN:INP:LAN:ENAB "LAN0",1
Preset	Not affected by a Preset. The default value of "OFF" can be restored by using the remote command: :SYSTem:DEFault INPut
State Saved	Saved in instrument state.
Range	$1 \mid 0$
Initial S/W Revision	Prior to A.02.00

System

Remote Command	$:$ LXI :EVENt : INPut : LAN[:SET] : ENABled? "LANEVENT"
Example	$:$ LXI:EVEN:INP:LAN:ENAB? "LAN0""
Preset	OFF
State Saved	Saved in instrument state.
Range	$1 \mid 0$
Initial S/W Revision	Prior to A.02.00

Count (Remote Command Only)

Returns the number of items in the LXI Input LAN Event List.

Remote Command	:LXI:EVENt : INPut : LAN : COUNt?
Example	$:$ LXI:EVEN:INP:LAN:COUN?
Initial S/W Revision	Prior to A.02.00

List (Remote Command Only)

Returns a list of all of the valid LXI Input LAN Event names.

Remote Command	$:$ LXI : EVENt : INPut : LAN : LIST?
Example	:LXI:EVEN:INP:LAN:LIST? Returns "LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7"
Preset	"LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7"
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Configure (Remote Command Only)

Allows the configuration of some of the above parameters from a single SCPI command.

Remote Command	:LXI:EVENt:INPut:LAN[:SET]:CONFigure "lanEvent" , <enab>, <detection>, <filter>, <identifier>
Example	:LXI:EVEN:INP:LAN:CONF "LAN0",1,FALL,"FILTER","DEBUG"
Initial S/W Revision	Prior to A.02.00

Restore Defaults

Provides incremental initialization of the system setting groups along with supporting a comprehensive reset of the entire instrument back to a factory default state. The menu selections are the groups of system settings and when one is selected, that particular group of system settings is reset back to their
default values.

Key Path	System				
Mode	All				
Remote Command	:SYSTem: DEFault [ALL]\|ALIGn	INPut	MISC	MODes	PON
Example	SYST:DEF				
State Saved	No				
Initial S/W Revision	Prior to A.02.00				

Restore Input/Output Defaults

Causes the group of settings and data associated with Input/Output front-panel key to be a reset to their default values. This level of Restore System Defaults does not affect any other system settings, mode settings and does not cause a mode switch. .

Confirmation is required to restore the Input/Output setting. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	:SYST:DEF INP
Initial S/W Revision	Prior to A.02.00

Restore Power On Defaults

This selection causes the Power On settings to be a reset to their default value. This level of Restore System Defaults does not affect any other system settings, mode settings and does not cause a mode switch. The Power On settings and their default values are Power On Type reset to Mode and Input/Output Defaults and Power On Application reset to whatever the factory set as its default value.

Confirmation is required to restore the factory default values. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	:SYST:DEF PON
Initial S/W Revision	Prior to A.02.00

Restore Align Defaults

This selection causes the Alignment system settings to be a reset to their default values. This does not affect any Alignment data stored in the system. This level of Restore System Defaults does not affect any other system settings, mode settings and does not cause a mode switch.

After performing this function, it may impact the auto-alignment time of the instrument until a new alignment baseline has been established.

Confirmation is required to restore the factory default values. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	:SYST:DEF ALIG
Initial S/W Revision	Prior to A.02.00

Restore Misc Defaults

This selection causes miscellaneous system settings to be reset to their default values. With this reset, you lose the GPIB address and it is reset to 18, so this should be used with caution. This level of Restore System Defaults does not affect any other system settings, mode settings and does not cause a mode
switch. This miscellaneous group contains the rest of the settings that have not been part of the other Restore System Defaults groups. The following table is a complete list of settings associated with this group:

Miscellaneous Setting	Default Value
Verbose SCPI	Off
GPIB Address	18
Auto File Name Number	000
Save Type	State
State Save To	Register 1
Screen Save To	SCREEN000.png
DISP:ENABle	ON
Full Screen	ON
SCPI Telnet	ON
SCPI Socket	ON
SICL Server	100
Display Intensity	ON
Display Backlight	TDColor
Display Theme	ON
System Annotation	MODE
The SYST:PRES:TYPE	

Confirmation is required to restore the factory default values. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	$:$ SYST:DEF MISC
Initial S/W Revision	Prior to A.02.00

Restore Mode Defaults (All Modes)

This selection resets all of the modes in the instrument back to their default state just as a Restore Mode Defaults does and it switches the instrument to the power-on mode and causes the default measurement for the power-on mode to be active. This level of Restore System Defaults does not affect any system settings, but it does affect the state of all modes and does cause a mode switch unless the instrument was already in the power-on mode.

Confirmation is required to restore the factory default values. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	:SYST:DEF MOD
Couplings	An All Mode will cause the currently running measurement to be aborted, mode switch to the power-on mode and activate the default measurement for the power-on mode.. It gets the mode to a consistent state with all of the default couplings set.
Initial S/W Revision	Prior to A.02.00

All

This is the catastrophic function that does a comprehensive reset of ALL analyzer settings to their factory default values. It resets all of the system setting groups, causes a Restore Mode Defaults for all modes in the instrument, and switches back to the power-on mode. It does not affect the User Preset file or any user saved files.

Confirmation is required to restore the factory default values. The confirmation dialog is:

Key Path	System, Restore System Defaults
Example	:SYST:DEF ALL
Couplings	An All will cause the currently running measurement to be aborted and get all modes to a consistent state, so it is unnecessary to couple any settings.
Initial S/W Revision	Prior to A.02.00

Control Panel...

Opens the Windows Control Panel. The Control Panel is used to configure certain elements of Windows that are not configured through the hardkey/softkey System menus.

The Control Panel is a separate Windows application, so to return to the analyzer once you are in the Control Panel, you may either:

Exit the Control Panel by clicking on the red X in the upper right hand corner, with a mouse

Or use Alt-Tab: press and hold the Alt $\left[\begin{array}{l}\text { Menu } \\ (\mathrm{Alt})\end{array}\right)$ key and press and release the Tab key until the Analyzer logo is showing in the window in the center of the screen, as above, then release the Alt key.

Key Path	System
Notes	No remote command for this key.
Initial S/W Revision	Prior to A.02.00

Licensing...

Opens the license explorer.
For Help on this key, select Help in the menu bar at the top of the license explorer window.

Key Path	System
Notes	No equivalent remote command for this key.
Initial S/W Revision	Prior to A.02.00

Remote Command	$:$ SYSTem:LKEY <"OptionInfo">, <"LicenseInfo">

Example	SYST:LKEY "N9073A-1FP","027253AD27F83CDA5673A9BA5F427FDA5E4F25AEB1 017638211AC9F60D9C639FE539735909C551DE0A91"
Notes	The <"OptionInfo"> contains the feature and the version. You must specify the feature but can omit the version. If you omit the version, the system regards it as the latest one, since the system knows which version is supported for each feature. The <"LicenseInfo"> contains the signature, the expiration date, and serial number for transport if transportable. You must specify the signature, but you can omit the other information. If you omit the expiration date, the system regards it as permanent. If you omit the serial number, the system regards it as non-transportable. As a result, this supports backward compatibility.
Initial S/W Revision	Prior to A.02.00

Remote Command	:SYSTem: LKEY: DELete <"OptionInfo">,<"LicenseInfo">
Example	SYST:LKEY:DEL 'N9073A-1FP","027253AD27F83CDA5673A9BA5F427FDA5E4F25AEB1 017638211AC9F60D9C639FE539735909C551DE0A91"
Notes	The <"OptionInfo"> contains the feature and the version. You must specify the feature but can omit the version. If you omit the version, the system regards it as the latest one, if more than one version is installed. The <"LicenseInfo"> contains the signature, the expiration date, and whether or not be transportable. You must specify the signature, but you can omit the other information. If you omit the expiration date, the system regards it as permanent. If you omit the transportability, the system regards it as non-transportable. As a result, this supports backward compatibility.
Initial S/W Revision	Prior to A.02.00

Remote Command	:SYSTem:LKEY:LIST?

Notes	Return Value: An <arbitrary block data> of all the installed instrument licenses. The format of each license is as follows. <Feature>,<Version>,<Signature>,<Expiration Date>,<Serial Number for Transport> Return Value Example: \#3136 N9073A-1FP,1.000,B043920A51CA N9060A-2FP,1.000,4D1D1164BE64 N9020A-508,1.000,389BC042F920 N9073A-1F1,1.000,5D71E9BA814C,13-aug-2005
	<arbitrary block data> is: \#NMMM<data> Where: N is the number of digits that describes the number of MMM characters. For example if the data was 55 bytes, N would be 2. MMM would be the ASCII representation of the number of bytes. In the previous example, N would be 55. $<$ <data> ASCII contents of the data
Initial S/W Revision	Prior to A.02.00

Remote Command	:SYSTem: LKEY? <"OptionInfo">
Example	SYST:LKEY? "N9073A-1FP"
Notes	The <"OptionInfo"> contains the feature and the version. You must specify the feature but can omit the version. If you omit the version, the system regards it as the latest one. Return Value: <"LicenseInfo"> if the license is valid, null otherwise. $<" " L i c e n s e I n f o ">~ c o n t a i n s ~ t h e ~ s i g n a t u r e, ~ t h e ~ e x p i r a t i o n ~ d a t e, ~ a n d ~ s e r i a l ~ n u m b e r ~$ if transportable. Return Value Example: "B043920A51CA"
Initial S/W Revision	Prior to A.02.00

Remote Command	:SYSTem:HID?
Notes	Return value is the host ID as a string
Initial S/W Revision	Prior to A.02.00

Security

Accesses capabilities for operating the instrument in a security controlled environment.

Key Path	System
Initial S/W Revision	A.04.00

USB

The Windows operating system can be configured to disable write access to the USB ports for users who are in a secure environment where transferring data from the instrument is prohibited. This user interface is a convenient way for the customer to disable write access to USB.

Key Path	System, Security		
Mode	All		
Scope	Mode Global		
Remote Command	:SYSTem: SECurity : USB:WPRotect [: ENABle] ON\|OFF	0	1 $:$ SYSTem: SECurity : USB :WPRotect [: ENABle]?
Example	:SYST:SEC:USB:WPR ON \quad Will set USB ports to Read-only		
Notes	When the USB ports are in Read-only mode then no data can be stored to USB, including the internal USB memory used for a back-up location for the calibration data.		
Dependencies	This key is grayed-out unless the current user has administrator privileges.		
Preset	This is unaffected by Preset or any Restore System Defaults. An Agilent Recovery will set the USB to write protect OFF		
State Saved	No		
Range	Read-Write\|Read only		
Initial S/W Revision	A.04.00		

Read-Write

Selection for allowing full read-write access to the USB ports.

Key Path	System, Security, USB
Example	:SYST:SEC:USB:WPR OFF Will set USB ports to Read-Write
Initial S/W Revision	A.04.00

Read only

Selection for disabling write access to the USB ports.

Key Path	System, Security, USB

Example	:SYST:SEC:USB:WPR ON \quad Will set USB ports to Read only
Initial S/W Revision	A.04.00

Diagnostics

The Diagnostics key in the System menu gives you access to basic diagnostic capabilities of the instrument.

Key Path	System
Initial S/W Revision	Prior to A.02.00

Show Hardware Statistics

Provides a display of various hardware statistics. The statistics include the following:

- Mechanical relay cycles
- High and Low temperature extremes
- Elapsed time that the instrument has been powered-on (odometer)

The display should appear listing the statistics, product number, serial number, and firmware revision.

The data will be updated only when the Show Hardware Statistics menu key is pressed, it will not be updated while the screen is displayed.

The tabular data should be directly printable.

Key Path	System, Diagnostics

Mode	All
Notes	The values displayed on the screen are only updated upon entry to the screen and not updated while the screen is being displayed.
Initial S/W Revision	Prior to A.02.00

SCPI for Show Hardware Statistics (Remote Commands Only)

Each of the hardware statistic items can be queriedvia SCPI.

- "Query the Mechanical Relay Cycle Count" on page 285
- "Query the Operating Temperature Extremes" on page 285
- "Query the Elapsed Time since 1st power on" on page 286

Query the Mechanical Relay Cycle Count

Returns the count of mechanical relay cycles.

Remote Command	:SYSTem:MRELay:COUNt?
Example	:SYST:MREL:COUN?
Notes	Query Only The return value is a comma separated list of the individual counts for each mechanical relay. The position of the relays in the list is: " $<$ Cal Signal $>,<$ AC/DC $>,<2 \mathrm{~dB} \# 1$ Atten $>,<2 \mathrm{~dB} \# 2$ Atten $>,<6 \mathrm{~dB}$ Atten $>,<10 \mathrm{~dB}$ Atten $>,<20 \mathrm{~dB}$ Atten $>,<30 \mathrm{~dB}$ Atten $>,<$ Fixed Atten $>,<$ Low Noise Path Switch $>,<$ Presel Bypass $>"$ Items in the list not pertaining to your particular hardware configuration will return as -999 for those items.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00, A.04.00

Query the Operating Temperature Extremes

Returns the low operating temperature extreme value. The value survives a power-cycle and is the temperature extreme encountered since the value was reset by the factory or service center.

Mode	All
Remote Command	:SYSTem:TEMPerature:LEXTreme?
Example	:SYST:TEMP:LEXT?
Notes	Value is in degrees Celsius at which the lowest operating temperature has been recorded since 1st power-up.
State Saved	No

Initial S/W Revision	Prior to A.02.00

Mode	All
Remote Command	:SYSTem: TEMPerature: HEXTreme?
Example	:SYST:TEMP:HEXT?
Notes	Value is in degrees Celsius at which the highest operating temperature has been recorded since 1st power-up.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Query the Elapsed Time since 1st power on

Returns the elapsed on-time in minutes since $1^{\text {st }}$ power-on.

Remote Command	$:$ SYSTem:PON:ETIMe?
Example	$:$ SYST:PON:ETIM?
Notes	Query Only
Initial S/W Revision	Prior to A.02.00

Advanced

Accesses advanced diagnostic capabilities performed in the factory or under instructions from repair procedures. This menu key is only visible when the logged-in user is "saservice". The first access to the Advanced Diagnostic Menu after invoking the instrument application will require an authentication, which is to enter the Service Code. Subsequent accesses to the Advanced Diagnostic Menu are unimpeded. The Authentication dialog looks like:

"OK" is the default key thus the Enter key is used to complete the entry. If invalid Service Code is entered authentication is not granted and you are provided the following dialog:

Key Path	System, Diagnostics
Notes	Password is required to access this menu.
Initial S/W Revision	Prior to A.02.00

Service

Accesses capabilities performed in the factory or under instructions from repair procedures. This menu key is only visible when the logged-in user is "advanceduser" or "saservice". The first access to the Service Menu after invoking the instrument application will require an authentication Service Code.

Key Path	System
Initial S/W Revision	Prior to A.02.00

Internet Explorer...

This key launches Microsoft Internet Explorer. A mouse and external keyboard are highly desired for using Internet Explorer. When Internet Explorer is running, close Internet Explorer to return focus to the Instrument Application (or use Alt-Tab).

Key Path	System
Mode	All
Notes	No equivalent remote command for this key.
Initial S/W Revision	A.05.01

System Remote Commands (Remote Commands Only)

The commands in this section have no front panel key equivalent

Initial S/W Revision	Prior to A.02.00

System Powerdown (Remote Command Only)

Remote Command	SYSTem: PDOWn [NORMal\|FORCe]
Notes	Shuts down the instrument in the normal way (NORMal) or forced way (FORCe). In case there is another application with modified data pending for saving, the application prompt the user. The system waits until the user responds in the normal mode. It will go off after 20 seconds of wait in the force mode and all data will be lost.

List installed Options (Remote Command Only)

Lists the installed options that pertain to the instrument (signal analyzer). .

Mode	All
Remote Command	:SYSTem:OPTions?
Example	:SYST:OPT?
Notes	The return string is a comma separated list of the installed options. For example: "503,P03,PFR" :SYSTem:OPTions? and *OPT? are the same.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Lock the Front-panel keys (Remote Command Only)

Disables the instrument keyboard to prevent local input when the instrument is controlled remotely. Annunciation showing a " K " for 'Klock" (keyboard lock) alerts the local user that the keyboard is locked. Klock is similar to the GPIB Local Lockout function; namely that no front-panel keys are active with the exception of the Power Standby key. (The instrument is allowed to be turned-off if Klock is ON.) The Klock command is used in remote control situations where Local Lockout cannot be used.

Although primary intent of Klock is to lock-out the front panel, it will lock-out externally connected keyboards through USB. Klock has no effect on externally connected pointing devices (mice).

The front panel ‘Local’ key (Cancel/Esc) has no effect if Klock is ON.

Mode	All		
Remote Command	:SYSTem:KLOCk OFF\|ON	0	1 $:$ SYSTem:KLOCk?
Example	:SYST:KLOC ON		
Notes	Keyboard lock remains in effect until turned-off or the instrument is power-cycled		
Preset	Initialized to OFF at startup, unaffected by Preset		

State Saved	No
Initial S/W Revision	Prior to A.02.00

List SCPI Commands (Remote Command Only)

Outputs a list of the valid SCPI commands for the currently selected Mode.

Remote Command	:SYSTem:HELP:HEADers?
Example	:SYST:HELP:HEAD?
Notes	The output is an IEEE Block format with each command separated with the New-Line character (hex 0x0A)
Initial S/W Revision	Prior to A.02.00

SCPI Version Query (Remote Command Only)

Returns the SCPI version number with which the instrument complies. The SCPI industry standard changes regularly. This command indicates the version used when the instrument SCPI commands were defined.

Remote Command	:SYSTem:VERSion?
Example	:SYST:VERS?
Initial S/W Revision	Prior to A.02.00

Date (Remote Command Only)

The recommended access to the Date, Time, and Time zone of the instrument is through the Windows native control (Control Panel or accessing the Task Bar). You may also access this information remotely, as shown in this command and Time (below).

Sets or queries the date in the instrument.

Mode	All
Remote Command	:SYSTem: DATE "<year>, <month>, <day>" :SYSTem: DATE?
Example	:SYST:DATE "2006,05,26"
Notes	<year> is the four digit representation of year. (for example, 2006) <month> is the two digit representation of year. (for example. 01 to 12) <day> is the two digit representation of day. (for example, 01 to 28, 29, 30, or 31) depending on the month and year
Initial S/W Revision	Prior to A.02.00

Time (Remote Command Only)

Sets or queries the time in the instrument.

Mode	All
Remote Command	:SYSTem:TIME "<hour>, <minute>,<second>" :SYSTem:TIME?
Example	:SYST:TIME "13,05,26"
Notes	<hour> is the two digit representation of the hour in 24 hour format <minute> is the two digit representation of minute <second> is the two digit representation of second
Initial S/W Revision	Prior to A.02.00

User Preset

Accesses a menu that gives you the following three choices:
User Preset - recalls a state previously saved using the Save User Preset function.
User Preset All Modes - presets all of the modes in the analyzer
Save User Preset - saves the current state for the current mode

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

User Preset

User Preset sets the state of the currently active mode back to the state that was previously saved for this mode using the Save User Preset menu key or the SCPI command, SYST: PRES:USER:SAV. It not only recalls theMode Preset settings, but it also recalls all of the mode persistent settings, and the Input/Outpit system setting that existed at the time Save User Preset was executed.

If a Save User Preset has not been done at any time, User Preset recalls the default user preset file for the currently active mode. The default user preset files are created if, at power-on, a mode detects there is no user preset file. There will never be a scenario when there is no user preset file to restore. For each mode, the default user preset state is the same state that would be saved if a Save User Preset is performed in each mode right after doing a Restore Mode Default and after a Restore Input/Output Defaults.

The User Preset function does the following:

- Aborts the currently running measurement.
- Sets the mode State to the values defined by Save User Preset.
- Makes the saved measurement for the currently running mode the active measurement.
- Brings up the saved menu for the power-on mode.
- Clears the input and output buffers.
- Sets the Status Byte to 0 .

Key Path	User Preset
Remote Command	:SYSTem:PRESet:USER
Example	$:$ SYST:PRES:USER:SAVE
	$:$ SYST:PRES:USER

Notes	:SYST:PRES:USER:SAVE is used to save the current state as the user preset state. Clears all pending OPC bits. The Status Byte is set to 0. Pressing the User Preset front-panel key while already in the User Preset menu will cause the User Preset to get executed
Couplings	A user preset will cause the currently running measurement to be aborted and cause the saved measurement to be active. Recalling a User Preset file has the same issues that recalling a Save State file has. Some settings may need to be limited and therefore re-coupled, since the capabilities of the mode may have changes when the User Preset file was last saved.
Initial S/W Revision	Prior to A.02.00

User Preset All Modes

Recalls all of the User Preset files for each mode, switches to the power-on mode, and activates the saved measurement from the power-on mode User Preset file.

NOTE
 When the instrument is secured, all of the user preset files are converted back to their default user preset files.

The User Preset function does the following:

- Aborts the currently running measurement.
- Switches the Mode to the power-on mode.
- Restores the User Preset files for each mode.
- Makes the saved measurement for the power-on mode the active measurement.
- Brings up the saved menu for the power-on mode.
- Clears the input and output buffers.
- Sets the Status Byte to 0 .

Key Path	User Preset
Remote Command	:SYSTem:PRESet :USER:ALL
Example	:SYST:PRES:USER:SAVE $:$ SYST:PRES:USER:ALL
Notes	Clears all pending OPC bits. The Status Byte is set to 0. $: S Y S T: P R E S: U S E R: S A V E ~ i s ~ u s e d ~ t o ~ s a v e ~ t h e ~ c u r r e n t ~ s t a t e ~ a s ~ t h e ~ u s e r ~ p r e s e t ~$ state.

Couplings	A user preset will cause the currently running measurement to be aborted, cause a mode switch to the power-on mode, and cause the saved measurement to be active in the power-on mode. Recalling a User Preset file has the same issues that recalling a Save State file has. Some settings may need to be limited and therefore re-coupled, since the capabilities of the mode may have changes when the User Preset file was last saved.
Initial S/W Revision	Prior to A.02.00

Save User Preset

Saves the currently active mode and its State. You can recall this User Preset file by pressing the User Preset menu key or sending the SYST:PRES:USER remote command. This same state is also saved by the Save State function.

Key Path	User Preset
Remote Command	:SYSTem:PRESet:USER:SAVE
Example	:SYST:PRES:USER:SAVE
Notes	:SYST:PRES:SAVE creates the same file as if the user requested a *SAV or a MMEM: STOR:STAT, except User Preset Save does not allow the user to specify the filename or the location of the file.
Initial S/W Revision	Prior to A.02.00

System Functions
User Preset

6
 Vector Analysis Measurement

The Vector Analysis measurement is accessed from the Meas hardkey.The Vector Analysis measurement bases its results on a set of periodic time samples of a channel. The channel is defined by a combined bank of hardware and DSP filters whose overall frequency response has a flat top and steep rolloff at the band edges. The time record is operated upon by a number of mathematical functions, including the FFT to produce spectrum results and statistical functions, including complementary cumulative distribution function (CCDF). Any of these results may be displayed in a flexible layout, with the Y data formatted in a variety of ways, and results scaled as desired. Many of these analysis results are also available in optional VSA demodulation measurements.

This topic contains the following section:
"Measurement Commands for Vector Analysis Measurement" on page 295

Measurement Commands for Vector Analysis Measurement

The Vector Analysis measurement is invoked remotely by the following:
: CONFigure:VECTor
: CONFigure:VECTor: NDEFault
Remote results may be obtained using the following:
:FETCh:VECTor[n]?
Only table results may be obtained using FETCh. The tables available for the Vector Analysis measurement are ACP and OccBW tables, which are available to any VSA measurement.
:INITiate:VECTor
: READ : VECTor [n]?
NOTE: The MEASure? command is not supported by the Vector Analysis measurement.

Key Path: Meas
Mode: VSA, IDEN
Instrument S/W Revision: Prior to A.02.00

AMPTD Y Scale

This key accesses a menu that allows you to select amplitude or Y-scale parameters for the current measurement.

For more information see "AMPTD Y Scale (Amplitude)" on page 899.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Auto Couple

The Auto Couple key forces all Auto / Man functions into Auto. These include the following functions. Other measurement specific functions will be listed in their individual PDs. Note that this key does not invoke the Auto tune function, nor does it cause any Y autoscaling or Input Auto ranging.

- Frequency Step
- X Scale
- Y Axis Unit Preference
- Frequency Points

Key Path:

Mode:

Instrument S/W Revision:

Front Panel

VSA, IDEN
Prior to A. 02.00

BW

The BW key provides access to a menu that allows you to set available resolution bandwidth parameters for the spectrum measurement result, as well as the shape of the resolution bandwidth filter (controlled by the FFT windowing function).

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

FREQ Channel

Frequency parameters for any vector measurement consist of 2 pairs of properties: Center Frequency and Span or Start Frequency and Stop Frequency. These behave much as they do in any other application, but there is the additional constraint that the span is limited to much less than the center frequency range.
If you change center frequency the start and stop frequencies change by the same amount.
If you change span, start frequency and stop frequency are changed by $1 / 2$ the span change.
If you change start frequency, stop frequency remains fixed and span and center frequency are refigured accordingly. Changing stop frequency has similar behavior.

Key Path:
Mode:
Instrument S/W Revision:

Front Panel

VSA, IDEN
Prior to A. 02.00

Marker

The Marker key accesses the Marker menu. A marker can be placed on a trace to allow the value of the trace data at the marker position to be determined precisely. Markers may also be used in pairs to read the difference (or delta) between two data points. They can also be used to make power calculation over a band of frequencies or a time interval. See Marker Functions below for more details.

The functions in this menu include a 1-of-N selection of the control mode Normal, Delta, Fixed, or Off for the selected marker. The control mode is described below.

Pressing Marker always makes the selected maker's X position the active function.
If the currently selected marker is Off, pressing Marker sets it to Normal mode and places it at the center of the screen on the currently selected trace.

As a convenience, if there are no markers displayed on the current trace, pressing the marker hardkey (whenever the marker menu is already showing) selects the lowest numbered marker that is currently off and turns it on in normal mode on the selected trace. In other words, pressing the Marker hardkey twice will always turn on a marker on the selected trace if none was turned on before.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Marker Function

This key provides access to a menu that allows you to select marker functions for the current measurement.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Marker To

This key provides access to a menu that allows you to select where to move the marker.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Meas Setup

This key accesses a menu of keys that select measurement functions for the current VSA Measurement.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Output

This key provides access to a menu that allows you to select input/output parameters for the measurement data.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Peak Search

This key initiates an immediate search for the peak level signal and places a marker at that data point.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Source

There are no selectable Source parameters for this measurement.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

SPAN X Scale

This key provides access to a menu that allows you to select span or X-scale parameters for the current measurement.

Key Path:
Mode:
Instrument S/W Revision:

Front Panel
VSA, IDEN
Prior to A.02.00

Sweep/Control

This key accesses a menu that allows you to select Sweep/Control parameters for all VSA measurements.

Key Path:	Front Panel
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Trace/Detector

This section details the trace results accessible via the data key and also via SCPI, many of which are available in other measurements as well.

For more information see "Trace/Detector" on page 967.

Key Path:
Mode:
Instrument S/W Revision:

Front Panel
VSA, IDEN
Prior to A. 02.00

Data

This key provides a menu of trace data choices for the selected trace. For the SCPI command, and other details, see Trace/Detector, Data

The following trace data results are available:

Trace data key name	SCPI string form	Description
Spectrum	"Spectrum1"	Averaged result of successive Inst Spectrum results (If RMS or Max averaging is on). Otherwise, FFT of current windowed Main (or Gate) Time
Inst Spectrum	"Inst Spec1"	Instantaneous Spectrum is the FFT of the current windowed Main (or Gate) Time. It is instantaneous in the sense that it isn't rms averaged, but it may included time-averaged data.
Main Time	"Main Time1"	Same as Inst Main Time unless Time averaging is on, in which case it is the averaged result of successive Inst Main Time results. If Time Gating is on, Main Time is the source to which the Gate is applied.
Inst Main Time	"Inst Main Time1"	Instantaneous Main Time is the current corrected, resampled, time record.
Gate Time	"Gate Time1"	Gate Time replaces Main Time as input to results if gating is on.
Raw Main Time	"Raw Main Time1"	Time record as it comes from the hardware, before software resampling or corrections
Power Spectral Density (PSD)	"PSD1"	Power spectrum divided by ResBW
CCDF	"CCDF1"	Complementary Cumulative Distribution Function of all time date since last measurement restart
CDF	Cumulative Distribution Function of all time date since last measurement restart	

Trace data key name	SCPI string form	Description
PDF	"PDF1"	Probability Distribution Function of all time date since last measurement restart
Auto Correlation	"Auto Correl1"	Autocorrelation function of the current Main (or Gate) Time result
OBW Summary Trace 1	"OBW Summary Trc1"	Table of Occupied Bandwidth results if OccBW is enabled on Trace 1 and Trace 1 has Spectrum or PSD data. Similar summaries are available for all traces.
ACP Summary Trace 1	"ACP Summary Trc1"	Table of Adjacent Channel Power results if ACP is enabled on Trace 1 and Trace 1 has Spectrum or PSD data. Similar summaries are available for all traces.
No Data	"No Data"	An empty trace

For more information see "Data" on page 969.

Key Path:
Mode:
Instrument S/W Revision:

Trace/Detector
VSA, IDEN
Prior to A. 02.00

Trigger

Triggering is used to determine when a measurement should start taking data. There are several available trigger sources. For each trigger source, there are associated setup parameters. Typically, a trigger event is generated when a signal (or a characteristic of the signal) crosses a defined trigger level (or threshold) on a rising or falling slope. The measurement begins at a specified time delay from the trigger point. The delay may be negative, allowing pretrigger data to be taken. Each trigger source has associated its own trigger level, slope, and delay settings.

Key Path: Front Panel
Mode:
Instrument S/W Revision:

VSA, IDEN
Prior to A.02.00

View/Display

The View/Display key provides access to a menu that enable you to select display parameters for the current measurement.

For more information on other View/Display functions (Display and Layout) see Analyzer Setup, View/Display

View Presets affect the trace layout, trace data assignment, scaling and formatting but do not affect hardware measurement setup.

Key Path:	Front Panel
Mode:	VSA, IDEN
Remote Command:	$:$ DISPlay:VECTor:VIEW:PRESet SPECtrum\|STATistics
Example:	:DISP:VECT:VIEW:PRES SPEC
Instrument S/W Revision:	Prior to A.02.00

Preset View: Spectrum/Time

This preset uses the Stack 2 layout style (see View/Display, Layout) with Spectrum in trace 1 and Main Time in trace 2

Key Path:	View/Display
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Preset View: Statistics

This preset uses the Stack 2 layout style (see View/Display, Layout) with the CCDF in trace 1 and Main Time in trace 2.

Key Path:	View/Display
Mode:	VSA, IDEN
Instrument S/W Revision:	Prior to A.02.00

Vector Analysis Measurement View/Display

The monitor spectrum measurement is used as a quick, convenient means of looking at the entire spectrum. While the look and feel are similar to the Spectrum Analyzer mode, the functionality is greatly reduced for easy operation. The main purpose of the measurement is to show the spectrum. The default span should cover an appropriate frequency range of the application. For measurement results and views, see "View/Display" on page 361.

This topic contains the following sections:
"Measurement Commands for Monitor Spectrum" on page 315
"Remote Command Results for Monitor Spectrum Measurement" on page 315

Measurement Commands for Monitor Spectrum

The following commands can be used to retrieve the measurement results:
:CONFigure:MONitor
:CONFigure:MONitor:NDEFault
:INITiate:MONitor
:FETCh:MONitor[n]?
:READ:MONitor[n]?
:MEASure:MONitor[n]?
For more measurement related commands, see the SENSe subsystem, and the section "Remote Measurement Functions" on page 679.

Remote Command Results for Monitor Spectrum Measurement

\mathbf{n}	Results Returned
$\mathrm{n}=1$ (or not specified)	Returns trace1 data with comma separated floating numbers
$\mathrm{n}=2$	Returns trace2 data with comma separated floating numbers
$\mathrm{n}=3$	Returns trace3 data with comma separated floating numbers

Key Path	Meas
Initial S/W Revision	Prior to A.02.00

AMPTD Y Scale

Accesses a menu of functions that enable you to set the vertical scale parameters. These functions control how data on the vertical (Y) axis is displayed and control instrument settings that affect the vertical axis.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Ref Value

Sets the absolute power reference value. However, since the Auto Scaling is defaulted to On, this value is automatically determined by the measurement result. When you set a value manually, Auto Scaling automatically changes to Off.

Key Path	AMPTD Y Scale
Mode	All except SA and BASIC
Remote Command	:DISPlay:MONitor :VIEW[1] :WINDow[1] :TRACe:Y[:SCALe] $:$ RLEVel <real> :DISPlay:MONitor :VIEW[1] :WINDow[1] :TRACe: Y[:SCALe] $:$ RLEVel?
Example	DISP:MON:VIEW:WIND:TRAC:Y:RLEV 2.0 DISP:MON:VIEW:WIND:TRAC:Y:RLEV?
Couplings	When the Auto Scaling is On, this value is automatically determined by the measurement result. When you set a value manually, Auto Scaling automatically changes to Off.
Preset	10.00 dBm
State Saved	Saved in instrument state.
Min	-250.00 dBm
Max	250.00 dBm
Initial S/W Revision	Prior to A.02.00

Attenuation

Accesses a menu of functions that enable you to change the attenuation settings.
See AMPTD Y Scale, "Attenuation" on page 510 in the "Common Measurement Functions" section for more information.

Key Path	AMPTD Y Scale

Initial S/W Revision	Prior to A.02.00

Scale/Div

Sets the logarithmic units per vertical graticule division on the display. However, since the Auto Scaling is defaulted to On, this value is automatically determined by the measurement result. When you set a value manually, Auto Scaling automatically changes to Off.

Key Path	AMPTD Y Scale
Mode	All except SA and BASIC
Remote Command	:DISPlay:MONitor:VIEW[1] :WINDow[1] :TRACe: Y[:SCALe] :PDIVision <rel_ampl> :DISPlay:MONitor:VIEW[1] :WINDow[1] :TRACe: Y[: SCALe] :PDIVision?
Example	DISP:MON:VIEW:WIND:TRAC:Y:PDIV 5.0 dB DISP:MON:VIEW:WIND:TRAC:Y:PDIV?
Couplings	When the Auto Scaling is On, this value is automatically determined by the measurement result. When you set a value manually, Auto Scaling automatically changes to Off.
Preset	10.00 dB
State Saved	Saved in instrument state.
Min	0.10 dB
Max	20.00 dB
Initial S/W Revision	Prior to A.02.00

Presel Center

See AMPTD Y Scale, "Presel Center" on page 525 in the "Common Measurement Functions" section for more information.

Presel Adjust

See AMPTD Y Scale, "Preselector Adjust" on page 527 in the "Common Measurement Functions" section for more information.

$\mu \mathbf{W}$ Path Control

The $\boldsymbol{\mu} \mathbf{W}$ Path Control functions include the $\boldsymbol{\mu} \mathbf{W}$ Preselector Bypass (Option MPB) and Low Noise Path (Option LNP) controls in the High Band path circuits.

See μ " μ W Path Control " on page 534 under AMPTD Y Scale in the "Common Measurement Functions" section for more information.

Internal Preamp

Accesses a menu of functions that enable you to control the internal preamplifiers.
See AMPTD Y Scale, "Internal Preamp" on page 539 in the "Common Measurement Functions" section for more information.

Key Path	AMPTD Y Scale
Initial S/W Revision	Prior to A.02.00

Ref Position

Positions the reference level at the top, center or bottom of the Y Scale display. Changing the reference position does not change the reference level value.

Key Path	AMPTD Y Scale	
Mode	All except SA and BASIC	
Remote Command	:DISPlay:MONitor :VIEW[1] :WINDow[1] :TRACe:Y[:SCALe] $:$ RPOSition TOP\|CENTer	BOTTom :DISPlay:MONitor :VIEW[1] :WINDow[1]:TRACe:Y[:SCALe] $:$ RPOSition?
Example	DISP:MON:VIEW:WIND:TRAC:Y:RPOS CENT DISP:MON:VIEW:WIND:TRAC:Y:RPOS?	
Preset	TOP	
State Saved	Saved in instrument state.	
Range	Top\|Ctr	Bot
Initial S/W Revision	Prior to A.02.00	

Auto Scaling

Toggles the Auto Scaling function between On and Off.

Key Path	AMPTD Y Scale
Mode	All except SA and BASIC
Remote Command	:DISPlay:MONitor:VIEW[1] :WINDow[1]:TRACe: Y[:SCALe] :COUPle $0\|1\| O F F \mid O N$:DISPlay:MONitor:VIEW[1] :WINDow[1] :TRACe:Y[:SCALe] :COUPle?
Example	DISP:MON:VIEW:WIND:TRAC:Y:COUP ON DISP:MON:VIEW:WIND:TRAC:Y:COUP?

Couplings	When Auto Scaling is On, and the Restart front-panel key is pressed, this function automatically determines the scale per division and reference values based on the measurement results. When you set a value to either Scale/Div or Ref Value manually, Auto Scaling automatically changes to Off.
Preset	ON
State Saved	Saved in instrument state.
Range	On \mid Off
Initial S/W Revision	Prior to A.02.00

Auto Couple

See "Auto Couple" on page 507 in the section "Common Measurement Functions" for more information.

BW

Accesses a menu that enables you to specify the resolution bandwidth functions that control the bandwidth and filter selection.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Res BW

Sets the resolution bandwidth for the current measurement. If an unavailable bandwidth is entered with the numeric keypad, the closest available bandwidth is selected.

Key Path	BW		
Mode	All except SA and BASIC		
Remote Command	[:SENSe]:MONitor:BANDwidth[:RESolution] <freq> [:SENSe]:MONitor:BANDwidth[:RESolution]? [:SENSe]:MONitor:BANDwidth[:RESolution]:AUTO OFF\|ON	0	1 [:SENSe]:MONitor:BANDwidth[:RESolution]:AUTO?
Example	MON:BAND 2.4 MHz MON:BAND? MON:BAND:AUTO ON MON:BAND:AUTO?		

Preset	WCDMA: Automatically calculated WIMAX OFDMA: 100kHz C2K: Automatically calculated BLUETOOTH: Automatically calculated PN: Automatically calculated GSM/EDGE: Automatically calculated TD-SCDMA: Automatically calculated 1xEVDO: 30kHz DVB-T/H: 3.9 kHz DTMB (CTTB): 3.9 kHz ISDB-T: 3.9 kHz CMMB: 3.9 kHz LTE: 100 kHz LTETDD: 100 kHz WCDMA: ON WIMAX: OFF C2K: ON BLUETOOTH: ON PN: ON GSM/EDGE: ON TD-SCDMA: ON 1xEVDO: ON DVB-T/H: OFF DTMB (CTTB): OFF ISDB-T: OFF CMMB: OFF LTE:OFF LTETDD: OFF
State Saved	Saved in instrument state.
Min	1.0 Hz
Max	8.0 MHz
Backwards Compatibility SCPI	[:SENSe]:MONitor:BWIDth[:RESolution]
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Modified at S/W Revision	A.03.00

Video BW

Changes the analyzer post-detection filter.

Key Path	BW		
Mode	All except SA and BASIC		
Remote Command	[:SENSe]:MONitor:BANDwidth:VIDeo <bandwidth> [:SENSe]:MONitor:BANDwidth:VIDeo? [:SENSe]:MONitor:BANDwidth:VIDeo:AUTO ON\|OFF	1	0 [:SENSe]:MONitor:BANDwidth:VIDeo:AUTO?
Example	MON:BAND:VID 10 MHz MON:BAND:VID? MON:BAND:VID:AUTO OFF MON:BAND:VID:AUTO?		

Preset	WCDMA: Automatically calculated WIMAX OFDMA: 1 MHz C2K: Automatically calculated BLUETOOTH: Automatically calculated PN: Automatically calculated GSM/EDGE: Automatically calculated TD-SCDMA: Automatically calculated 1xEVDO: 300kHz DVB-T/H: 39kHz DTMB (CTTB): 39 kHz ISDB-T: 39kHz CMMB: 39 kHz LTE: 1 MHz LTETDD: 1 MHz WCDMA: ON WIMAX: OFF C2K: ON BLUETOOTH: ON PN: ON GSM/EDGE: ON TD-SCDMA: ON 1xEVDO: ON DVB-T/H: OFF DTMB (CTTB): OFF ISDB-T: OFF CMMB: OFF LTE:OFF LTETDD:OFF
State Saved	Saved in instrument state.
Min	1 Hz
Max	50 MHz
Backwards Compatibility SCPI	[:SENSe]:MONitor:BWIDth:VIDeo
Initial S/W Revision	Prior to A. 02.00
Modified at S/W Revision	A.02.00

Modified at S/W Revision	A. 03.00

VBW:3dB RBW

Selects the ratio between the video bandwidth and the equivalent 3 dB resolution bandwidth to be used for setting the VBW when VBW is in Auto.

Key Path	BW		
Mode	All except SA and BASIC		
Remote Command	[:SENSe]:MONitor:BANDwidth:VIDeo:RATio <real> [:SENSe]:MONitor:BANDwidth:VIDeo:RATio? [:SENSe]:MONitor:BANDwidth:VIDeo:RATio:AUTO OFF\|ON	0	1 [:SENSe]:MONitor:BANDwidth:VIDeo:RATio:AUTO?
Example	MON:BAND:VID:RAT 2 MON:BAND:VID:RAT? MON:BAND:VID:RAT:AUTO 0 MON:BAND:VID:RAT:AUTO?		
Preset	1		
State Saved	Saved in instrument state.		
Min	0.00001		
Max	3000000		
Backwards Compatibility SCPI	[:SENSe]:MONitor:BWIDth:VIDeo:RATio		
Initial S/W Revision	Prior to A.02.00		

Span:3dB RBW

Selects the ratio between span and resolution bandwidth.
The default setting is Auto with a Span:3 dB RBW ratio of 106:1. You can manually change this ratio by pressing the key, entering a new value, and pressing Enter.

Key Path	BW
Mode	All except SA and BASIC

| Remote Command | [:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio <integer>
 [:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio?
 [:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio:AUTO OFF\|ON|0|1
 [:SENSe]:MONitor:FREQuency:SPAN:BANDwidth[:RESolution] :RATio:AUTO? |
| :---: | :---: |
| Example | MON:FREQ:SPAN:BAND:RAT 200 MON:FREQ:SPAN:BAND:RAT? MON:FREQ:SPAN:BAND:RAT:AUTO ON MON:FREQ:SPAN:BAND:RAT:AUTO? |
| Preset | $\begin{aligned} & 106 \\ & \text { ON } \end{aligned}$ |
| State Saved | Saved in instrument state. |
| Min | 2 |
| Max | 10000 |
| Backwards Compatibility SCPI | [:SENSe]:MONitor:FREQuency:SPAN:BWIDth[:RESolution]:RATio |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.04.00 |

Cont

See "Cont (Continuous Measurement/Sweep)" on page 543 in the section "Common Measurement Functions" for more information.

FREQ Channel

See "Frequency Channel (FREQ Channel)" on page 557 in the section "Common Measurement Functions" for more information.

Input/Output

See "Input/Output" on page 559 in the section "Common Measurement Functions" for more information.

Marker

Accesses a menu that enables you to select, set up and control the markers for the current measurement. See the "Marker Functions" section for more information

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Select Marker

Displays 12 markers available for selection.

Key Path	Marker
Initial S/W Revision	Prior to A.02.00

Marker Type

Sets the marker control mode to Normal, Delta or Off. If the selected marker is Off, pressing Marker sets it to Normal and places a single marker at the center of the display. At the same time, Marker X Axis Value appears on the Active Function area.

Key Path	Marker
Mode	All except SA and BASIC
Remote Command	:CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:MODE POSition \mid DELTa \mid OFF :CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:MODE?
Example	CALC:MON:MARK:MODE POS CALC:MON:MARK:MODE?
Notes	If the selected marker is Off, pressing Marker sets it to Normal and places it at the center of the screen on the trace determined by the Marker Trace rules. At the same time, Marker X Axis Value appears on the Active Function area. Default Active Function: the active function for the selected marker's current control mode. If the current control mode is Off, there is no active function and the active function is turned off. Active Function Display: the marker X axis value entered in the active function area displays the marker value to its full entered precision.
Preset	OFF
State Saved	Saved in instrument state.

| Range | Normal\|Delta|Off |
| :--- | :--- |
| Initial S/W Revision | Prior to A.02.00 |

Marker X Axis Value (Remote Command only)

Sets the marker X Axis value in the current marker X Axis Scale unit. It has no effect if the control mode is Off, but is the SCPI equivalent of entering an X value if the control mode is Normal or Delta.

Mode	All except SA and BASIC
Remote Command	:CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $: X$ <freq> :CALCulate : MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $: X ?$
Example	CALC:MON:MARK3:X 0 CALC:MON:MARK3:X?
Notes	If no suffix is sent, uses the fundamental units for the current marker X Axis Scale. If a suffix is sent that does not match the current marker X Axis Scale unit, an error "Invalid suffix" is generated. The query returns the marker's absolute X Axis value if the control mode is Normal, or the offset from the marker's reference marker if the control mode is Delta. The query is returned in the fundamental units for the current marker X Axis scale: Hz for Frequency and Inverse Time, seconds for Period and Time. If the marker is Off the response is not a number.
Preset	After a preset, all markers are turned OFF, so Marker X Axis Value query returns a not a number (NAN).
State Saved	No
Min	$-9.9 E+37$
Max	$9.9 E+37$
Initial S/W Revision	Prior to A.02.00

Marker X Axis Position (Remote Command only)

Sets the marker X position in trace points. It has no effect if the control mode is Off, but is the SCPI equivalent of entering a value if the control mode is Normal or Delta - except in trace points rather than X Axis Scale units. The entered value is immediately translated into the current X Axis Scale units for setting the value of the marker.

Mode	All except SA and BASIC										
Remote Command	$:$ CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$										
	:X:POSition <real>										
	:CALCulate:MONitor :MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12
	:X:POSition?										

Example	CALC:MON:MARK:X:POS 0 CALC:MON:MARK:X:POS?
Notes	The query returns the marker's absolute X Axis value in trace points if the control mode is Normal, or the offset from the marker's reference marker in trace points if the control mode is Delta. The value is returned as a real number, not an integer, corresponding to the translation from X Axis Scale units to trace points. If the marker is Off the response is not a number.
Preset	After a preset, all markers are turned OFF, so Marker X Axis Value query returns a not a number (NAN).
State Saved	No
Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00

Marker Y Axis Value (Remote Command only)

Returns the marker Y Axis value in the current marker.

Mode	All except SA and BASIC										
Remote Command	:CALCulate : MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $: Y ?$										
Example	CALC:MON:MARK11:Y?										
Preset	Result dependant on markers setup and signal source										
Backwards Compatibility SCPI	:CALCulate:MONitor:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12:FUNCtion:RESult $?$
Initial S/W Revision	Prior to A.02.00										

Properties

Accesses a menu that enables you to select the active marker, the reference marker and the trace for the current measurement.

Key Path	Marker
Initial S/W Revision	Prior to A.02.00

Select Marker

Displays 12 markers available for selection.

Key Path	Marker
Initial S/W Revision	Prior to A.02.00

Relative To

Selects the desired marker. The selected marker is relative to its reference marker

Key Path	Marker, Properties
Mode	All except SA and BASIC
Remote Command	:CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:REFerence <integer :CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:REFerence?
Example	CALC:MON:MARK:REF 1 CALC:MON:MARK:REF?
Notes	A marker cannot be relative to itself so that choice is grayed out, and if sent from SCPI generates error -221: "Settings conflict; marker cannot be relative to itself." When queried a single value is returned (the specified marker number's relative marker).
Preset	$2\|3\| 4\|5\| 6\|7\| 8\|9\| 10\|11\| 12 \mid 1$
State Saved	Saved in instrument state.
Min	1
Max	12
Initial S/W Revision	Prior to A.02.00

Marker Trace

Assigns the specified marker to the designated trace.

Key Path	Marker, Properties
Mode	All except SA and BASIC
Remote Command	:CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:TRACe <integer> :CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:TRACe?
Example	CALC:MON:MARK:TRAC 1 CALC:MON:MARK:TRAC?
Preset	1
State Saved	Saved in instrument state.
Min	1
Max	3

Initial S/W Revision	Prior to A.02.00

Couple Markers

When this function is true, moving any marker causes an equal X Axis movement of every other marker which is not Off. By "equal X Axis movement" we mean that we preserve the difference between each marker's X Axis value (in the fundamental x -axis units of the trace that marker is on) and the X Axis value of the marker being moved (in the same fundamental x -axis units).

Key Path	Marker		
Mode	All except SA and BASIC		
Remote Command	:CALCulate:MONitor :MARKer :COUPle[:STATe] ON\|OFF	1	0 :CALCulate:MONitor :MARKer :COUPle[:STATe]?
Example	CALC:MON:MARK:COUP ON CALC:MON:MARK:COUP?		
Preset	OFF		
State Saved	Saved in instrument state.		
Range	On\|Off		
Initial S/W Revision	Prior to A.02.00		

All Markers Off

Turns off all markers on the current measurement.

Key Path	Marker
Mode	All except SA and BASIC
Remote Command	:CALCulate:MONitor :MARKer :AOFF
Example	CALC:MON:MARK:AOFF
Initial S/W Revision	Prior to A.02.00

Marker Function

Accesses special marker functions such as marker noise, and power in a specified bandwidth or time interval.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Select Marker

Selects one of the 12 available markers.

Key Path	Marker Function
Initial S/W Revision	Prior to A.02.00

Marker Function Type

Sets the marker control function type to, Marker Noise, Band/Interval Power, Band Interval Density, or Marker Function Off.

Key Path	Marker Function		
Mode	All except SA and BASIC		
Remote Command	:CALCulate: MONitor:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion NOISe \mid BPOWer \mid BDENsity $\mid 0 F F$:CALCulate: MONitor:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion?		
Example	CALC:MON:MARK: FUNC NOIS CALC:MON:MARK: FUNC?		
Preset	OFF		
State Saved	Saved in instrument state.		
Range	Marker Noise\|Band/Interval Power	Band Interval Density	Marker Function Off
Initial S/W Revision	Prior to A.02.00		

Band Adjust

Accesses a menu that enables you to set the frequency span width and the left and right edge, or time values, for the band or interval of the selected marker.

Key Path	Marker Function

Initial S/W Revision	Prior to A.02.00

Band/Interval Span for Frequency Domain

Sets the width of the frequency span for the selected marker.

Key Path	Marker Function
Mode	All except SA and BASIC
Remote Command	:CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion:BAND:SPAN <freq> :CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion:BAND:SPAN?
Example	CALC: MON: MARK12: FUNC: BAND: SPAN 20 MHz CALC:MON:MARK12:FUNC:BAND:SPAN?
Couplings	Changing the Band/Interval Span necessarily changes the Band/Interval Left and Band/Interval Right values.
Preset	Depends on X axis range of selected Trace.
State Saved	Saved in instrument state.
Min	$-9.9 E+37$
Max	$9.9 E+37$
Initial S/W Revision	Prior to A.02.00

Band/Interval Left for Frequency Domain

Sets the left edge frequency or time value for the band of the selected marker.

Key Path	Marker Function
Mode	All except SA and BASIC
Remote Command	:CALCulate: MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion:BAND:LEFT <freq> :CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$ $:$ FUNCtion:BAND:LEFT?
Example	CALC:MON: MARK12: FUNC: BAND:LEFT 20 GHz CALC:MON:MARK12:FUNC:BAND:LEFT?
Couplings	Changing the Band/Interval Left necessarily changes the Band/Interval Span and Band/Interval Right values.
Preset	Depends on X axis range of selected Trace.
State Saved	Saved in instrument state.
Min	$-9.9 E+37$

Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00

Band/Interval Right for Frequency Domain

Sets the right edge frequency or time value for the band of the selected marker.

Key Path	Marker Function
Mode	All except SA and BASIC
Remote Command	:CALCulate:MONitor :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:FUNCtion:BAND:RIGHt <freq> :CALCulate:MONitor :MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:FUNCtion:BAND:RIGHt?
Example	CALC:MON:MARK12:FUNC:BAND:RIGH 20 GHz CALC:MON:MARK12:FUNC:BAND:RIGH?
Couplings	Changing the Band/Interval Right necessarily changes the Band/Interval Left and Band/Interval Span values
Preset	Depends on X axis range of selected Trace.
State Saved	Saved in instrument state.
Min	$-9.9 E+37$
Max	$9.9 E+37$
Initial S/W Revision	Prior to A.02.00

Marker To

There is no 'Marker To' functionality supported in Monitor Spectrum. The front-panel key displays a blank menu key when pressed.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Meas

See "Meas" on page 679 in the section "Common Measurement Functions" for more information.

Meas Setup

Displays the setup menu for the current measurement. The measurement setup parameters include the number of measurement averages used to calculate the measurement result and the averaging mode. The setup menu also includes the option to reset the measurement settings to their factory defaults.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Avg/Hold Num

Specifies the number of measurement averages used when calculating the measurement result. The average is displayed at the end of each sweep.

After the specified number of average counts, the averaging mode (terminal control) setting determines the averaging action.

Key Path	Meas Setup		
Mode	All except SA and BASIC		
Remote Command	[:SENSe]:MONitor:AVERage:COUNt <integer> [:SENSe]:MONitor:AVERage:COUNt? [:SENSe]:MONitor:AVERage[:STATe] OFF\|ON	0	1 [:SENSe]:MONitor:AVERage[:STATe]?
Example	MON:AVER:COUN 25 MON:AVER:COUN? MON:AVER ON MON:AVER?		
Preset	10		
State Saved	Saved in instrument state.		
Min	1		
Max	1000		
Initial S/W Revision	Prior to A.02.00		

Avg Mode

Toggles the average mode between exponential (Exp) and Repeat.
Exp- continues measurement averaging, using the specified number of averages to compute each averaged value. The average is displayed at the end of each sweep.

Repeat- causes the measurement to reset the average counter each time the specified number of averages is reached.

Key Path	Meas Setup
Mode	All except SA and BASIC
Remote Command	[:SENSe]:MONitor:AVERage:TCONtrol EXPonential\|REPeat [:SENSe]: MONitor :AVERage:TCONtrol?
Example	MON:AVER:TCON EXP MON:AVER:TCON?
Preset	EXPonential
State Saved	Saved in instrument state.
Range	ExpRepeat
Initial S/W Revision	Prior to A.02.00

Meas Preset

Restores all the measurement parameters to their default values.

Key Path	Meas Setup
Mode	All except SA and BASIC
Remote Command	:CONFigure: MONitor
Example	CONF:MON
Initial S/W Revision	Prior to A.02.00

Monitor Spectrum Measurement
Mode

Mode

See "Mode" on page 741 in the section "Common Measurement Functions" for more information.

Mode Setup

See "Mode Setup" on page 761 in the section "Common Measurement Functions" for more information.

Peak Search

There is no 'Peak Search' functionality supported in Monitor Spectrum. The front-panel key displays a blank menu key when pressed.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Recall

See "Recall" on page 152 in the section "Common Measurement Functions" for more information.

Monitor Spectrum Measurement
Restart

Restart

See "Restart" on page 787 in the section "Common Measurement Functions" for more information.

See "Save" on page 169 in the section "Common Measurement Functions" for more information.

Single

Single

See "Single (Single Measurement/Sweep)" on page 793 in the section "Common Measurement Functions" for more information.

Source

See "Source" on page 795 in the section "Common Measurement Functions" for more information.

Span X Scale

Accesses a menu of functions that enable you to set the horizontal scale parameters.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Span

Changes the frequency range symmetrically about the center frequency.

Key Path	Span X Scale
Mode	All except SA, BASIC
Remote Command	[:SENSe]:MONitor:FREQuency:SPAN <freq> [:SENSe]:MONitor:FREQuency:SPAN?
Example	MON:FREQ:SPAN 1 MHz MON:FREQ:SPAN?
Couplings	Changing the span causes the resolution bandwidth to change automatically, and affects data acquisition time.
Preset	WCDMA: 10.0 MHz WIMAX OFDMA: 50.0 MHz C2K: 2.5 MHz PN: 1.0 MHz GSM/EDGE: 1.0 MHz TD-SCDMA: 3.2 MHz 1xEVDO: 2.0 MHz DVB-T/H: 10.0 MHz DTMB (CTTB): 10.0 MHz ISDB-T: 10.0 MHz CMMB: 10.0 MHz LTE: 50 MHz LTETDD: 50 MHz IDEN: See the table below
State Saved	Saved in instrument state.
Min	10 Hz

Max	Hardware Dependent:
	Option $503=3.7 \mathrm{GHz}$
	Option $507=7.1 \mathrm{GHz}$
	Option $508=8.5 \mathrm{GHz}$
Option $513=13.8 \mathrm{GHz}$	
Option $526=27.0 \mathrm{GHz}$	
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00
Modified at S/W Revision	A.03.00

IDEN Mode Span Preset for Monitor Spectrum

iDEN Slot Format	WiDEN Slot Format 25kHz	WiDEN Slot Format 50kHz	WiDEN Slot Format 75kHz	WiDEN Slot Format 100 kHz	WiDEN Slot Format 50kHz Out
60 kHz	60 kHz	85 kHz	110 kHz	135 kHz	135 kHz

Full Span

Changes the Span to show the full frequency range of the analyzer.

Key Path	Span X Scale
Mode	All except SA and BASIC
Remote Command	[:SENSe] : MONitor : FREQuency: SPAN : FULL
Example	MON:FREQ:SPAN:FULL
Couplings	Sets the span to the full frequency range, and adjusts the center frequency accordingly.
Initial S/W Revision	Prior to A.02.00

Last Span

Changes the measurement span to the span setting of the previous measurement. If there is no existing previous span value, then the span remains unchanged.

Key Path	Span X Scale
Mode	All except SA and BASIC
Remote Command	[:SENSe] : MONitor : FREQuency: SPAN : PREVious
Example	MON:FREQ:SPAN:PREV

Couplings	Selecting last span changes the measurement span value.
Initial S/W Revision	Prior to A.02.00

Sweep/Control

Access a menu of functions that enable you to set up and control the sweep time for the current measurement

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Sweep Time

Selects the length of time in which the spectrum analyzer sweeps the displayed frequency span. Additional overhead time is required by the analyzer. It impacts the sweep rate, but is not calculated as part of the sweep time. Reducing the sweep time increases the rate of sweeps.

Key Path	Sweep/Control		
Mode	All except SA and BASIC		
Remote Command	$[$:SENSe]:MONitor : SWEep:TIME <time> [:SENSe] :MONitor : SWEep:TIME? [:SENSe] : MONitor : SWEep:TIME : AUTO OFF\|ON	0	1 [:SENSe] : MONitor : SWEep:TIME:AUT0?
Example	MON:SWE:TIME 100 ms MON:SWE:TIME? MON:SWE:TIME:AUTO ON MON:SWE:TIME:AUTO?		
Couplings	When the user manually changes the Sweep Time, this set automatically goes to 'Man'.		
Preset	Automatically Calculated		
State Saved	Saved in instrument state.		
Min	1 ms		
Max	4000 s		
Initial S/W Revision	Prior to A.02.00		
MIN/MAX/DEF Support	Yes		

Pause

Pauses a measurement after the current data acquisition is complete.
When Paused, the label on the key changes to Resume. Pressing Resume continues the measurement at the point where it had been paused.

See "Pause/Resume" on page 809 under Sweep/Control in the "Common Measurement Functions" section for more information.

Key Path	Sweep/Control
Initial S/W Revision	Prior to A.02.00

Gate

Accesses a menu that enables you to control the gating function .
The Gate functionality is used to view signals best viewed by qualifying them with other events.
See "Gate" on page 810 in "common Measurement Functions" for more details.

Key Path	Sweep/Control
Initial S/W Revision	Prior to A.02.00

Points

Sets the number of points per sweep. The resolution of setting the sweep time depends on the number of points selected. If Preset is selected, the number of points per sweep defaults to 1001. The current value of points is displayed parenthetically, next to the sweep time in the lower right corner of the display.

Key Path	Sweep/Control
Mode	All except SA and BASIC
Remote Command	[:SENSe]:MONitor:SWEep:POINts <integer> [:SENSe]:MONitor:SWEep:POINts?
Example	:MON:SWE:POIN 1000 :MON:SWE:POIN?
Couplings	Whenever the number of sweep points changes, the sweep time is re-quantized.
Preset	1001
State Saved	Saved in instrument state.
Range	1 to 20001
Initial S/W Revision	Prior to A.02.00

Trace/Detector

Accesses a menu that enables you to control the display, storage, detection and manipulation of trace data. Each trace is comprised of a series of data points in which X and Y axis information is stored. The analyzer updates the information for the active trace with each sweep of the current measurement.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Select Trace

Allows you to select which trace you want to use for the current measurement. You can select one of three traces. Monitor Spectrum supports 3 traces, numbered 1 through 3.

Key Path	Trace/Detector
Mode	All except SA and BASIC
Preset	Trace 1
State Saved	The number of the selected trace is saved in Instrument State
Initial S/W Revision	Prior to A.02.00

Trace Type

Allows you to select the type of trace you want to you use for the current measurement. You can assign a trace type to one of the three available traces.

The first page of this menu contains a $1-\mathrm{of}-\mathrm{N}$ selection of the trace type (Clear Write, Average, Max Hold, Min Hold) for the selected trace.

Key Path	Trace/Detector				
Mode	All except SA and BASIC				
Remote Command	$:$ TRACe[1]\|2	3:MONitor:TYPE WRITe\|AVERage	MAXHold	MINHold $:$ TRACe[1]\|2	3:MONitor:TYPE?
Example	TRAC:MON:TYPE WRIT TRAC:MON:TYPE?				
Notes	WRITe = Clear Write AVERage = Average MAXHold = Maximum Hold MINHold = Minimum Hold				

Preset	WRITe		
State Saved	Saved in instrument state.		
Range	WRITe\|AVERage	MAXHold	MINHold for traces 1 through 3
Backwards Compatibility SCPI	:DISPlay:MONitor:VIEW:WINDow:TRACe[1]\|2	3:TYPE	
Initial S/W Revision	Prior to A.02.00		

Update

Toggles a trace state between Update and Off. The Off selection makes the trace inactive (or a stored trace). This does not affect whether the trace is visible or not. Use the Display Show/Blank function to change the trace visibility.

Key Path	Trace/Detector		
Mode	All except SA and BASIC		
Remote Command	$:$ TRACe[1] $\|2\| 3:$ MONitor :UPDate[:STATe] ON\|OFF	0	1 $: T R A C e[1]\|2\| 3: M O N i t o r: U P D a t e[: S T A T e] ? ~$
Example	TRAC3:MON:UPD OFF TRAC3:MON:UPD?		
Preset	ON		
State Saved	Saved in instrument state.		
Range	On\|Off(View)		
Initial S/W Revision	Prior to A.02.00		

Display

Controls the visibility of a trace. In Blank, traces do not display nor appear on printouts but are otherwise unaffected. They may be queried and markers may be placed on them

Key Path	Trace/Detector					
Mode	All except SA and BASIC					
Remote Command	$:$ TRACe[1]\|2	3:MONitor:DISPlay[:STATe] ON	OFF	0	1 $:$ TRACe[1]\|2	3:MONitor:DISPlay[:STATe]?
Example	TRAC:MON:DISP ON TRAC:MON:DISP?					
Preset	ON\|OFF	OFF				
State Saved	Saved in instrument state.					
Range	Show\|Blank					

Initial S/W Revision	Prior to A.02.00

Detector

Accesses a menu of functions that enable you to control the detectors for the current measurement. The following choices are available:

Auto - the detector selected depends on marker functions, trace functions, average type, and the trace averaging function.

- Normal - the detector determines the peak of the CW-like signals, and it yields alternating maximums and minimums of noise-like signals. This is also referred to as Rosenfell detection.
- Average - the detector determines the average of the signal within the sweep points. The averaging method depends upon the Average Type selection (voltage, power or log scales).
- Peak - the detector determines the maximum of the signal within the sweep points.
- Sample - the detector indicates the instantaneous level of the signal at the center of the sweep points represented by each display point.
- Negative Peak - the detector determines the minimum of the signal within the sweep points.

In swept analysis, the time interval of the data collection for the display sweep points also represents a frequency interval. In FFT analysis, the sweep points represent just a frequency interval. The detector determines the relationship between the spectrum computed by the FFT and the single data point displayed for the sweep points.

Key Path	Trace/Detector			
Mode	All except SA and BASIC			
Remote Command	[:SENSe] :MONitor: DETector:TRACe AVERage\|NEGative	NORMal	POSitive	SAMPle [:SENSe]:MONitor: DETector:TRACe?
Example	MON:DET:TRAC NORM MON:DET:TRAC?			

Notes	The query returns a name that corresponds to the detector type as shown below. String Returned Definition NORM Normal AVER Average POS Peak SAMP Sample NEG			
Couplings	Negative Peak			
Preset	When the Detector choice is Auto, the detector selected depends on average type.			
State Saved	NORMal			
Range	Saved in instrument state.			
Backwards Compatibility SCPI	[:SENSe]:MONitor:DETector[:FUNCtion]			
Normal\|Average(RMS)	Peak	Sample	Negative Peak	
Prior to A.02.00				

Auto

Sets the detector for the currently selected trace to Auto. When the detector choice is Auto, the analyzer selects the detector. The selected detector depends on marker functions, trace functions, and trace averaging functions for the current measurement.

Key Path	Trace/Detector Trace/Detector, Detector		
Mode	All except SA and BASIC		
Remote Command	$[$:SENSe $]$: MONitor : DETector :AUTO ON\|OFF	1	0 $[:$ SENSe] : MONitor : DETector :AUTO?
Example	MON:DET:AUTO OFF MON:DET:AUTO?		
Couplings	When the Detector choice is Auto, the detector selected depends on average state and trace type.		

Preset	ON
State Saved	Saved in instrument state.
Range	Auto\|Man
Initial S/W Revision	Prior to A.02.00

Clear Trace

Clears the selected trace from the display.

Key Path	Trace/Detector	
Mode	All except SA and BASIC	
Remote Command	:TRACe: MONitor: CLEar [TRACE1] \|TRACE2	TRACE3
Example	TRAC:MON:CLE	
Initial S/W Revision	Prior to A.02.00	

Mode	All except SA and BASIC	
Remote Command	:DISPlay:MONitor:VIEW:WINDow:TRACe[1]\|2	3:CLEar
Example	DISP:MON:VIEW:WIND:TRAC:CLE	
Initial S/W Revision	Prior to A.02.00	

Clear All Traces

Clears all traces from the display.

Key Path	Trace/Detector
Mode	All except SA and BASIC
Remote Command	:TRACe:MONitor:CLEar:ALL
Example	TRAC:MON:CLE:ALL
Backwards Compatibility SCPI	:DISPlay:MONitor:VIEW:WINDow:TRACe:CLEar:ALL
Initial S/W Revision	Prior to A.02.00

Trigger

Trigger

Accesses a menu of functions that enable you to select and control the trigger source for the current measurement.

See "Trigger" on page 827 in the "Common Measurement Functions" section for more information.

View/Display

Accesses a menu of functions that enable you to control certain functions related to the display of the analyzer.
There is a single trace view for this measurement.

When the mode is CDMA1xEVDO, the view will be like

The measurement has no results, but has a number of features that make it flexible and simple to use.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Display

Accesses a menu of functions that enable you to set the display parameters.
See "Display" on page 889 in the "Common Measurement Functions" section for more information.

Key Path	View/Display
Initial S/W Revision	Prior to A.02.00

8 iDEN Power Measurement

The iDEN Power measurement provides results for Occupied Bandwidth, and Adjacent Channel Power measurements for iDEN/WiDEN signals.

This topic contains the following sections:
"Measurement Commands for iDEN Power Measurement" on page 363
"Remote Command Results for iDEN Power Measurement" on page 363

Measurement Commands for iDEN Power Measurement

The particular tests enabled does not affect the order, or subopcode, of the remote results. Each available remote result, indexed by subopcode, has a corresponding summary trace. The remote user can use this equivalence by either visually inspecting the corresponding summary trace on the display, or by using CALC:DATA queries which programmatically describe the corresponding summary trace.

```
:CONF:IPOWer
```

:FETCh:IPOWer [n]?

:INITiate:IPOWer

:MEASure:IPOWer [n]?
:READ:IPOWer [n]?
For more measurement related commands, see the SENSe subsystem, and the section "Remote Measurement Functions" on page 679.

Remote Command Results for iDEN Power Measurement

The following table denotes the returned results from the (FETCh|MEASure|READ):IPOWer commands, and their corresponding CALC:DATA queries, indexed by subopcode:

Index n	Results Returned
Not specified	In order to read this result, trace 3 should display the "Spectrum" trace, and trace 4 should display the "Trc3 ACP Summary" trace. The power-on layout can satisfy this requirement. You can also press "Preset View:Test Standard" key at "View/Display" panel, or send SCPI ":DISPlay:IPOWer:VIEW:PRESet TSTD" to return to the power-on layout. Returns 29 comma-separated scalar results, corresponding exactly to the items in the ACP Summary trace:
	1. Unused, returns 0.0 2. TotalPwr (dBm)(Same value as RefPwr) 3. Unused, returns 0.0 4. Ref Pwr (dBm) 5. Lower Offset 1 Rel Power (dB)

Index n	Results Returned
Not specified or $\mathrm{n}=1$	(Continued) 6. Lower Offset 1 Abs Power (dBm) 7. Upper Offset 1 Rel Power (dB) 8. Upper Offset 1 Abs Power (dBm) 9. Lower Offset 2 Rel Power (dB) 10. Lower Offset 2 Abs Power (dBm) 11. Upper Offset 2 Rel Power (dB) 12. Upper Offset 2 Abs Power (dBm) 13. Lower Offset 3 Rel Power (dB) 14. Lower Offset 3 Abs Power (dBm) 15. Upper Offset 3 Rel Power (dB) 16. Upper Offset 3 Abs Power (dBm) 17. Lower Offset 4 Rel Power (dB) 18. Lower Offset 4 Abs Power (dBm) 19. Upper Offset 4 Rel Power (dB) 20. Upper Offset 4 Abs Power (dBm) 21. Lower Offset 5 Rel Power (dB) 22. Lower Offset 5 Abs Power (dBm) 23. Upper Offset 5 Rel Power (dB) 24. Upper Offset 5 Abs Power (dBm) 25. Unused, returns 0.0 26. Unused, returns 0.0 27. Unused, returns 0.0 28. Unused, returns 0.0 29. ACP Test Result (0 for fail, 1 for pass) If the results are not available, NaN is returned. This includes the case of when the Adjacent Channel is entirely off-screen. In the case where it is partially off-screen, the measured result is returned, even though its validity is questionable.

Index n	Results Returned
$\mathrm{n}=2$	In order to read this result, trace 1 should display the "Spectrum" trace, and trace 2 should display the "Trc1 ACP Summary" trace. The power-on layout can satisfy this requirement. You can also press "Preset View:Test Standard" key at "View/Display" panel, or send SCPI ":DISPlay:IPOWer:VIEW:PRESet TSTD" to return to the power-on layout. Returns 9 comma-separated scalar results, corresponding exactly to the items in the OBW Summary trace:
	1. OBW (Hz) 2. Pwr (dBm) 3. Total Pwr (dBm) 4. Pwr Ratio (no unit, for example 0.99) 5. OBW upper freq (Hz) 6. OBW lower freq (Hz) 7. Centroid freq (Hz) 8. Offset freq (Hz) 9. OBW Test Result (0 for fail, 1 for pass) If the results are not available,-NaN is returned.

In addition to these results, other results are defined in Common Functions, Data Queries, MEASure, READ, FETCh in ":CALCulate:DATA" on page 1032.

Key Path:	Meas
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

AMPTD Y Scale

See "AMPTD Y Scale (Amplitude)" on page 899.

Auto Couple

See "Auto Couple" on page 507 in the section "Common Measurement Functions" for more information.

BW

See "BW (Bandwidth)" on page 906.

Cont

See "Cont (Continuous Measurement/Sweep)" on page 543 in the section "Common Measurement Functions" for more information.

Frequency Channel

See "FREQ Channel" on page 909.

Input/Output

See "Input/Output" on page 559 in the section "Common Measurement Functions" for more information.
iDEN Power Measurement
Marker

Marker

See "Marker" on page 912.

Marker Function

See "Marker Function" on page 931.
iDEN Power Measurement
Marker To

Marker To

See "Marker -> (Marker To)" on page 928.

Meas

See "Meas" on page 679 in the section "Common Measurement Functions" for more information.

Meas Setup

Changing any of the parameters under the Radio menu, or changing the test enabled in the Test Selection menu, or pressing Test Preset will change measurement setup parameters as noted in the Coupling sections of the individual parameters.

See "More Information about Meas Setup:" on page 376.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

More Information about Meas Setup:

The first three menu softkeys are intended to be set and used in the order they appear in this menu, top to bottom: They are outlined in the following sections:

1. Set up the Radio parameters,
2. Make the Test Selection ("Test Selection" on page 376) or select the Tests that you want to run,
3. Perform a Test Preset, which uses what you have just selected to preset the remaining measurement parameters to a known state which should be a good starting point for your test(s).

After performing these three steps, you may want to fine-tune the remaining parameters to optimize the measurement for your application.

Test Selection

The Test Selection parameters control which measurement calculations are enabled, with accompanying test comparisons, A change in Test Selection changes some measurement setup parameters, as noted in their Coupling descriptions.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A.02.00
OBW	

This enables Occupied Bandwidth testing. The bandwidth of the signal is measured and compared to the OBW Test Limit.

Key Path:	Meas Setup, Test Selection
Mode:	IDEN

| Remote Command: | [:SENSe]:IPOWer:TSEL:OBWidth OFF\|ON|0|1
 [:SENSe]:IPOWer:TSEL:OBWidth? |
| :---: | :---: |
| Example: | :IPOW:TSEL:OBW ON |
| Dependencies/Couplings: | Changes in this parameter may have an immediate effect on other parameters, as well as affecting parameter values set by Test Preset ("Test Preset" on page 377), noted in the coupling row table entries for the affected parameters. |
| Preset: | ON |
| State Saved: | Saved in instrument state. |
| Range: | ON\|OFF |
| Instrument S/W Revision: | A.02.00 |
| ACP | |
| This enables Adjacent Channel Power testing. The ACP test measures and reports power in the reference band, and compares that to the power in up to five adjacent channel bands. | |
| Key Path: | Meas Setup, Test Selection |
| Mode: | IDEN |
| Remote Command: | [:SENSe]:IPOWer:TSEL:ACPower OFF\|ON|0|1 |
| | [:SENSe]:IPOWer:TSEL:ACPower? |
| Example: | :IPOW:TSEL:ACP ON |
| Dependencies/Couplings: | Changes in this parameter may have an immediate effect on other parameters, as well as affecting parameter values set by Test Preset, both as noted in the coupling row table entries for the affected parameters. |
| Preset: | ON |
| State Saved: | Saved in instrument state. |
| Range: | ON\|OFF |
| Instrument S/W Revision: | A.02.00 |

Test Preset

Test Preset key initializes the setup to make the tests selected, based on the radio setup specified. Test Preset initializes all the coupled parameters for the selected tests. This key color is green, indicating its as a preset key.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	CONF: IPOWer

Example:	CONF:IPOW
Dependencies/Couplings:	This affects parameter values as detailed below. It also performs a Preset View:Test Standard.
Instrument S/W Revision:	A.02.00

Power Calc Uses

The Power Calc Uses parameter sets whether OBW and ACP measure over the whole burst, or measure over the MQAM modulation part of the burst. This distinction is made by enabling or disabling time gating. Since only Full Signal is valid when an Outbound Slot Format is active, this key is grayed out when Outbound Slot Format is active.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	CALCulate: IPOWer: PCALculation MOD\|FULL
	CALCulate: IPOWer: PCALculation?
Example:	CALC:IPOW:PCAL MOD
Dependencies/Couplings:	This parameter affects FFT Window, Gate parameters.
	In particular, Gate (On/Off) (is controlled directly by this parameter and visa
	versa.
It is set to Full Signal when an Outbound Slot Format is selected.	
Preset:	It is set to Modulation by Test Preset if the Slot Format is an Inbound type and
to Full Signal when Slot Format is an Outbound type.	
State Saved:	MOD
Range:	Saved in instrument state.
Readback Text:	MOD \| FULL
Instrument S/W Revision:	MOD \| FULL
Modulation	A.02.00
This key selects Power Calc Uses Modulation. Only the modulated portion of the burst will be analyzed.	
Key:	Meas setup, Power Calc Uses

Mode:	IDEN
Instrument S/W Revision:	A.02.00

Full Signal

This key selects Power Calc Uses Full Signal. The entire slot will be analyzed, which includes time that the burst is off.

Key Path:	Meas setup, Power Calc Uses
Mode:	IDEN
Instrument S/W Revision:	A.02.00

ACP Setup

ACP in the iDEN Power measurement is set up as in other VXA Measurements, with the following exceptions:

The ACP Setup softkey menu that appears under the Meas Setup key is for setting the standard ACP test parameters. These will appear on trace 3 when using the Test Standard Preset view. ACP Setup softkeys for this and all other traces are found under the Trace/Detector key. Corresponding keys under both menus perform the same setup functions.

See "More Information about ACP Setup" on page 379.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A.02.00

More Information about ACP Setup

SCPI access to ACP features under the Meas Setup key is the same as for the general case (refer to trace 3) and is documented in the Trace/Detector, ACP sections, "ACP Setup" on page 996.

Other keys and SCPI in this menu follow VXA standard conventions for ACP setup.
Five sets of adjacent channel offsets and bandwidths are available, the default state is with one set enabled, and the other four sets configured. An exception to this is when the Outer 50 kHz Carrier Config is selected, the first two offsets are enabled and the other 3 configured.

Test Preset or changes to Carrier Config sets the ACP parameters as follows. Changing between iDEN and WiDEN Slot Format may also result in other couplings or changes.

ACP Enabled	iDEN formats	iDEN formats, WiDEN $\mathbf{2 5} \mathbf{~ k H z}$	WiDEN $\mathbf{5 0} \mathbf{~ k H z}$	WiDEN $\mathbf{7 5} \mathbf{~ k H z}$	WiDEN $\mathbf{1 0 0} \mathbf{~ k H z}$	Outer $\mathbf{5 0} \mathbf{~ k H z}$
Reference BW	18 kHz	18 kHz	43 kHz	68 kHz	93 kHz	93 kHz

iDEN Power Measurement
Meas Setup

ACP Enabled	iDEN formats	iDEN formats, WiDEN 25 kHz	WiDEN 50 kHz	WiDEN 75 kHz	WiDEN 100 kHz	Outer 50 kHz
Channel A	Enable	Enable	Enable	Enable	Enable	Enable
Channel A offset	$\begin{aligned} & +/-25 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-25 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-37.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-50 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-62.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-12.5 \\ & \mathrm{kHz} \end{aligned}$
Channel A BW	18 kHz					
Channel A Test Limit	$\begin{aligned} & -50 \mathrm{dBc} \text {, } \\ & \text { On } \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBc}, \\ & \text { On } \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBc} \text {, } \\ & \text { On } \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBc}, \\ & \text { On } \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBc}, \\ & \text { On } \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBc}, \\ & \text { On } \end{aligned}$
Channel B	Disable	Disable	Disable	Disable	Disable	Enable
Channel B offset	$\begin{aligned} & +/-50 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-50 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-62.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-75 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-87.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-37.5 \\ & \mathrm{kHz} \end{aligned}$
Channel B BW	18 kHz					
Channel B Test Limit	Off	Off	Off	Off	Off	$\begin{aligned} & -50 \mathrm{dBc}, \\ & \text { On } \end{aligned}$
Channel C	Disable	Disable	Disable	Disable	Disable	Disable
Channel C offset	$\begin{aligned} & +/-75 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-75 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & \text { +/- } 87.5 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-100 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-112.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-62.5 \\ & \mathrm{kHz} \end{aligned}$
Channel C BW	18 kHz					
Channel C Test Limit	Off	Off	Off	Off	Off	Off
Channel D	Disable	Disable	Disable	Disable	Disable	Disable
Channel D offset	$\begin{aligned} & +/-100 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-100 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-112.5 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-125 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-137.5 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-87.5 \\ & \mathrm{kHz} \end{aligned}$
Channel D BW	18 kHz					
Channel D Test Limit	Off	Off	Off	Off	Off	Off
Channel E	Disable	Disable	Disable	Disable	Disable	Disable
Channel E offset	$\begin{aligned} & \text { +/- } 125 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-125 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-137.5 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & \text { +/- } 150 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & +/-162.5 \\ & \text { kHz } \end{aligned}$	$\begin{aligned} & +/-137.5 \\ & \text { kHz } \end{aligned}$
Channel E BW	18 kHz					
Channel E Test Limit	Off	Off	Off	Off	Off	Off

Carrier Meas Noise BW

This softkey allows you to define the measurement noise bandwidth of the reference channel. For more
information, see "Carrier Meas Noise BW" on page 999 for Trace 3.

Key Path:	Meas Setup, ACP Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset), Carrier Config, and Slot Format set this as defined in the table under ACP Setup.

Offsets

The ACP measurement compares power in frequency bands that are offset from the carrier to power in the reference channel (centered on the carrier). Up to 5 offsets may be defined. The offsets are designated by letters A through E. Each offset is defined by an offset frequency and bandwidth. Each offset defines two bands or sidebands, one above the reference frequency and one below. Each band is used individually in the ACP calculation.

The Offsets branch key accesses a menu that has a branch key for each offset. Each offset branch key shows a summary of its current parameters. Pressing any of the Offset $\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}$ softkeys will access a menu for adjusting that offsets parameters.

Key Path:	Trace/Detector, ACP, Offsets
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Offset Freq This softkey toggles the ACP analysis on or off for a selected offset, and will also set the offset frequency (which is relative to the center frequency). For more information, see "Offset Freq" on page 1001.

Key Path:	Meas Setup, $\mathbf{A C P}$ Setup, Offset $\mathbf{A}\|\mathrm{B}\| \mathrm{C}\|\mathrm{D}\| \mathrm{E}$
Mode:	IDEN
Dependencies/Couplings:	Test Preset, Carrier Config, and Slot Format set this as defined in the table under ACP Setup.
Instrument S/W Revision:	A.02.00

Offset Meas Noise BW This softkey allows you to set the measurement noise bandwidth for the power measurement of a selected offset band. For more information, see "Carrier Meas Noise BW" on page 999.

| Key Path: | Meas Setup, ACP Setup, Offset A\|B|C|D|E |
| :--- | :--- |
| Mode: | IDEN |
| Dependencies/Couplings: | Test Preset, Carrier Config, and Slot Format set this as detailed in the table
 under ACP Setup. |
| Instrument S/W Revision: | A. 02.00 |

Offset Relative Limit This softkey allows you to set the ACP test limit for the power measurement of a selected offset band. For more information, see "Offset Relative Limit" on page 1003.

| Key Path: | Meas Setup, ACP Setup, Offset A\|B|C|D|E |
| :--- | :--- |
| Mode: | IDEN |
| Dependencies/Couplings: | Test Preset, Carrier Config, and Slot Format set this as detailed in the table
 under ACP Setup. |
| Instrument S/W Revision: | A.02.00 |

OBW Centroid -> CF

The Centroid -> CF softkey copies the current measured Centroid frequency to the Center Frequency. For more information, see "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Avg Number

This softkey sets the number of time records whose measurement results will be averaged. For more information, see "Avg Number" on page 939.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to 20
Preset:	On, 20
Instrument S/W Revision:	A. 02.00

Average Mode

Average Mode controls the averaging method when the Sweep Control is in Continuous mode and the number of time records processed exceeds the Average Number (see above). If the Sweep Control is in Single mode, Average Mode has no effect. For more information, see "Average Mode" on page 940.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to EXPonential
Preset:	EXPonential
Instrument S/W Revision:	A. 02.00

Average Setup

Access a menu allowing you to set Averaging parameters for all VSA based measurements. There are no SCPI/features unique to this measurement. For more information, see "Average Setup" on page 941.

Key Path:	Meas Setup, More
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Average Type

The Average Type softkey allows you to select the type of averaging. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to RMS
Preset:	RMS
Instrument S/W Revision:	A. 02.00

RMS This softkey selects the RMS Average Type.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Time This softkey selects the Time Average Type.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Max This softkey selects the Max Average Type.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Fast Average

Fast average controls the display updates of average data. For more information, see "Fast Average" on
page 942.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to OFF
Preset:	OFF
Instrument S/W Revision:	A. 02.00

Update Rate

The Update Rate controls how often the display updates when fast averaging is turned on. For more information, see "Update Rate" on page 943.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to Manual, 20
Preset:	Auto, 20
Instrument S/W Revision:	A. 02.00

OBW \% Power

This softkey is used to specify the percentage of power used to determine the occupied BW, and to turn the OBW function on or off. For more information, see "OBW Power" on page 1005.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to 99.0%
Preset:	99.0%
Instrument S/W Revision:	A.02.00

OBW Limit

This softkey sets the OBW Limit, as well as turns it off or off. For more information, see "BW Limit" on page 1007.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets as follows
Preset:	$20 \mathrm{kHz}(\mathrm{On})$

Instrument S/W Revision: A.02.00

OBW Test Preset turns this On and sets these values:

	iDEN formats, WiDEN 25 kHz	WiDEN 50 kHz	WiDEN 75 kHz	$\begin{aligned} & \text { WiDEN } \\ & 100 \mathrm{kHz} \end{aligned}$	WiDEN Outer 50 kHz
OBW Test Limit	20 kHz	45 kHz	70 kHz	95 kHz	95 kHz

iDEN Power Measurement
Mode

Mode

See "Mode" on page 741.

Mode Setup

See "Mode Setup" on page 761.

Peak Search

See "Peak Search" on page 945.

Recall

See "Recall" on page 152 in the section "Common Measurement Functions" for more information.

Restart

See "Restart" on page 787 in the section "Common Measurement Functions" for more information.

Save

See "Save" on page 169 in the section "Common Measurement Functions" for more information.

Single

See "Single (Single Measurement/Sweep)" on page 793 in the section "Common Measurement Functions" for more information.

Source

See "Source" on page 795 in the section "Common Measurement Functions" for more information.

SPAN X Scale

See "SPAN X Scale" on page 955 for more information.

Span

This softkey sets the frequency Span of the measurement. For more information, see "More Information about Span" on page 394 and "Span" on page 955.

Key Path:
Mode:
Dependencies/Couplings:

SPAN X Scale

IDEN
When an individual Test is enabled or disabled ("Test Selection" on page 376), this parameter is set as detailed below.

This parameter may be changed when Carrier Config and Slot Format are changed as well as when ACP Setup ("ACP Setup" on page 379) parameters are changed which affect the span needed to include the carrier and all enabled offsets, as detailed below.

Instrument S/W Revision: A.02.00

More Information about Span

The measurements in IDEN have different span settings. However the Span parameter is shared between measurements. To prevent the change of Span parameter in each measurement from affecting other measurements, when switching into one measurement, the Span parameter will be changed according to its default value. The default value might be different per iDEN slot format and WiDEN Carrier configuration.

For iDEN Power measurement, the default value is calculated according to slot format, carrier configuration and test settings. If the current span value is less than the default value, the span will be changed to the default value. Otherwise, the span is not changed.

When ACP test is on, the span value default will be as displayed in the table below:

iDEN Slot Format	WiDEN Slot Format 25kHz	WiDEN Slot Format 50kHz	WiDEN Slot Format 75kHz	WiDEN Slot Format 100kHz	WiDEN Slot Format 50kHz Out
60 kHz	68 kHz	93 kHz	118 kHz	143 kHz	143 kHz

When ACP test is off, the default span value is displayed in below table:

iDEN Slot Format	WiDEN Slot Format 25kHz	WiDEN Slot Format 50kHz	WiDEN Slot Format 75kHz	WiDEN Slot Format 100kHz	WiDEN Slot Format 50kHz Out
35 kHz	35 kHz	60 kHz	85 kHz	110 kHz	110 kHz

For MotoTalk measurements, the span default value is not affected by iDEN settings. It will have a fixed default value of 60 kHz .

For Vector Analysis measurement, Monitor Spectrum measurement and iDEN Demod measurement, when switching into the measurement, the span value is changed to the default value, which is displayed in table below.

iDEN Slot Format	WiDEN Slot Format 25kHz	WiDEN Slot Format 50kHz	WiDEN Slot Format 75kHz	WiDEN Slot Format 100kHz	WiDEN Slot Format 50kHz Out
60 kHz	60 kHz	85 kHz	110 kHz	135 kHz	135 kHz

Sweep/Control

See "Sweep/Control" on page 797.

Trace/Detector

See "Trace/Detector" on page 967.

Trigger

See "Trigger" on page 1009.

Hardware Trigger

The default value is "Video" for this measurement.

Key Path:	Trigger
Dependencies/Couplings:	When slot type is inbound, trigger source will be set to VIDeo; When slot type is outbound, trigger source will be set to IMMediate.
Preset:	VIDeo
Instrument S/W Revision:	A. 02.00

Video (IF Envelope)

Trigger Level The default value is 31.6 mV .

Key Path:	Trigger,Video
Preset:	31.6 mV
Instrument S/W Revision:	A. 02.00

Trig Delay The default value is -500 us.

Key Path:	Trigger, Video
Preset:	0
	ON
Instrument S/W Revision:	A. 02.00

Trig Holdoff The default value is 10 ms .

Key Path:	Trigger, Video
Preset:	10 ms
	ON
Instrument S/W Revision:	A. 02.00

View/Display

You may change the traces configured for any window at any time using the standard UI.
The Test Preset key and the Preset View: Test Standard key configure a default window layout and trace setup for the selected tests.

The default layout includes two windows for each test enabled, for example, either 2 or 4 windows.
When the OBW test is enabled, the default layout has the Spectrum trace with the occupied bandwidth highlight displayed in trace 1, and the OBW Summary trace in trace 2.

When the ACP test is enabled, the default layout has the Spectrum trace with ACP color bars displayed in trace 3, and the ACP Summary trace in trace 4.
If a no test state is enabled (generally a transitory event), the two traces from the last test enabled will continue to be displayed.

The view setup can be changed by selections from the View/Display menu, or by pressing Test Preset after enabling the desired tests, or by individually selecting traces and layout. You may change the number of windows in the layout, or the contents of those windows at will.

NOTE
The Preset View softkeys do an immediate action of changing the layout and view for various Preset Views unique to this measurement. These Preset Views are actions, not states.

Key Path:
Mode:
Instrument S/W Revision:

Front-panel key

IDEN
A. 02.00

Display

See "Display" on page 889 in the "Common Measurement Functions" section for more information.

Layout

See "Layout" on page 1025.

Preset View: Test Standard

Preset the layout to pre-defined patterns.

Key Path:
Remote Command:
Example:

View/Display
:DISPlay:IPOWer:VIEW:PRESet TSTD|ACP|ACPOBW|ACPBURST
:DISP:IPOW:VIEW:PRES TSTD

iDEN Power Measurement

 View/Display| Notes: | TSTD: Test Standard |
| :--- | :--- |
| | ACP: ACP |
| | ACPOBW: ACP \& OBW |
| | ACPBURST: ACP Burst |
| Dependencies/Couplings: | Action dependent on the state of the test selections |
| Instrument S/W Revision: | A. 02.00 |

Preset View: ACP

Preset the layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IPOW:VIEW:PRES ACP
Notes:	TSTD: Test Standard
	ACP: ACP
	ACPOBW: ACP \& OBW
	ACPBURST: ACP Burst
	A. 02.00

Preset View: ACP \& OBW

Preset the layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IPOW:VIEW:PRES ACPOBW
Notes:	TSTD: Test Standard
	ACP: ACP
	ACPOBW: ACP \& OBW
	ACPBURST: ACP Burst
	A. 02.00

Preset View: OBW \& Burst

Preset the layout to pre-defined patterns.

Key Path:
Example:

View/Display

:DISP:IPOW:VIEW:PRES ACPBURST

Notes:	TSTD: Test Standard
	ACP: ACP
	ACPOBW: ACP \& OBW
	ACPBURST: ACP Burst
Instrument S/W Revision:	A. 02.00

Measurement Views

This measurement has four views as follows.

Preset View: Test Standard

The Test Standard view provides the preset view for the set of selected tests. The exact action is dependent on the test selections.

The following illustration is the display after pressing Preset View:Test Standard.

Preset View: ACP
The ACP view is a 2 window display, with the Spectrum and the ACP color bars in trace 3, and the ACP

Summary in trace 4. This is the default view when only the ACP test is enabled. If the ACP Test is not enabled ("ACP" on page 377), these traces will still be shown but the ACP Summary trace will contain no data.

Below is the display after pressing this key.

Preset View: OBW \& ACP

The OBW \& ACP view is a 4 window layout. Trace 1 displays the Spectrum with OBW measurement, and trace 2 displays the OBW Summary. Trace 3 displays the Spectrum with ACP measurement, and trace 4 displays the ACP Summary. This is the default view when OBW and ACP tests are enabled. If the OBW Test is not enabled ("OBW" on page 376), these traces will still be shown but the OBW Summary trace will contain no data and the ACP measurement will not be visible on the Spectrum. If the ACP Test is not enabled ("ACP" on page 377), these traces will still be shown but the ACP Summary trace will contain no data and the ACP measurement will not be visible on the Spectrum.

Below is the display after pressing this key.

Preset View: ACP \& Burst

The ACP \& Burst view is a 2 window layout. Trace 5 displays the Spectrum with ACP measurement, and trace 6 displays Main Time. If the ACP Test is not enabled ("ACP" on page 377), the ACP measurement will not be visible on the Spectrum trace.

Below is the display after pressing this key.

Front Panel Results

There are two sets of test results combined into this measurement.

- Occupied Bandwidth Results

OBW results are available, including a color bar highlighting the occupied bandwidth, and an OBW summary trace.

- Adjacent Channel Power Results

ACP results are available, including color bars on a spectrum trace highlighting the reference channel and the adjacent channels, and an overall ACP summary.

$9 \quad$ iDEN Demod Measurement

This measurement consists of Test setups for modulation quality (EVM), power vs. time (PvT) and bit error rate (BER). There are three sets of demodulation-based test results combined into this measurement. Each set of results has limit testing to provide a Pass or Fail indication. Additional results can be obtained for each Test.

This topic contains the following sections:
"Measurement Commands for iDEN Demod Measurement" on page 405
"Remote Command Results for iDEN Demod Measurement" on page 405

Measurement Commands for iDEN Demod Measurement

The set of tests enabled do not affect the order, or subopcode, of the remote results. Each available remote result, indexed by subopcode, has a corresponding summary trace. The remote user can use this equivalence by either visually inspecting the corresponding summary trace on the display, or by using CALC:DATA queries which programmatically describe the corresponding summary trace.
:CONF:IDEMod
:FETCh:IDEMod [n]?
:INITiate:IDEMod
:MEASure:IDEMod [n]?
:READ:IDEMod [n]
For more measurement related commands, see the SENSe subsystem, and the section "Remote Measurement Functions" on page 679.

Remote Command Results for iDEN Demod Measurement

The following table denotes the returned results from the (FETCh|MEASure|READ):IDEMod commands, indexed by subopcode:

Index n	Results Returned
Not specified,	Returns 23 comma-separated scalar results, corresponding exactly to the items returned in the MQAM Summary trace: . Total BER (ratio) 2. Peak BER (ratio) 3. Slot location with peak BER, counting from 0 4. Residual BER (ratio) 5. Bits Failed 6. Bits Tested

Index n	Results Returned
Not specified, or $\mathrm{n}=1$	(Continued) 7. Words Failed (same as Slots for iDEN, 25 kHz WiDEN) 8. Words Tested (same as Slots for iDEN, 25 kHz WiDEN) 9. BER Test Status (0 for invalid, 1 for valid) 10. EVM (ratio) 11. EVM Max (ratio) 12. Slot location with peak EVM, counting from 0 13. Frequency Error (Hz) 14. IQ Offset (dB) 15. IQ Offset Max (dB) 16. Subchannel with peak IQ Offset, counting from 0 17. EVM Test Status (0 for fail, 1 for pass) 18. Slot Power (Vrms): If slot type is WiDEN, this gives composite power 19. Data Power (Vrms) : If slot type is WiDEN, this gives composite power 20. Relative AGC Power (dB) : If slot type is WiDEN, this gives composite power 21. Off Power (Vrms) : If slot type is WiDEN, this gives composite power 22. Relative Off Power (dB) : If slot type is WiDEN, this gives composite power 23. PvT Test Status(0 for fail, 1 for pass) If the results are not available, NaN is returned.

Index n	Results Returned
$\mathrm{n}=2$	Returns 20 comma-separated scalar results, corresponding exactly to the items in the BER Overall Summary trace: 1. Total BER (ratio) 2. Peak BER (ratio) 3. Slot location with peak BER, counting from 0 4. Residual BER (ratio) 5. Bits Tested 6. Bits Failed 7. Words Tested (same as Slots for iDEN, 25 kHz WiDEN) 8. Words Failed (same as Slots for iDEN, 25 kHz WiDEN) 9. Words Erasure Ratio (ratio) 10. EVM (rms e.g. .03) 11. EVM Max (rms e.g. .03) 12. Slot location with Max EVM, counting from 0 13. Data Power (Vrms): If slot type is WiDEN, this gives composite power 14. Relative AGC Power Max (dB): If slot type is WiDEN, this gives composite power 15. Slot location with max Relative AGC Power, counting from 0 16. Relative AGC Power Min (dB): If slot type is WiDEN, this gives composite power 17. Slot location with min Relative AGC Power, counting from 0 18. Relative Off Power Max (dB): If slot type is WiDEN, this gives composite power 19. Slot location with Off Power Max, counting from 0 20. BER Test Status (0 for invalid, 1 for valid) If the results are not available, NAN is returned.

Index n	Results Returned
$\mathrm{n}=3$	Returns 34 comma-separated scalar results, corresponding exactly to the items in the Composite Error Summary trace: 1. EVM ratio) 2. EVM Max (rms e.g. .03) 3. Slot location with max EVM, counting from 0 4. Sub-carrier with max EVM, counting from 0 5. EVM Peak (rms e.g. .03) 6. Symbol with peak EVM, counting from 0 7. Subchannel with peak EVM, counting from 0 8. Sub-carrier with peak EVM, counting from 0 9. Mag Err (rms e.g. .03) 10. Mag Err Peak (rms e.g. .03) 11. Subchannel with max Mag Err, counting from 0 12. Sub-carrier with max Mag Err, counting from 0 13. Mag Err Peak (\% rms) 14. Symbol with peak Mag Err, counting from 0 15. Subchannel with peak Mag Err, counting from 0 16. Sub-carrier with peak Mag Err, counting from 0 17. Phase Err (degrees) 18. Phase Err Peak (degrees) 19. Subchannel with max Phase Err, counting from 0 20. Sub-carrier with max Phase Err, counting from 0 21. Phase Err Peak (degrees) 22. Symbol with peak Phase Err, counting from 0 23. Subchannel with peak Phase Err, counting from 0 24. Sub-carrier with peak Phase Err, counting from 0 25. Frequency Err (Hz)

Index n	Results Returned
$\mathrm{n}=3$	(Continued) 26. Frequency Err Max (Hz) 27. Subchannel with Max Frequency Err, counting from 0 28. Sub-carrier with Max Frequency Err, counting from 0 29. IQ Offset (dB) 30. IQ Offset Max (dB) 31. Subchannel with max IQ Offset, counting from 0 32. Sub-carrier with max IQ Offset, counting from 0 33. Droop Rate (dB/sym) 34. EVM Test Result

Index n	Results Returned
$\mathrm{n}=4$	Returns 59 comma-separated scalar results, corresponding exactly to the items in the PvT Summary trace: 1. Slot Power (Vrms) : If slot type is WiDEN, this gives composite power 2. Data Power (Vrms) : If slot type is WiDEN, this gives composite power 3. Relative Slot Power (dB) : If slot type is WiDEN, this gives composite power 4. AGC Power (Vrms) : If slot type is WiDEN, this gives composite power 5. Relative AGC Power (dB) : If slot type is WiDEN, this gives composite power 6. Off Power (Vrms) : If slot type is WiDEN, this gives composite power 7. Relative Off Power (dB) : If slot type is WiDEN, this gives composite power 8. Symbol 0 Time (sec) 9. PvT Test Result (0 for fail, 1 for pass) 10. Unused 11. Unused 12. Unused 13. Unused 14. Unused 15. Carrier Number 0, returns 0 . Unused for non-WiDEN Slot Type 16. Slot Power of Carrier 0 (Vrms). Unused for non-WiDEN Slot Type 17. Data Power of Carrier 0 (Vrms), Unused for non-WiDEN Slot Type 18. Relative Slot Power of Carrier 0 (dB), Unused for non-WiDEN Slot Type 19. AGC Power of Carrier 0 (Vrms), Unused for non-WiDEN Slot Type 20. Carrier Number 1, returns 1. Unused for non-WiDEN Slot Type 21. Slot Power of Carrier 1 (Vrms). Unused for non-WiDEN Slot Type 22. Data Power of Carrier 1 (Vrms), Unused for non-WiDEN Slot Type 23. Relative Slot Power of Carrier 1 (dB), Unused for non-WiDEN Slot Type 24. AGC Power of Carrier 1 (Vrms), Unused for non-WiDEN Slot Type 25. Carrier Number 2, returns 2. Unused for non-WiDEN Slot Type 26. Slot Power of Carrier 2 (Vrms). Unused for non-WiDEN Slot Type 27. Data Power of Carrier 2 (Vrms), Unused for non-WiDEN Slot Type 28. Relative Slot Power of Carrier 2 (dB), Unused for non-WiDEN Slot Type 29. AGC Power of Carrier 2 (Vrms), Unused for non-WiDEN Slot Type 30. Carrier Number 3, returns 3. Unused for non-WiDEN Slot Type

Index n	Results Returned
$\mathrm{n}=4$	(Continued) 31. Slot Power of Carrier 3 (Vrms). Unused for non-WiDEN Slot Type 32. Data Power of Carrier 3 (Vrms), Unused for non-WiDEN Slot Type 33. Relative Slot Power of Carrier 3 (dB), Unused for non-WiDEN Slot Type 34. AGC Power of Carrier 3 (Vrms), Unused for non-WiDEN Slot Type 35. Unused 36. Unused 37. Unused 38. Unused 39. Unused 40. Carrier Number 0, returns 0 . Unused for non-WiDEN Slot Type 41. Relative AGC Power of Carrier 0 (dB). Unused for non-WiDEN Slot Type 42. Off Power of Carrier 0 (Vrms), Unused for non-WiDEN Slot Type 43. Relative Off Power of Carrier 0 (dB), Unused for non-WiDEN Slot Type 44. PvT Test Result of Carrier 0. (0 for fail, 1 for pass). Unused for non-WiDEN Slot Type 45. Carrier Number 1, returns 1. Unused for non-WiDEN Slot Type 46. Relative AGC Power of Carrier 1 (dB). Unused for non-WiDEN Slot Type 47. Off Power of Carrier 1 (Vrms), Unused for non-WiDEN Slot Type 48. Relative Off Power of Carrier $1(\mathrm{~dB})$, Unused for non-WiDEN Slot Type 49. PvT Test Result of Carrier 1. (0 for fail, 1 for pass). Unused for non-WiDEN Slot Type 50. Carrier Number 2, returns 2. Unused for non-WiDEN Slot Type 51. Relative AGC Power of Carrier 2 (dB). Unused for non-WiDEN Slot Type 52. Off Power of Carrier 2 (Vrms), Unused for non-WiDEN Slot Type 53. Relative Off Power of Carrier 2 (dB), Unused for non-WiDEN Slot Type 54. PvT Test Result of Carrier 2. (0 for fail, 1 for pass). Unused for non-WiDEN Slot Type 55. Carrier Number 3, returns 3. Unused for non-WiDEN Slot Type 56. Relative AGC Power of Carrier 3 (dB). Unused for non-WiDEN Slot Type 57. Off Power of Carrier 3 (Vrms), Unused for non-WiDEN Slot Type 58. Relative Off Power of Carrier 3 (dB), Unused for non-WiDEN Slot Type 59. PvT Test Result of Carrier 3. (0 for fail, 1 for pass). Unused for non-WiDEN Slot Type If the results are not available, -999.0 is returned.

Index n	Results Returned
$\mathrm{n}=5$	Returns 5 comma-separated scalar results, corresponding exactly to the items in the BER Slot Summary trace: 1. Slot BER (dBm) 2. Bits Tested 3. Bits Failed 4. BER Word 5. BER Test Status (0 for invalid, 1 for valid) If the results are not available, NAN is returned.
$\mathrm{n}=6$	Returns 11 comma-separated scalar results, corresponding exactly to the items in the EVM Subchannel Error Summary trace: 1. EVM (rms e.g. .03) 2. EVM Peak (rms e.g. .03) 3. Symbol with peak EVM, counting from 0 4. Mag Err (rms e.g. .03) 5. Mag Err Peak (rms e.g. .03) 6. Symbol with Peak Mag Err, counting from 0 7. Phase Err (degrees) 8. Phase Err Peak (degrees) 9. Symbol with Peak Phase Err, counting from 0 10. Frequency Err (Hz) 11. IQ Offset (dB) If no results are available, NAN is returned.

NOTE

The PvT Test Status is not included in any tables but is visible on the Instrument front panel and is also accessible using the CALCulate:CLIMits:FAIL? query command.

When calculating peak EVM, the pilot and sync symbol's EVM is not calculated.
In addition to these results, other results are defined in Common Functions, Data Queries, MEASure, READ, FETCh in ":CALCulate:DATA" on page 1032.

Key Path:	Meas
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

AMPTD Y Scale

See "AMPTD Y Scale (Amplitude)" on page 899.

Auto Couple

See "Auto Couple" on page 507 in the section "Common Measurement Functions" for more information.

BW

See "BW (Bandwidth)" on page 906.

Cont

See "Cont (Continuous Measurement/Sweep)" on page 543 in the section "Common Measurement Functions" for more information.

FREQ Channel

See "FREQ Channel" on page 909.

Input/Output

See "Input/Output" on page 559 in the section "Common Measurement Functions" for more information.

Marker

See "Marker" on page 912.
iDEN Demod Measurement
Marker Function

Marker Function

See "Marker Function" on page 931.

Marker To

See "Marker -> (Marker To)" on page 928.
iDEN Demod Measurement
Meas

Meas

See "Meas" on page 679 in the section "Common Measurement Functions" for more information.

Meas Setup

Changing any of the parameters under the Radio menu, changing test enables in the Test Selection menu, or by pressing Test Preset, will change measurement setup parameters as noted in the Coupling sections of the individual parameters.

See "More Information about Meas Setup:" on page 423.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

More Information about Meas Setup:

The first three menu softkeys are intended to be set and used in the order they appear on this menu, top to bottom. They are outlined in the following sections.

You should first set up the Radio parameters, then make the Test Selection ("Test Selection" on page 423) or selections of the Tests that you want to run, and finally perform a Test Preset ("Test Preset" on page 425), which uses what you have just selected to preset the remaining measurement parameters to a known state which should be a good starting point for your test(s).

After performing these three steps, you may want to adjust the remaining parameters for your test application.

Test Selection

The Test Selection parameters control which measurement calculations and accompanying test comparisons are enabled. Test Selection changes affect some measurement setup parameters, as noted in their Coupling descriptions.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A.02.00

EVM

Enables EVM testing. The composite EVM of a signal burst is measured and compared to the EVM Test Limit.

Key Path:	Meas Setup, Test Selection		
Mode:	IDEN		
Remote Command:	$[: S E N S e]:$ IDEMod:TSEL:EVMagnitude OFF\|ON	0	1
	$[: S E N S e]:$ IDEMod:TSEL:EVMagnitude?		

Example:	:IDEM:TSEL:EVM ON
Dependencies/Couplings:	This affects parameter values as set by Test Preset ("Test Preset" on page
425), noted in the coupling row table entries for the affected parameters.	
Preset:	ON
State Saved:	Saved in instrument state.
Range:	ON\|OFF
Instrument S/W Revision:	A. 02.00
PvT	

Enables PvT testing. The envelope of a slot is measured and compared to the mask for the specified slot format.

Key Path:	Meas Setup, Test Selection
Mode:	IDEN
Remote Command:	[:SENSe]: IDEMod:TSEL:PVTime OFF $\|O N\| 0 \mid 1$
[:SENSe]: IDEMod:TSEL:PVTime?	
Example:	:IDEM:TSEL:PVT ON
Dependencies/Couplings:	This affects parameter values set by Test Preset ("Test Preset" on page 425), noted in the coupling row table entries for the affected parameters.
Preset:	ON
State Saved:	Saved in instrument state.
Range:	ON\|OFF
Instrument S/W Revision:	A. 02.00

BER

Enables BER testing. The overall BER of a number of slots is measured and compared to the BER Test Limit.

Key Path:	Meas Setup, Test Selection		
Mode:	IDEN		
Remote Command:	$[: S E N S e]:$ IDEMod:TSEL:BERate OFF\|ON	0	1
	$[: S E N S e]:$ IDEMod:TSEL:BERate?		
Example:	$:$ IDEM:TSEL:BER ON		

Dependencies/Couplings:	This affects parameter values set by Test Preset ("Test Preset" on page 425), as noted in the coupling row table entries for the affected parameters. When the BER test is selected, the BER Slots parameter is active. This will change the minimum allowed Search Length ("Search Length" on page 429), as well as BER Slots ("BER Slots" on page 428).
Preset:	ON
State Saved:	Saved in instrument state.
Range:	ON\|OFF
Instrument S/W Revision:	A.02.00

Test Preset

The Test Preset key initializes the setup to perform the tests selected, and based on the radio setup specified. Test Preset initializes all the coupled parameters for the selected tests. This key color is green, indicating it is a preset key.

See "More Information about Test Preset:" on page 425.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	CONF : IDEMod
Example:	CONF:IDEM
Dependencies/Couplings:	This affects parameter values as detailed below. It also performs a Preset View:Test Standard ("Preset View: Test Standard" on page 457).

Instrument S/W Revision: A.02.00

More Information about Test Preset:

Test Preset does not change the following parameters:

- Test selection (EVM Test, PvT Test, and/or BER Test)
- MQAM Format
- Slot Format
- Color Code
- Carrier Config

In many cases, Test Preset uses the parameters noted above to determine by their settings what other parameters will be preset to.

Parameters that will be affected by Test Preset are noted in the Couplings row in the parameter tables.

EVM Setup

The parameters in the following sections will primarily affect the functionality of the EVM measurements and EVM Test.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Analysis Subchannel

This softkey is used to selects the subchannel to be analyzed. It affects the Subchannel demodulation results ("Subchannel Demod" on page 452), and the Subchannel Error Summary table ("Subchannel Error Summary" on page 454).
Viewing the analysis of only one subchannel may identify specific signal impairments. Selecting a different analysis subchannel of the current signal acquisition, causes the analysis to be performed on that specified subchannel.

For WiDEN slot formats, the Subchannel data results are of the Analysis Subchannel chosen, of the selected "WiDEN Carrier" on page 427 ("WiDEN Carrier" on page 427).

Key Path:	Meas Setup, EVM Setup		
Mode:	IDEN		
Remote Command:	[:SENSe]: IDEMod: ASCHannel LO\|LI	RI	RO
	[:SENSe]: IDEMod: ASCHannel?		
Example:	:IDEM:ASCH LO		
Preset:	LO		
State Saved:	Saved in instrument state.		
Range:	$0(\mathrm{LO}) \mid 1$ (LI) $\|2(\mathrm{RI})\| 3$ (RO)		
Instrument S/W Revision:	A. 02.00		

$\mathbf{0}$ (LO) This softkey selects the first, Left Outer (LO) subchannel.

Key Path:	Meas setup, EVM Setup, Analysis Subchannel
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

1 (LI) This softkey selects the second, Left Inner (LI) subchannel.

Key Path:	Meas setup, EVM Setup, Analysis Subchannel
Mode:	IDEN

Instrument S/W Revision: A.02.00

2 (RI) This softkey selects the third, Right Inner (RI) subchannel.

Key Path:	Meas setup, EVM Setup, Analysis Subchannel
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

3 (RO) This softkey selects the fourth, Right Outer (RO) subchannel.

Key Path:	Meas setup, EVM Setup, Analysis Subchannel
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN Carrier

WiDEN Carrier is only used when WiDEN Slot Formats are active. It is ignored (grayed out) for other slot formats. It affects the Subchannel demodulation results ("Subchannel Demod" on page 452), and the Subchannel Error Summary table ("Subchannel Error Summary" on page 454). See also Analysis Subchannel ("Analysis Subchannel" on page 426).

Key Path:	Meas Setup, EVM Setup
Mode:	IDEN
Remote Command:	[:SENSe]: IDEMod:WCARrier <integer>
	[:SENSe]: IDEMod:WCARrier?
Example:	$:$ IDEM:WCAR 0
Preset:	0
State Saved:	Saved in instrument state.
Min:	0
Max:	3
Instrument S/W Revision:	A. 02.00

EVM Test Limit

This is the test limit for the EVM test, in \% EVM.

Key Path:	Meas Setup, EVM Setup
Mode:	IDEN

Remote Command:	$:$ CALCulate:IDEMod:EVMagnitude:LIMit:EVMLimit <real>
	$:$ CALCulate:IDEMod:EVMagnitude:LIMit:EVMLimit?
Example:	:CALC:IDEM:EVM:LIM:EVML 10
Preset:	10
State Saved:	Saved in instrument state.
Min:	.01
Max:	100
Instrument S/W Revision:	A. 02.00

BER Setup

The BER Setup parameters affect functionality of BER measurements and the BER Test. In addition, the Analysis Slot defines which detected slot is analyzed by the EVM and PvT Tests.

Key Path:	Meas Setup
Mode:	IDEN
Instrument S/W Revision:	A.02.00

BER Slots

BER Slots parameter is active when BER test is selected ("BER" on page 424). This parameter sets the number of slots to demodulate and measure BER. Slots with no detected burst signal will be ignored. The number of BER Slots defines the minimum allowed Search Length. See the Search Length section ("Search Length" on page 429) for details.

BER Slots also set the upper bound of the Analysis Slot. See the Analysis Slot section ("Analysis Slot" on page 430) for details.

When the BER Test is not enabled, BER Slots is clamped to 1.

Key Path:	Meas Setup, BER Setup
Mode:	IDEN
Remote Command:	$[:$ SENSe] : IDEMod: SLOTs <integer>
	$[: S E N S e]:$ IDEMod: SLOTs?
Example:	:IDEM:SLOT 1
Dependencies/Couplings:	BER Slots defines the minimum allowed Search Length ("Search Length" on page 429), and the maximum allowed Analysis Slot ("Analysis Slot" on page 430).

Test Preset ("Test Preset" on page 425) sets this to 1 or 16, depending on whether the BER Test ("BER" on page 424) is enabled or disabled; see below.
Preset: 16

State Saved: Saved in instrument state.
Range: See table below
Instrument S/W Revision: A.02.00

Preset, Test Preset value:

BER Test enabled	16
BER Test disabled	1

BER Test Limit

This is the test limit for the BER test, given in \% BER.

Key Path:	Meas Setup, BER Setup
Mode:	IDEN
Remote Command:	:CALCulate:IDEMod:BERate:LIMit:ERATe <real>
	:CALCulate:IDEMod:BERate:LIMit:ERATe
Example:	:CALC:IDEM:BER:LIM:ERAT 5
Dependencies/Couplings:	No
Preset:	5
State Saved:	Saved in instrument state.
Min:	0
Max:	50
Instrument S/W Revision:	A.02.00

Search Length

The Search Length is the time record set for acquiring the signal in making a measurement. It must be long enough to include the number of slots to be analyzed. When the Trigger is set to Free Run, it must also include the maximum expected latency time.

Search Length is preset to a length appropriate for all slots active in inbound slot formats, as detailed below. Search Length is set to a default value when the BER Test is enabled, or when the BER Slots are changed. A longer search length is necessary when the subscriber radio under test is not transmitting in every slot in each frame. If a sparse frame is transmitted, increasing the Search Length will ensure enough slots are captured to satisfy the BER Slots requirement for inbound slot formats.

Key Path:	Meas Setup
Mode:	IDEN

Remote Command:	$[:$ SENSe]:IDEMod:SYNC:SLENgth <time>
	[:SENSe]:IDEMod:SYNC:SLENgth?
Example:	:IDEM:SYNC:SLEN . 260
Dependencies/Couplings:	When user change the BER Slots parameter, the search length will be adjusted according to it.
Preset:	260 ms
Min:	35 ms
Max:	2 s
Instrument S/W Revision:	A. 02.00

Default Search Length - assumes that the slots are as densely packed as possible, as in the case of outbound slot formats.

	BER Test enabled	BER Test disabled
BER Slots default	16	1
Search Length	$15 *($ BER Slots +1$)+5 \mathrm{~ms}$	$15 *($ BER Slots +1$)+5 \mathrm{~ms}$
Search Length at default number of BER Slots	260 ms	35 ms

Analysis Slot

The Analysis Slot selects the slot analyzed in the BER Slot Summary data result. It also specifies the slot analyzed for all other single slot data results, such as the EVM results and PvT results. Changing the analysis slot causes the analysis to be performed on that newly specified slot of the current signal acquisition.

Analysis Slot range is from 0 to BER Slots- 1 , where each value is a different slot in the BER acquisition. When the BER Test is not enabled, the Analysis Slot is clamped to slot 0 .

Key Path:	Meas Setup, BER Setup
Mode:	IDEN
Remote Command:	[:SENSe]: IDEMod: ASLot <integer>
	$[:$ SENSe]: IDEMod : ASLot?
Example:	:IDEM:ASL 0
Dependencies/Couplings:	Maximum is limited to BER Slots - 1
Preset:	0
State Saved:	Saved in instrument state.
Min:	0

Max:	31
Instrument S/W Revision:	A. 02.00

Avg Number

Sets the number of time records whose measurement results will be averaged. For more information, see "Avg Number" on page 939.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset ("Test Preset" on page 425) sets to 20
Preset:	On, 20
Instrument S/W Revision:	A. 02.00

Average Mode

Average Mode controls the averaging method when the Sweep Control is in Continuous mode and the number of time records processed exceeds the Average Number (see above). When Sweep Control is in Single mode, Average Mode has no effect. For more information, see "Average Mode" on page 940.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset ("Test Preset" on page 425) sets to EXPonential
Preset:	EXPonential
Instrument S/W Revision:	A. 02.00

Average Setup

Access a menu allowing you to set Averaging parameters for all VSA based measurements. There are no SCPI/features unique to this measurement. For more information, see "Average Setup" on page 941.

Key Path:	Meas Setup, More
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Average Type

The Average Type softkey menu allows you to select the type of averaging. For more information, see "Average Type" on page 941.

Key Path:
Meas Setup, More, Average Setup

Mode:	IDEN
Dependencies/Couplings:	Test Preset ("Test Preset" on page 425) sets to RMS
Preset:	RMS
Instrument S/W Revision:	A. 02.00

RMS This softkey selects the RMS Average Type. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, Average Setup, Average Type
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Time This softkey selects the Time Average Type. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, Average Setup, Average Type
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Max This softkey selects the Max Average Type. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, Average Setup, Average Type
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Fast Average

Fast Average controls the display updates of average data. For more information, see "Fast Average" on page 942.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset ("Test Preset" on page 425) sets to OFF
Preset:	OFF
Instrument S/W Revision:	A. 02.00

Update Rate

The Update Rate controls how often the display updates when fast averaging is turned on. For more
information, see "Update Rate" on page 943.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset ("Test Preset" on page 425) sets to Manual, 20
Preset:	Auto, 20
Instrument S/W Revision:	A. 02.00

Extend Freq Lock Range

When "ON" is chosen for this parameter, the demodulation algorithm allows for the modulation not being closely centered on the Center Frequency. Turn this parameter OFF only in special cases where specific data patterns cause display instabilities.

Key Path:	Meas Setup, More		
Mode:	IDEN		
Remote Command:	$[: S E N S e]:$ IDEMod:EFLock OFF\|ON	0	1
	$[: S E N S e]:$ IDEMod:EFLock?		
Example:	:IDEM:EFL ON		
Dependencies/Couplings:	Set to ON by Test Preset ("Test Preset" on page 425)		
Preset:	ON		
State Saved:	Saved in instrument state.		
Range:	OFF \|ON		
Instrument S/W Revision:	A.02.00		

Normalize

Setting this parameter to ON will result in the constellation diagram and other absolute demodulation results being normalized to a nominal 1.0 value. When set to OFF, results are presented in absolute units. This parameter will also affect the PvT trace. When normalize is ON, the PvT trace will be the normalized by the data power. If it's OFF, the PvT trace will contain absolute value.

Key Path:	Meas Setup, More		
Mode:	IDEN		
Remote Command:	[:SENSe]: IDEMod: NORMalize:STATe OFF\|ON	0	1
	$[: S E N S e]:$ IDEMod: NORMalize:STATe?		
Example:	:IDEM:NORM:STAT ON		
Dependencies/Couplings:	Set to ON by Test Preset (("Test Preset" on page 425)		

Preset:	ON
State Saved:	Saved in instrument state.
Range:	OFF \| ON
Instrument S/W Revision:	A.02.00

Advanced

This softkey menu selection accesses advanced demodulation controls that are not commonly used. These menu selections are defined in the following sections.

Key Path:	Meas Setup, More
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Filter Alpha

This softkey sets the Root Raised Cosine (RRC) demodulation receive filter alpha parameter. It is preset per the test standards.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN
Remote Command:	[:SENSe] : IDEMod:ALPHa <real>
	$[:$ SENSe $]:$ IDEMod :ALPHa?
Example:	:IDEM:ALPH . 2
Dependencies/Couplings:	Set to .2 by Test Preset
Preset:	.2
State Saved:	Saved in instrument state.
Min:	.05
Max:	1.0
Instrument S/W Revision:	A.02.00

Time Scale Factor

The Time Scale Factor key allows you to scale the timebase of a signal, or a debug environment where the symbol rate and DAC (Digital to Analog Converter) clocking is scaled at a faster or slower rate. For example, you can scale a test signal with a symbol rate of 4 Hz instead of 4000 Hz by entering: Time Scale Factor $=0.001$, which results in a closer analysis.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN

Remote Command:	$[:$ SENSe]:IDEMod:TSCale <real>
	$[:$ SENSe]: IDEMod:TSCale?
Example:	$:$ IDEM:TSC 1.0
Dependencies/Couplings:	Test Preset is 1.0. Will change Span
Preset:	1.0
State Saved:	Saved in instrument state.
Min:	.1
Max:	1000
Instrument S/W Revision:	A. 02.00

Sync/Pilot Symbols

When this softkey selection is On, the EVM calculations will include the Sync and Pilot Symbols. When Off, these symbols will not be included in the EVM calculations.

Key Path:	Meas Setup, More, Advanced		
Mode:	IDEN		
Remote Command:	[:SENSe]: IDEMod:SPSYmbols:INCLude OFF\|ON	0	1
	$[: S E N S e]:$ IDEMod:SPSYmbols:INCLude?		
Example:	:IDEM:SPSY:INCL OFF		
Dependencies/Couplings:	Test Preset set this to Off.		
Preset:	OFF		
State Saved:	Saved in instrument state.		
Range:	OFF \|ON		
Instrument S/W Revision:	A.02.00		

Droop

When this softkey selection is On, droop correction will be applied to the EVM calculations. When Off, it will not be applied and droop errors will be included in EVM results.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN
Remote Command:	$[: S E N S e]:$ IDEMod:ADRoop:COMPensation OFF $\|O N\| 0 \mid 1$
	$[: S E N S e]:$ IDEMod:ADRoop:COMPensation?
Example:	$:$ IDEM:ADR:COMP ON
Dependencies/Couplings:	Test Preset sets this to ON

iDEN Demod Measurement

Meas Setup

Preset:	ON
State Saved:	Saved in instrument state.
Range:	OFF \| ON
Instrument S/W Revision:	A. 02.00

Pilot Tracking

This softkey sets whether or not to include Pilot Tracking in Error Vector Magnitude (EVM) calculations and adjust constellation diagrams.

When Pilot Tracking is set to On, the analyzer uses the predicted locations of the pilot symbols compared to the actual pilot symbol locations. It then adds phase/amplitude corrections to better position the actual pilot symbols at the predicted locations. This generally results in improved EVM measurement accuracy.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN
Remote Command:	$[:$ SENSe]: IDEMod:PILot:TRACk OFF \mid ON $\|0\| 1$
	$[:$ SENSe]:IDEMod:PILot:TRACk?
Example:	:IDEM:PIL:TRAC OFF
Dependencies/Couplings:	Test Preset set this to ON.
Preset:	ON
Force Restart:	Avg Off: No
	Avg On: Yes
State Saved:	Saved in instrument state.
Range:	OFF \| ON
Instrument S/W Revision:	A. 02.00

Mode

See "Mode" on page 741.
iDEN Demod Measurement
Mode Setup

Mode Setup

See "Mode Setup" on page 761.

Peak Search

See "Peak Search" on page 945.

Recall

See "Recall" on page 152 in the section "Common Measurement Functions" for more information.

Restart

See "Restart" on page 787 in the section "Common Measurement Functions" for more information.

Save

See "Save" on page 169 in the section "Common Measurement Functions" for more information.

Single

See "Single (Single Measurement/Sweep)" on page 793 in the section "Common Measurement Functions" for more information.

Source

Source

The Source function is not available for this mode.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

SPAN X Scale

There are no measurement unique SCPI/features, however, the Span can be controlled by other measurement parameters and couplings.
See "SPAN X Scale" on page 955.

Key Path:
Mode:
Instrument S/W Revision:

Front-panel key

IDEN
A. 02.00

Span

This softkey sets the frequency Span of the measurement. For more information, see "Span" on page 955.

Key Path:
Mode:
Dependencies/Couplings:

Preset:
Instrument S/W Revision:

SPAN X Scale
IDEN
Test Preset, changes to Carrier Config, and some changes to Slot Format cause the Span to be changed as detailed in the table below. Span is also scaled by Time Scale Factor.

30 kHz
A. 02.00

Default Span vs Slot Format and Carrier Config:

Slot Format Carrier Config	All iDEN	WiDEN 25 kHz,	WiDEN 50 kHz	WiDEN 75 kHz	WiDEN 100 kHz	WiDEN Outer 50 kHz
Span	60 kHz	60 kHz	85 kHz	110 kHz	135 kHz	135 kHz

Sweep/Control

See "Sweep/Control" on page 797.

Trace/Detector

This softkey accesses a menu allowing you to select various trace and detector parameters for the current measurement.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Data

This accesses a menu of Trace data choices for the selected trace. For more information, see "Data" on page 969.

Key Path:	Trace/Detector
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

The following are the SCPI string forms for the Data types that are specific to this measurement:

Trace data soft key name	SCPI string form
Spectrum	"Spectrum1"
Inst Spectrum	"Inst Spec1"
Search Time	"Search Time1"
Time	"Time1"
Raw Main Time	"Raw Main Time1"
PVT Time	"PVT Time1"
PVT Summary	"PvT WIDEN CARR0 Time1"
WiDEN Carr0 PvT Time	"PvT WIDEN CARR1 Time1"
WiDEN Carr1 PvT Time	"PvT WIDEN CARR2Time1"
WiDEN Carr2 PvT Time	"PvT WIDEN CARR3 Time1"
WiDEN Carr3 PvT Time	"BER Slot Summary1"
BER Overall Summary	"Overlaid IQ Meas Time1"
BER Slot Summary	
Overlaid IQ Meas Time	

Trace/Detector

Trace data soft key name	SCPI string form
Overlaid IQ Ref Time	"Overlaid IQ Ref Time1"
Overlaid Error Vector Time	"Overlaid Error Vector Time1"
Overlaid Error Vector Spectrum	"Overlaid Error Vector Spectrum1"
Overlaid IQ Mag Error	"Overlaid IQ Mag Error1"
Overlaid IQ Phase Error	"Overlaid IQ Phase Error1"
Subchannel IQ Meas Time	"Subchan IQ Meas Time1"
Subchannel IQ Ref Time	"Subchan IQ Ref Time1"
Subchannel Error Vector Time	"Subchan Error Vector Time1"
Subchannel IQ Mag Error	"Subchan Error Vector Spectrum1"
Subchannel IQ Phase Error	"Subchan IQ Mag Error1"
Composite Error Summary	"Comp Error Summary1"
Composite Symbols	"Comp Syms1"
Subchannel Error Summary	"Subchan Error Summary1"
MQAM Summary	"MQAM Summary1"

Pre Demod

This softkey accesses several Trace Data types which show results prior to demodulation.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Spectrum Shows the frequency spectrum of the signal, scaled to the display and averaged if averaging is on.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Inst Spectrum Displays the most recent spectrum measurement of your signal, scaled to the display.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Search Time Shows the time-data before pulse search and demodulation, that is, shows the acquired time data used to search for the pulse (or burst).

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Time Shows the block of time-record samples of the signal waveform, from which time, frequency, and modulation domain data is derived.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Raw Main Time Shows the raw data acquired from the input hardware. This data is unprocessed and includes additional points acquired for settling of the filters involved in subsequent processing, such as the demodulation filtering.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

PvT

This softkey brings up a menu for a number of Trace Data types which show PvT specific results.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

PvT Time Shows a non-complex time display of the full slot with time $=0$ referenced to the first data symbol.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

PvT Summary Shows a summary of the composite signal (all subchannels) for elements of the slot format, overall slot power, data, AGC, and power off levels. Note that the PvT Test Status is not included in this table but is visible on the front panel and is accessible via the

CALCulate:CLIMits:FAIL? query.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN Carr0 PvT Time Shows a non-complex time display of the full slot with time $=0$ referenced to the first data symbol.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN Carr1 PvT Time Shows a non-complex time display of the full slot with time $=0$ referenced to the first data symbol.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN Carr2 PvT Time Shows a non-complex time display of the full slot with time $=0$ referenced to the first data symbol.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN Carr3 PvT Time Shows a non-complex time display of the full slot with time $=0$ referenced to the first data symbol.

Key Path:	Trace/Detector, PvT
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

BER

This softkey accesses a number of Trace Data types which are BER specific tables.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

BER Overall Summary Shows a trace of an overall Bit Error Rate (BER).

Key Path:	Trace/Detector, BER
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

BER Slot Summary Shows a trace for a visual representation of Bit Error Rate (BER) symbol errors within an overall slot.

Key Path:	Trace/Detector, BER
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid Demod

This key brings up a number of Trace Data types which show demodulation results for all subchannels on a single display.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid IQ Meas Time Displays all sub-carrier symbols. In a constellation diagram, the symbols are overlaid on an ideal state pattern with circles for data symbols and cross-marks for sync and pilot symbols.

Key Path:	Trace/Detector, Overlaid Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid IQ Ref Time Shows the sequence of ideal I and Q states as a composite of all sub-carriers.

Key Path:	Trace/Detector, Overlaid Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid Error Vector Time Displays error vector time for every subchannel symbol on a symbol by symbol basis (vertical green line), overlaid with a white trace that shows the average error vector time per symbol (LinMag or LogMag scale only).

Key Path:
Trace/Detector, Overlaid Demod

Mode:	IDEN
Instrument S/W Revision:	A.02.00

Overlaid Error Vector Spectrum Displays all of the iDEN/WiDEN subchannels as green vertical lines, with each green vertical line containing all the symbols for a subchannel, and the entire display overlaid with a white trace (LinMag or LogMag scale only) showing the average vector error of each subchannel.

Key Path:	Trace/Detector, Overlaid Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid IQ Mag Error Displays the IQ magnitude error for every subchannel symbol on a symbol by symbol basis, overlaid with a white trace (LinMag or LogMag scale only) that shows the average IQ magnitude error per symbol.

Key Path:	Trace/Detector, Overlaid Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Overlaid IQ Phase Error Displays the IQ phase error for every sub-carrier symbol, on a symbol-by-symbol basis. The display is overlaid with a white trace identifying the average IQ phase error per symbol.

Key Path:	Trace/Detector, Overlaid Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Subchannel Demod

This softkey accesses a number of Trace Data types which show demodulation results for the single subchannel selected by Analysis Subchannel ("Analysis Subchannel" on page 426) and WiDEN Carrier ("WiDEN Carrier" on page 427).

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Subchannel IQ Meas Time Displays all symbols for the selected subchannel, overlaid using an ideal state pattern. Circles are used to identify data symbols and cross-marks for sync and pilot symbols.

Mode:	IDEN
Instrument S/W Revision:	A.02.00

Subchannel IQ Ref Time Shows a sequence of ideal I and Q states for the specified subchannel.

Key Path:	Trace/Detector, Subchannel Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Subchannel Error Vector Time Displays error vector time for the specified subchannel on a symbol-by-symbol basis.

Key Path:	Trace/Detector, Subchannel Demod
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Subchannel IQ Mag Error Displays the IQ magnitude time error for the selected subchannel on a symbol-by-symbol basis.

Key Path:	Trace/Detector, Subchannel Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Subchannel IQ Phase Error Displays the IQ phase error for the selected subchannel on a symbol-by-symbol basis.

Key Path:	Trace/Detector, Subchannel Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Tables

This softkey accesses a menu selection for a number of tabular Trace Data types: Composite Error Summary, Composite Symbols, Subchannel Error Summary, and MQAM Summary.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Composite Error Summary Displays an error summary for the composite iDEN/WiDEN signal,
which includes all valid subchannels.

Key Path:	Trace/Detector, Tables
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Composite Symbols Displays all the demodulated symbols for the selected slot format.

Key Path:	Trace/Detector, Tables
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Subchannel Error Summary Shows an error summary for the subchannel selected by Analysis Subchannel and WiDEN Carrier.

Key Path:	Trace/Detector, Tables
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

MQAM Summary Shows a summary of EVM, PvT, and BER Test results.

Key Path:	Trace/Detector, Tables
Mode:	IDEN
Instrument S/W Revision:	A. 02.00
ACP	
Key Path:	Trace/Detector, Data, More
Mode:	IDEN
Instrument S/W Revision:	A.02.00
OBW	Trace/Detector, Data, More
Key Path:	IDEN
Mode:	A.02.00
Instrument S/W Revision:	

Register

Key Path:
Mode:
Instrument S/W Revision:

No Data

Key Path:
Mode:
Instrument S/W Revision:

Trace/Detector, Data, More
IDEN
A.02.00

Trace/Detector, Data, More
IDEN
A. 02.00
iDEN Demod Measurement

Trigger

See "Trigger" on page 1009.

View / Display

After Test Preset, the layout will include two windows for each test enabled. The view layout will be 2, 4 or 6 windows. If no tests are enabled, the view layout will be two windows with the IQ Meas Time constellation in trace 1, and the MQAM Summary Trace in trace 2.

When the EVM test is enabled, and Test Preset is pressed, the IQ Meas Time constellation in trace 1, and the EVM Composite Summary trace will be displayed in trace 2.

When the PvT test is enabled, and Test Preset is pressed, the PvT Time trace will be displayed in trace 3, and the PvT Summary trace will be displayed in trace 4.

When the BER test is enabled, and Test Preset is pressed, the BER Slot Summary trace will be displayed in trace 5, and the BER Overall Summary trace will be displayed in trace 6 .

The view setup can be changed by selections from the View/Display menu, or by pressing Test Preset after enabling the desired tests, or by individually selecting traces and layout. The user may change the number of windows in the layout, or the contents of those windows.

The Preset View softkeys perform an immediate action of changing the layout and view for various Preset Views unique to this measurement. These Preset Views are actions, not states.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Display

See "Display" on page 889 in the "Common Measurement Functions" section for more information.

Layout

See "Layout" on page 1025.

Preset View: Test Standard

Preset the display layout to pre-defined patterns.

Key Path:	View/Display			
Remote Command:	:DISPlay: IDEMod:VIEW: PRESet			
	TSTD\|PVTBOTH	EVMQUAD	EVMSYMS	WPVT
Example:	:DISP:IDEM:VIEW:PRES TSTD			

Notes:	Command Only.
	TSTD: Test Standard
	PVTBOTH: PvT Rise \& Fall
	EVMQUAD: EVM(Quad)
	EVMSYMS: EVM \& Symbols
	WPVT: WiDEN PvT
Dependencies/Couplings:	Action dependent on the state of the several test enables
Instrument S/W Revision:	A. 02.00

Preset View: PvT Rise \& Fall

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IDEM:VIEW:PRES PVTBOTH
Notes:	Command Only.
	TSTD: Test Standard
	PVTBOTH: PvT Rise \& Fall
	EVMQUAD: EVM(Quad)
	EVMSYMS: EVM \& Symbols
	WPVT: WiDEN PvT
Dependencies/Couplings:	Action dependent on the state of the several test enables
Instrument S/W Revision:	A. 02.00

Preset View: EVM (Quad)

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IDEM:VIEW:PRES EVMQUAD
Notes:	Command Only.
	TSTD: Test Standard
	PVTBOTH: PvT Rise \& Fall
	EVMQUAD: EVM(Quad)
	EVMSYMS: EVM \& Symbols
	WPVT: WiDEN PvT
Dependencies/Couplings:	Action dependent on the state of the several test enables

Instrument S/W Revision: A.02.00

Preset View: EVM \& Symbols

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IDEM:VIEW:PRES EVMSYMS
Notes:	Command Only.
	TSTD: Test Standard
	PVTBOTH: PvT Rise \& Fall
	EVMQUAD: EVM(Quad)
	EVMSYMS: EVM \& Symbols
	WPVT: WiDEN PvT
Dependencies/Couplings:	Action dependent on the state of the several test enables
Instrument S/W Revision:	A. 02.00

Preset View: WiDEN PvT

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Example:	:DISP:IDEM:VIEW:PRES WPVT
Notes:	Command Only.
	TSTD: Test Standard
	PVTBOTH: PvT Rise \& Fall
	EVMQUAD: EVM(Quad)
	EVMSYMS: EVM \& Symbols
	WPVT: WiDEN PvT
Dependencies/Couplings:	Action dependent on the state of the several test enables
Instrument S/W Revision:	A. 02.00

Measurement Results and Views

Front Panel Results

There are three sets of test results combined into this measurement. Each set of results has limit testing to provide a Pass or Fail test result.

- Modulation Quality Test and Measurement Results

Several EVM results are available, including constellations, EVM versus time, EVM summary trace, etc. The EVM Test Limit is settable.

- Bit Error Rate Test and Measurement Results

Typical Glacier style BER results are available, including a summary trace with symbols for a user-selected analysis slot, and an overall BER summary. The BER Test Limit is settable.

- Power Versus Time Test and Measurement Results

The PvT trace has slot format specific limit lines. Note that 0.0 is the symbol time of the first modulated symbol.

Result Views

There are five views. As follows:
View - Preset View: Test Standard The Test Standard view provides the preset view for the set of selected tests, as defined in the Test Selection section. The exact action is dependent on the test selections.

The action performed is detailed in the table below.

- If no Test is selected the Display Layout will be "Stack 2", with the two traces shown in the "EVM or none" column.
- If a single test is selected, the Display Layout will be "Stack 2", with the two traces shown in the column below the Test.
- If Two tests are selected, the Display Layout will be "Grid 2x2", with the four traces shown in the same location as in the table below if you remove the column for the unused Test.
- If all three Tests are selected, the Display Layout will be "Grid 2x3", with the six traces shown in the same location as in the table below.

EVM or none	PvT	BER
Trace 1:	Trace 3:	Trace 5:
IQ Meas Time constellation	PvT Time	BER Slot Summary
Trace 2:	Trace 4:	Trace 6: EVM Composite Summary
PvT Summary	BER Overall Summary	

View - Preset View: PvT Rise \& Fall The PvT Rise \& Fall view configures a 4 pane layout. Traces 1 displays the rising edge, and trace 3 displays the falling edge, of the iDEN burst. Those traces are setup using X-axis scaled parts of the PVT Time Meas Data. Trace 2 displays the PVT Summary. Trace 4 displays the Spectrum trace.

The default X-axis scaling setup for the PvT Time traces in the PvT Rise \& Fall view is a function of the slot format.

For viewing consistency, the X -scale length is 3 ms in all cases. Note that 0.0 is the symbol time of the first modulated symbol.

Slot Format	Inbound Reserved, Enhanced 6:1, WiDEN	Inbound New 6:1	Inbound New 6:1 with Training	Inbound Random Access	Outbound
Rise Window - Start	-2 ms	-1 ms	-2 ms	-2 ms	-2 ms
Rise Window - Stop	1 ms	2 ms	1 ms	1 ms	1 ms
Fall Window - Start	12 ms	5.5 ms	4.5 ms	3.75 ms	14 ms
Fall Window - Stop	15 ms	8.5 ms	7.5 ms	6.75 ms	17 ms

View - Preset View: EVM (Quad) The EVM (Quad) view configures a 4 pane layout showing the constellation in Trace 1, the Spectrum in Trace 2, the Err Vect Time in Trace 3, and EVM statistics in the Composite Error Summary in Trace 4.

View - Preset View: EVM \& Symbols The EVM \& Symbols view configures a 4 pane layout showing the IQ Meas Time constellation in trace 1, Composite Error Summary in trace 2, the Err Vect Time in trace 3, and the Symbol Table in trace 4.
iDEN Demod Measurement View I Display

View - Preset View: WiDEN PvT The WiDEN PvT view configures a 6 pane layout showing the 4 carriers' PvT trace in trace 1 to 4, Composite PvT trace in trace 5, and the PvT summary in trace 6.

iDEN Demod Measurement
View I Display

10 MotoTalk Measurement

This topic contains the following sections:
"Measurement Commands for MotoTalk Measurement" on page 467
"Remote Command Results for MotoTalk Measurement" on page 467

Measurement Commands for MotoTalk Measurement

All scalar results for this measurement are contained in one table and there is one equivalent subopcode for the remote results. The remote user can use this equivalence by visually inspecting the corresponding summary trace on the display, or by using CALC:DATA queries, which programmatically describes the corresponding summary trace.

CONFigure:MOTotalk
CONFigure:MOTotalk:NDEFault
FETCh:MOTotalk[n]?
INITiate:MOTotalk
MEASure:MOTotalk[n]?
READ:MOTotalk[n]?
For more measurement related commands, see the SENSe subsystem, and the section "Remote Measurement Functions" on page 679.

Remote Command Results for MotoTalk Measurement

The following table displays the returned results from the (FETCh|MEASure|READ):IDEMod commands, indexed by subopcode:

Index n	Results Returned
Not specified	Returns 36 comma-separated overall scalar results, corresponding exactly to the
or n=1	items returned in the Error Summary:
	1. Total bursts found
	2.Unused . Unused
5nused	6. Unused

Index n	Results Returned
or not specified	(Continued) 7. EVM (\% rms) mean: RMS average for RMS EVM. Unused if average is turned off.
	8. EVM (\% rms) max: Max for RMS EVM Unused if average is turned off. 9. EVM (\% rms) min: Min for RMS EVM Unused if average is turned off. 10. EVM (\% rms) StdDev: StdDev for RMS EVM Unused if average is turned off. 11. EVM (\% rms) Current: Current value for RMS EVM
	12. EVM Peak (\% peak) mean : RMS average for Peak EVM. Unused if average is turned off.
	13. EVM Peak (\% peak) max: Max for Peak EVM. Unused if average is turned off. 14. EVM Peak (\% peak) min: Min for Peak EVM. Unused if average is turned off. 15. EVM Peak (\% peak) StdDev : StdDev for Peak EVM. Unused if average is turned off. 16. EVM Peak (\% peak) Current : Current value for Peak EVM. 17. Carrier Frequency Offset (Hz) mean : RMS average. Unused if average is turned off. 18. Carrier Frequency Offset (Hz) max : Max value. Unused if average is turned off. 19. Carrier Frequency Offset (Hz) min : Min value. Unused if average is turned off. 20. Carrier Frequency Offset (Hz) StdDev: StdDev value. Unused if average is turned off. 21. Carrier Frequency Offset (Hz) Current : Current Value. 22. Freq Dev (Hz) mean : RMS average. Unused if average is turned off. 23. Freq Dev (Hz) max : Max value. Unused if average is turned off. 24. Freq Dev (Hz) min : Min value. Unused if average is turned off. 25. Freq Dev (Hz) StdDev: StdDev value. Unused if average is turned off. 26. Freq Dev (Hz) Current : Current Value. 27. Burst Power (dBm) mean: RMS average. Unused if average is turned off. 28. Burst Power (dBm) max: Max value. Unused if average is turned off. 29. Burst Power (dBm) min: Min value. Unused if average is turned off.

Index n	Results Returned
Not specified or $\mathrm{n}=1$	(Continued) 30. Burst Power (dBm) StdDev: StdDev value. Unused if average is turned off. 31. Burst Power (dBm) current: Current value. 32. Slot Power (dBm) mean: RMS average. Unused if average is turned off. 33. Slot Power (dBm) max: Max value. Unused if average is turned off. 34. Slot Power (dBm) min: Min value. Unused if average is turned off. 35. Slot Power (dBm) StdDev: StdDev value. Unused if average is turned off. 36. Slot Power (dBm) current: Current value.
$\mathrm{n}=2$	Returns 37 comma-separated slot scalar results, corresponding exactly to the items returned in the Error Summary: 1. Analysis slot: The user's setting in Meas Setup 2. Peak EVM symbol location 3. Unused 4. Unused 5. Unused 6. Unused 7. Unused 8. EVM (\% rms) mean: RMS average for RMS EVM. Unused if average is turned off. 9. EVM (\% rms) max: Max for RMS EVM Unused if average is turned off. 10. EVM (\% rms) min: Min for RMS EVM Unused if average is turned off. 11. EVM (\% rms) StdDev: StdDev for RMS EVM Unused if average is turned off. 12. EVM (\% rms) Current: Current value for RMS EVM 13. EVM Peak (\% peak) mean : RMS average for Peak EVM. Unused if average is turned off. 14. EVM Peak (\% peak) max: Max for Peak EVM. Unused if average is turned off. 15. EVM Peak (\% peak) min: Min for Peak EVM. Unused if average is turned off.

Index n	Results Returned
$\mathrm{n}=2$	(Continued) 16. EVM Peak (\% peak) StdDev : StdDev for Peak EVM. Unused if average is turned off.
	17. EVM Peak (\% peak) Current : Current value for Peak EVM. 18. Carrier Frequency Offset (Hz) mean : RMS average. Unused if average is turned off. 19. Carrier Frequency Offset (Hz) max : Max value. Unused if average is turned off. 20. Carrier Frequency Offset (Hz) min : Min value. Unused if average is turned off. 21. Carrier Frequency Offset (Hz) StdDev: StdDev value. Unused if average is turned off. 22. Carrier Frequency Offset (Hz) Current : Current Value. 3. Freq Dev (Hz) mean : RMS average. Unused if average is turned off. 24. Freq Dev (Hz) max : Max value. Unused if average is turned off. 25. Freq Dev (Hz) min : Min value. Unused if average is turned off. 26. Freq Dev (Hz) StdDev: StdDev value. Unused if average is turned off. 28. Burst Power (dBm) mean: RMS average. Unused if average is turned off. 29. Burst Power (dBm) max: Max value. Unused if average is turned off. 30. Burst Power (dBm) min: Min value. Unused if average is turned off. 31. Burst Power (dBm) StdDev: StdDev value. Unused if average is turned off. 32. Burst Power (dBm) current: Current value. 33. Slot Power (dBm) mean: RMS average. Unused if average is turned off. 34. Slot Power (dBm) max: Max value. Unused if average is turned off. 35. Slot Power (dBm) min: Min value. Unused if average is turned off. 36. Slot Power (dBm) StdDev: StdDev value. Unused if average is turned off. 37. Slot Power (dBm) current: Current value.

In addition to these results, other results are defined in Common Functions, Data Queries, MEASure, READ, FETCh in ":CALCulate:DATA" on page 1032.

This key selects the MotoTalk EVM and Power measurement.

Key Path:	Meas
Mode:	IDEN
Instrument S/W Revision:	A.02.00

AMPTD Y Scale

See "AMPTD Y Scale (Amplitude)" on page 899.

MotoTalk Measurement
Auto Couple

Auto Couple

See "Auto Couple" on page 507 in the section "Common Measurement Functions" for more information.
\square

BW

See "BW (Bandwidth)" on page 906.

MotoTalk Measurement
Cont

Cont

See "Cont (Continuous Measurement/Sweep)" on page 543 in the section "Common Measurement Functions" for more information.

Frequency Channel

See "FREQ Channel" on page 909.

MotoTalk Measurement
Input/Output

Input/Output

See "Input/Output" on page 559 in the section "Common Measurement Functions" for more information.

Marker

See "Marker" on page 912.

MotoTalk Measurement
Marker Function

Marker Function

See "Marker Function" on page 931.

Marker To

See "Marker -> (Marker To)" on page 928.

MotoTalk Measurement
Meas

Meas

See "Meas" on page 679 in the section "Common Measurement Functions" for more information.

Meas Setup

Displays the setup menu for the currently selected measurement.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Test Preset

Test Preset key initializes the measurement to a known state for starting MotoTalk testing. The various Parameters are preset as noted in the Coupling row of each parameter table. This softkey color is green, indicating its status as a preset key.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	CONF:MOTotalk
Example:	CONF:MOT
Dependencies/Couplings:	This affects other parameters as documented in the Coupling row for each affected parameter. It also performs a Preset View:Test Standard.
Instrument S/W Revision:	A. 02.00

Search Length

The Search Length is the length of the time record acquired to make the measurement. The time must be long enough to include the slot to be analyzed.

If the Trigger is set to Free Run, it must be increased to include the maximum expected latency time.
Search Length is preset to a length appropriate for all slots active. A longer Search Length is needed when the subscriber radio under test is not transmitting in every slot in each frame.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	[:SENSe]:MOTotalk[:SYNC]:SLENgth <time>
	[:SENSe]:MOTotalk[:SYNC]:SLENgth?
Example:	:MOT:SYNC:SLEN .11
Dependencies/Couplings:	Set to 110 ms by Test Preset.
Preset:	110 ms

Min:	110 ms
Max:	2 s
Instrument S/W Revision:	A. 02.00

Analysis Slot

Specifies the timeslot for analysis.

Key Path:	Meas Setup
Mode:	IDEN
Remote Command:	[:SENSe]:MOTotalk:ANALysis:SLOT <integer>
	[:SENSe]:MOTotalk: ANALysis:SLOT?
Example:	:MOT:ANAL:SLOT 0
Preset:	0
Min:	0
Max:	24
Instrument S/W Revision:	A. 02.00

Avg Number

This softkey sets the number of time records whose measurement results will be averaged. For more information, see "Avg Number" on page 939.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to 20
Preset:	Off, 20
Instrument S/W Revision:	A. 02.00

Average Mode

Average Mode determines how the measurement datat is processed if the Sweep Control is in Continuous mode and the number of time records processed exceeds the Average Number (see above). If the Sweep Control is in Single mode, this setting has no effect. For more information, see "Average Mode" on page 940.

Key Path:	Meas Setup, More
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to EXPonential

Preset:	EXPonential
Instrument S/W Revision:	A. 02.00

Average Setup

This softkey accesses a menu for averaging setup parameters. There are no SCPI/features unique to this measurement. For more information, see "Average Setup" on page 941.

Key Path:	Meas Setup, More
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Average Type

The Average Type key allows you to select the type of averaging. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to RMS
Preset:	RMS
Instrument S/W Revision:	A. 02.00

RMS This softkey selects the RMS Average Type. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, Average Setup, Average Type
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Time This softkey selects the Time Average Type. For more information, see "Average Type" on page 941.

Key Path:	Meas Setup, Average Setup, Average Type
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Max This softkey selects the Max Average Type. For more information, see "Average Type" on page 941.

Key Path:

MotoTalk Measurement
Meas Setup

Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Fast Average

Fast Average controls the display updates of average data. For more information, see "Fast Average" on page 942.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to OFF
Preset:	OFF
Instrument S/W Revision:	A. 02.00

Update Rate

The Update Rate controls how often the display updates when fast averaging is turned on. For more information, see "Update Rate" on page 943.

Key Path:	Meas Setup, More, Average Setup
Mode:	IDEN
Dependencies/Couplings:	Test Preset sets to Manual, 20
Preset:	Manual, 20
Instrument S/W Revision:	A. 02.00

Normalize

Setting this parameter to On will result in the error vector time window to be normalized by the frequency deviation.

Key Path:	Meas Setup, More
Mode:	IDEN
Remote Command:	$[: S E N S e]:$ MOTotalk: NORMalize:STATe OFF $\|O N\| 0 \mid 1$
	$[: S E N S e]: M O T o t a l k: N O R M a l i z e: S T A T e ? ~$
Example:	:MOT:NORM:STAT ON
Dependencies/Couplings:	Set to On by Test Preset
Preset:	On
State Saved:	Saved in instrument state.
Range:	Off \mid On

Advanced

These parameters are advanced demodulation controls that are not normally used.

Key Path:	Meas Setup, More
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Gaussian BT

This softkey sets the demodulation Gaussian receive filter BT (Bandwidth Time product) parameter and is preset per the filter standards. The Gaussian receive filter bandwidth 3 dB bandwidth in Hz is the Symbol Rate divided by the Gaussian BT.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN
Remote Command:	[:SENSe] : MOTotalk:BT <real>
	[:SENSe] :MOTotalk:BT?
Example:	:MOT:BT 2.5
Dependencies/Couplings:	Set to .4 by Test Preset
Preset:	2.5
State Saved:	Saved in instrument state.
Min:	.05
Max:	100.0
Instrument S/W Revision:	A. 02.00

Symbol Rate

This softkey sets the Symbol Rate expected by the demodulator and is preset per the standards. This can be used to "tune out" Symbol Rate errors or to accommodate an implementation that runs at less than the standard Symbol Rate.

Key Path:	Meas Setup, More, Advanced
Mode:	IDEN
Remote Command:	$[:$ SENSe $]:$ MOTotalk:SRATe <real>
	$[:$ SENSe $]:$ MOTotalk:SRATe?
Example:	$: M O T: S R A T ~ 3200$

Dependencies/Couplings:	Set to 3200 by Test Preset. Span will be increased, if necessary, to accommodate the signal bandwidth.
Preset:	3200
State Saved:	Saved in instrument state.
Min:	320
Max:	32000
Instrument S/W Revision:	A. 02.00

Burst Search

This softkey turns the Burst Search functionality On/Off. The burst search performs a coarse location of the beginning of the burst bring analyzed. This is followed by a sync pattern search in the burst over a narrow portion of the detected burst. If Burst Search is turned Off, the sync pattern search will be expanded to include the full range of possible locations within the Search Length. Turning Burst Search off can potentially take much longer than a burst search followed by a limited sync search. Turn Burst Search off only if it appears that signal or interference problems are causing the burst search to fail. Test Preset turns Burst Seach On.

Key Path:	Meas Setup, More, Advanced		
Mode:	IDEN		
Remote Command:	$[:$ SENSe] :MOTotalk:SYNC:BURSt:STATe OFF\|ON	0	1
	$[:$ SENSe]:MOTotalk:SYNC:BURSt:STATe?		
Example:	:MOT:SYNC:BURS:STAT ON		
Dependencies/Couplings:	Set to On by Test Preset		
Preset:	On		
State Saved:	Saved in instrument state.		
Range:	Off\| On		
Instrument S/W Revision:	A.02.00		

Mode

See "Mode" on page 741.

MotoTalk Measurement
Mode Setup

Mode Setup

See "Mode Setup" on page 761.

Peak Search

See "Peak Search" on page 945.

MotoTalk Measurement
Recall

Recall

See "Recall" on page 152 in the section "Common Measurement Functions" for more information.

Restart

See "Restart" on page 787 in the section "Common Measurement Functions" for more information.

MotoTalk Measurement
Save

See "Save" on page 169 in the section "Common Measurement Functions" for more information.

Single

See "Single (Single Measurement/Sweep)" on page 793 in the section "Common Measurement Functions" for more information.

MotoTalk Measurement

Source

Source

See "Source" on page 795.

SPAN X Scale

There are no measurement unique SCPI/features, other than Span being set by other measurement parameters. 1

See "SPAN X Scale" on page 955.
Key Path: Front-panel key

Mode:
Instrument S/W Revision:

IDEN
A.02.00

Span

This key sets the frequency Span of the measurement. For more information, see "Span" on page 955.

Key Path:
Mode:
Dependencies/Couplings:

Preset:
Instrument S/W Revision:

SPAN X Scale

IDEN
Test Preset sets this to 60 kHz . Large changes in Symbol Rate will cause the Span to be increased to accommodate the bandwidth of the signal.

60 kHz
A.02.00

MotoTalk Measurement

Sweep/Control

Sweep/Control

See "Sweep/Control" on page 797.

Trace/Detector

This key allows you to select the results shown in the trace windows. There are no remote commands/features unique to this measurement other than the selections under Data.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Data

This accesses a menu of Trace data choices for the selected trace.

Key Path:	Trace/Detector
Mode:	IDEN
Instrument S/W Revision:	A.02.00

The following are the SCPI string forms for the Data types that are specific to this measurement:

Trace data soft key name	SCPI string form
Spectrum	"Spectrum1"
Inst Spectrum	"Inst Spec1"
Search Time	"Search Time1"
Time	"Time1"
Raw Main Time	"Raw Main Time1"
Error Vector Time	"Error Vector Time1"
Error Summary	"Error Summary1"

Pre Demod

This key accesses the Trace Data choices which show pre-demodulation results.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00
Spectrum Averaged FFT of the Time waveform.	

Key Path:

Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Inst Spectrum FFT display of the time waveform for the current measurement.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Search Time The Search Length long time record acquired for the current measurement.

Key Path:	Trace/Detector, Data, Pre Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Time The input waveform for the current measurement vs. time, over one slot time period.

Key Path:	Trace/Detector, Data, Pre-Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Raw Main Time

The raw time record acquired for the current measurement. This data is unprocessed and includes additional points acquired for settling of the filters involved in subsequent processing, such as the demodulation filtering.

Key Path:	Trace/Detector, Data, Pre-Demod
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Error Vector Time

The overall error vector vs. time, for the measured trace.

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Slot Error Vector Time

The error vector vs. time of the specific slot defined by "Analysis Slot".

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Error Summary

It displays the overall scalar results for all burst found. The following results are shown on the Error Summary table (When average is turned off, the mean, max, min and StdDev values are not available):

- Total Bursts
- EVM (\% RMS): Mean, Max, Min, StdDev, Current
- Peak EVM (\%): Mean, Max, Min, StdDev, Current
- Carrier Frequency Offset: Mean, Max, Min, StdDev, Current
- Freq Dev: Mean, Max, Min, StdDev, Current
- Burst Power: Mean, Max, Min, StdDev, Current
- Slot Power: Mean, Max, Min, StdDev, Current

Key Path:	Trace/Detector, Data
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Slot Error Summary

It displays the scalar results of the specific slot specified by "Analysis Slot". The following results are shown on the Slot Error Summary table (When average is turned off, the mean, max, min and StdDev values are not available):

- Analysis Slot
- Peak EVM symbol location
- EVM (\% RMS): Mean, Max, Min, StdDev, Current
- Peak EVM (\%): Mean, Max, Min, StdDev, Current
- Carrier Frequency Offset: Mean, Max, Min, StdDev, Current
- Freq Dev: Mean, Max, Min, StdDev, Current
- Burst Power: Mean, Max, Min, StdDev, Current
- Slot Power: Mean, Max, Min, StdDev, Current

MotoTalk Measurement

Trace/Detector

Mode:	IDEN
Instrument S/W Revision:	A.02.00

Trigger

See "Trigger" on page 1009.

View/Display

The view setup can be changed by selections from the View/Display menu, or by pressing Test Preset, or by individually selecting traces and layout. The user may change the number of windows in the layout, or the contents of those windows.

Pressing the Preset View softkey will change the layout and view to the Preset View parameters unique to this measurement. This Preset View is an action, not a state.

Key Path:	Front-panel key
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Display

See "Display" on page 889 in the "Common Measurement Functions" section for more information.

Layout

See "Layout" on page 1025.

Preset View: Test Standard

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Mode:	IDEN
Remote Command:	:DISPlay:MOTotalk:VIEW:PRESet TSTD\|SLOT
Example:	:DISP:MOT:VIEW:PRES TSTD
Notes:	Remote Command Only.
	TSTD: Test Standard
	SLOT: Slot
Dependencies/Couplings:	This action is performed as part of Test Preset
Instrument S/W Revision:	A. 02.00

Preset View: Slot

Preset the display layout to pre-defined patterns.

Key Path:	View/Display
Mode:	IDEN

Example:
Instrument S/W Revision:
:DISP:MOT:VIEW:PRES SLOT
A. 02.00

Measurement Views

- Preset View: Test Standard

The Test Standard key changes the Layout to "Stack 3" with the following trace assignments and Formats:

1. Error Vector Time Averaged trace for all of the bursts found
2. Error Summary : Averaged summary results for all of the bursts found
3. Slot Error Summary: Summary result for the burst specified by "Analysis Slot"

- Preset View: Slot

The Test Standard key changes the Layout to "Stack 3" with the following trace assignments and Formats:

1. Slot Error Vector Time: Error Vector trace for the specific burst specified by "Analysis Slot"
2. Time: The time trace of the slot specified by "Analysis Slot"
3. Slot Error Summary result for the burst specified by "Analysis Slot"

Front Panel Results

A number of results are available, that include the default displays: the Error Vector vs. Time display, the main Time display, and the scalar results shown in the Error Summary table. Other, more detailed displays are also available.

11

Common Measurement Functions

The key and command descriptions in this section describe functions that operate the same in multiple measurements and/or modes. This section is a library of functions that is referenced by many measurements and modes

To find the exact description and parameters for functions in a specific measurement, always look in the measurement section of this documentation. Pressing the front-panel key or softkey and then pressing the green Help key also provides the correct information.

NOTE

If you want to print the documentation, be sure to select this section and the measurement of interest to ensure having all the information you need. See "Printing Acrobat Files" on page 99 for further instructions about printing.

Auto Couple

The Auto Couple feature provides a quick and convenient way to automatically couple multiple instrument settings. This helps ensure accurate measurements and optimum dynamic range. When the Auto Couple feature is activated, either from the front panel or remotely, all parameters of the current measurement which have an Auto/Manual mode are set to Auto mode and all measurement settings dependent on (or coupled to) the Auto/Man parameters are automatically adjusted for optimal performance.

However, the Auto Couple keyactions are confined to the current measurement only. It does not affect other measurements in the mode, and it does not affect markers, marker functions, or trace or display attributes.

See "More Information" on page 507

Key Path	Front-panel key
Remote Command	:COUPle ALL \|NONE
Example	:COUP ALL
Notes	:COUPle ALL puts all Auto/Man parameters in Auto mode (equivalent to pressing the Auto Couple key). :COUPLE NONE puts all Auto/Man parameters in manual mode. It decouples all the coupled instrument parameters and is not recommended for making measurements.
Initial S/W Revision	Prior to A.02.00

More Information

There are two types of functions that have Auto/Manual modes.

Auto/Man Active Function keys

An Auto/Man toggle key controls the binary state associated with an instrument parameter by toggling between "Auto" (where the parameter is automatically coupled to the other parameters it is dependent upon) and "Man" (where the parameter is controlled independent of the other parameters), as well as making the parameter the active function. The current mode is indicated on the softkey with either "Auto" or "Man" underlined as illustrated below.

Sweep Time	
Auto	66.24 ms
Man	

Auto/Man 1-of-N keys

An Auto/Man 1-of-N key allows you to manually pick from a list of parameter values, or place the function in "Auto" in which case the value is automatically selected (and indicated) as shown below. If in Auto, Auto is underlined on the calling key. If in manual operation, manual is indicated on the calling key. But the calling key does not actually toggle the function, it simply opens the menu.

Auto Couple

AMPTD Y Scale

The Amplitude front-panel key activates the Amplitude menu and selects Reference Level or Reference Value (depending on the measurement) as the active function.

Some features in the Amplitude menu apply to multiple measurements; others apply only to specific measurements. Keys that only apply to some measurements are blanked or grayed out in measurements in which they are not supported.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Reference Level

The Reference Level specifies the amplitude represented by the topmost graticule line.
Changing the reference level does not restart a measurement, because it is a display function only; instead it vertically 'pans' all displayed traces and markers to the new value. If a change to the reference level changes the attenuation value (eg through an auto coupling), then the measurement will be restarted.

See "Amplitude Representations" on page 510

Key Path	AMPTD Y Scale
Remote Command	:DISPlay :WINDow[1] :TRACe:Y[:SCALe] :RLEVel <real> :DISPlay:WINDow[1] :TRACe :Y[:SCALe] :RLEVel?
Example	DISP:WIND:TRAC:Y:RLEV 20 dBm Sets the reference level to 20 dBm, which displays in the current Y axis unit. For example, if the Y axis unit is dB $\mu \mathrm{V}$, then $126.99 \mathrm{~dB} \mu \mathrm{~V}$ will be displayed.
Couplings	If you reduce the attenuation, the analyzer may have to lower the reference level to keep it below its allowed maximum. This allowed maximum level is specified in the "Max" row, below, along with other variables which affect it. When you increase attenuation, the reference level does not change.
Preset	0 dBm
State Saved	Saved in instrument state
Min	RefLevelMin = -170 dBm + RefLevelOffset - ExtGain.

Max	The maximum Ref Level is typically: $+30 \mathrm{dBm}+$ RL Offset - External Gain (for MXA and PXA) $+23 \mathrm{dBm}+$ RL Offset - External Gain (for EXA and CXA)
	This maximum value is determined by the maximum power that can be safely applied to the input circuitry. The actual maximum value at any given time may be even less than this, depending on other values including Mech Atten, Int Preamp Gain, Swept IF Gain, FFT IF Gain, Max Mixer Level, and the total attenuation currently available.
Initial S/W Revision	Prior to A.02.00
Default Unit	Depends on the current selected Y axis unit

Amplitude Representations

The following is an illustration of the reference level and Y Axis scales under various conditions:

Attenuation

This menu controls the attenuator functions and interactions between the attenuation system components.

There are two attenuator configurations in the X-Series. One is a dual attenuator configuration consisting of a mechanical attenuator and an optional electronic attenuator. The other configuration uses a single attenuator with combined mechanical and electronic sections thatcontrols all the attenuation functions. Different models in the X-Series come with different configurations.

See "Dual Attenuator Configuration:" on page 511.
See "Single Attenuator Configuration:" on page 511
Most Attenuation settings are the same for all measurements - they do not change as you change measurements. Settings like these are called "Meas Global" and are unaffected by Meas Preset.

Key Path	AMPTD Y Scale
Scope	Meas Global

Dependencies	In measurements which support the I/Q inputs, this key is unavailable when I / Q is the selected input, and is replaced by the Range key in that case.
Readback Line	Contains a summary in [] brackets of the current total attenuation. See the descriptions of the "(Mech) Atten " on page 512, "Enable Elec Atten" on page 514, and "Elec Atten" on page 516 keys for more detail on the contributors to the total attenuation. Note that when "Pre-Adjust for Min Clip" is on, this value can change at the start of every measurement.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Dual Attenuator Configuration:

Single Attenuator Configuration:

You can tell which attenuator configuration you have by pressing the Attenuation key, which (in most Modes) opens up the Attenuation menu. If the first key in the Attenuation menu says Mech Atten you have the dual attenuator configuration. If the first key says Atten you have the single attenuator configuration.

In the single attenuator configuration, youcontrol the attenuation with a single control, as the fixed stage has only two states. In the dual attenuator configuration, both stages have significant range so you are given separate control of the mechanical and electronic attenuator stages.

When you have the dual attenuator configuration, you may still have only a single attenuator, because unless you purchase the Electronic Attenuator option you will only have the mechanical attenuator.

AMPTD Y Scale

(Mech) Atten

This key is labeled Mech Atten in dual attenuator models and Atten in single attenuator models. In the dual attenuator configuration, this key only affects the mechanical attenuator.

This key lets you modify the attenuation applied to the RF input signal path. This value is normally auto coupled to the Ref Level, the Internal Preamp Gain, any External Gain that is entered, and the Max Mixer Level, as described in the table below.

See "Attenuator Configurations and Auto/Man" on page 513

Key Path	AMPTD Y Scale, Attenuation		
Remote Command	[:SENSe]:POWer[:RF]:ATTenuation <rel_ampl> [:SENSe]:POWer[:RF]:ATTenuation? [:SENSe]:POWer[:RF]:ATTenuation:AUTO OFF\|ON	0	1 [:SENSe]:POWer[:RF]:ATTenuation:AUTO?
Example	POW:ATT 20 Dual attenuator configuration: sets the mechanical attenuator to 20 dB Single attenuator mode: sets the main attenuation to 20 dB (see below for definition of "main" attenuation). If the attenuator was in Auto, it sets it to Manual.		
Dependencies	Some measurements do not support the Auto setting of (Mech) Atten. In these measurements, the Auto/Man selection is not available, and the Auto/Man line on the key disappears. In dual attenuator configurations, when the electronic attenuator is enabled, the mechanical attenuator has no auto setting and the Auto/Man line on the key disappears. The state of Auto/Man is remembered and restored when the electronic attenuator is once again disabled. This is described in more detail in the "Enable Elec Atten" on page 514 key description. See "Attenuator Configurations and Auto/Man" on page 513 for more information on the Auto/Man functionality of Attenuation.		
Couplings	When (Mech) Atten is in Auto, it uses the following algorithm to determine a value: Atten $=$ ReferenceLevel + PreAmpGain + ExternalGain - RefLevelOffset MaxMixerLevel + IF Gain. Limit this value to be between 6 dB and the Max value. No value below 6 dB can ever be chosen by Auto. The resulting value is rounded up to the largest value possible given the attenuation step setting. That is, 50.01 dB would change to 60 dB (for a 10 dB attenuation step). The "IF Gain" term in the equation above is either 0 dB or +10 dB , depending on the settings of FFT IF Gain, Swept IF Gain, max Ref Level and the Auto/Man setting of Mech Atten.		

Preset	The preset for Mech Attenuation is "Auto." The Auto value of attenuation is: CXA, EXA, MXA and PXA: 10 dB
State Saved	Saved in instrument state
Min	0 dB The attenuation set by this key cannot be decreased below 6 dB with the knob or step keys. To get to a value below 6 dB it has to be directly entered from the keypad or via SCPI. This protects from adjusting the attenuation to a dangerously small value which can put the instrument at risk of damage to input circuitry. However, if the current mechanical attenuation is below 6 dB it can be increased with the knob and step keys, but not decreased.
Max	CXA: 50 dB EXA: 60 dB MXA and PXA: 70 dB In the single attenuator configuration, the total of ATT and EATT cannot exceed 50 dB, so if the EATT is set to 24 dB first, the main attenuation cannot be greater than 26 dB and will be reduced accordingly; if the main attenuator is set to 40 dB first, EATT cannot be greater than 10 dB.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Attenuator Configurations and Auto/Man

As described in the Attenuation key description, there are two distinct attenuator configurations available in the X-Series, the single attenuator and dual attenuator configurations. In dual attenuator configurations, we have the mechanical attenuation and the electronic attenuation, and the current total attenuation is the sum of the electronic + mechanical attenuation. In single attenuator configurations, we refer to the attenuation set using the (Mech) Atten key (or POW:ATT SCPI) as the "main" attenuation; and the attenuation that is set by the SCPI command POW:EATT as the "soft" attenuation (the POW:EATT command is honored even in the single attenuator configuration, for compatibility purposes). Then the current total attenuation is the sum of the main + soft attenuation. See the Elec Atten key description for more on "soft" attenuation.

In the dual attenuator configuration, when the electronic attenuator is enabled, there is no Auto/Man functionality for the mechanical attenuator, and the third line of the key label (the Auto/Man line) disappears:

Mech Atten
0 dB
Auto
Man

Mech Atten when elec
atten disabled

Mech Atten when elec
atten enabled

AMPTD Y Scale

Enable Elec Atten

Enables the Electronic Attenuator in dual attenuator configurations. This key does not appear in single attenuator configurations, as in the single attenuator configuration there is no "electronic attenuator" there is only a single integrated attenuator (which has both a mechanical and electronic stage).

The electronic attenuator offers finer steps than the mechanical attenuator, has no acoustical noise, is faster, and is less subject to wear. These advantages primarily aid in remote operation and are negligible for front panel use. See "Using the Electronic Attenuator: Pros and Cons" on page 515 for a detailed discussion of the pros and cons of using the electronic attenuator.

For the single attenuator configuration, for SCPI backwards compatibility, the "soft" attenuation feature replaces the dual attenuator configuration's electronic attenuator. All the same couplings and limitations apply. See "Attenuator Configurations and Auto/Man" on page 513

See "More Information" on page 515

Key Path	AMPTD Y Scale, Attenuation		
Remote Command	[:SENSe]:POWer[:RF]:EATTenuation:STATe OFF\|ON	0	1 [:SENSe]:POWer[:RF]:EATTenuation:STATe?
Example	POW:EATT:STAT ON		
Dependencies	This key only appears in the dual attenuator configuration. However, in the single attenuator configuration, EATT SCPI commands are accepted for compatibility with other X-series instruments and set a "soft" attenuation as described in "Attenuator Configurations and Auto/Man" on page 513 The electronic attenuator (and the "soft" attenuation function provided in single attenuator configurations) is unavailable above 3.6 GHz . Therefore, if the Stop Frequency of the analyzer is > 3.6 GHz then the Enable Elec Atten key will be OFF and grayed out. If the Internal Preamp is on, meaning it is set to Low Band or Full, the electronic attenuator (and the "soft" attenuation function provided in single attenuator configurations) is unavailable. In this case the Enable Elec Atten key will be OFF and grayed out. If either of the above is true, if the SCPI command is sent, an error indicating that the electronic attenuator is unavailable will be sent. If the electronic/soft Attenuator is enabled, then the Stop Freq of the analyzer is limited to 3.6 GHz and the Internal Preamp is unavailable.		
Couplings	Enabling and disabling the Electronic Attenuator affects the setting of the Mechanical Attenuator (in dual attenuator configurations). This is described in more detail below this table.		
Preset	OFF for Swept SA measurement; ON for all other measurements that support the electronic attenuator		
State Saved	Saved in instrument state		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A. 03.00		

More Information

When the Electronic Attenuator is enabled, the Mechanical Attenuator transitions to a state in which it has no Auto function. Here are the rules for transitioning the Mechanical Attenuator:

When the Electronic Attenuation is enabled:

- In the dual attenuator configuration, the Mechanical Attenuator is initialized to 10 dB (this is its optimal performance setting). You can then set it as desired with SCPI, numeric keypad, step keys, or knob, and it behaves as it normally would in manual mode
- The Auto/Man state of (Mech) Atten is saved
- The Auto/Man line on the (Mech) Atten key disappears and the auto rules are disabled
- In the dual attenuator configuration, the Electronic Attenuator is set to 10 dB less than the previous value of the Mechanical Attenuator, within the limitation that it must stay within the range of 0 to 24 dB of attenuation.

Examples in the dual attenuator configuration:

- Mech Atten at 20 dB . Elec Atten enabled, Mech Atten set to 10 dB , and Elec Atten set to 10 dB . New total attenuation equals the value before Elec Atten enabled.
- Mech Atten at 0 dB . Elec Atten enabled, Mech Atten set to 10 dB , and Elec Atten set to 0 dB . New total attenuation does not equal the value before Elec Atten enabled.
- Mech Atten at 40 dB . Elec Atten enabled, Mech Atten set to 10 dB , and Elec Atten set to 24 dB . New total attenuation does not equal the value before Elec Atten enabled.

When the Electronic Attenuation is disabled:

- In the dual attenuator configuration, the Elec Atten key is grayed out (it never displays in the single attenuator configuration)
- The Auto/Man state of (Mech) Atten is restored
- If now in Auto, (Mech) Atten recouples
- If now in Man, (Mech) Atten is set to the value of total attenuation that existed before the Elec Atten was disabled. The resulting value is rounded up to the smallest value possible given the (Mech) Atten Step setting - (That is, 57 dB changes to 58 dB when (Mech) Atten Step is 2 dB .)

Using the Electronic Attenuator: Pros and Cons

The electronic attenuator offers finer steps than the mechanical attenuator, has no acoustical noise, is faster, and is less subject to wear.

The "finer steps" advantage of the electronic attenuator is beneficial in optimizing the alignment of the analyzer dynamic range to the signal power in the front panel as well as remote use. Thus, you can achieve improved relative signal measurement accuracy. Compared to a mechanical attenuator with 2 dB steps, the 1 dB resolution of the electronic attenuator only gives better resolution when the odd-decibel steps are used. Those odd-decibel steps are less accurately calibrated than the even-decibel steps, so one tradeoff for this superior relative accuracy is reduced absolute amplitude accuracy.

Another disadvantage of the electronic attenuator is that the spectrum analyzer loses its "Auto" setting,

AMPTD Y Scale

making operation less convenient.
Also, the relationship between the dynamic range specifications (TOI, SHI, compression and noise) and instrument performance are less well-known with the electrical attenuator. With the mechanical attenuator, TOI, SHI and compression threshold levels increase dB -for-dB with increasing attenuation, and the noise floor does as well. With the electronic attenuator, there is an excess attenuation of about 1 to 3 dB between 0 and 3.6 GHz , making the effective TOI, SHI, and so forth, less well known. Excess attenuation is the actual attenuation relative to stated attenuation. Excess attenuation is accounted for in the analyzer calibration

Elec Atten

Controls the Electronic Attenuator in dual attenuator configurations. This key does not appear in single attenuator configurations, as the control of both the mechanical and electronic stages of the single attenuator is integrated into the single Atten key.

Key Path	AMPTD Y Scale, Attenuation
Remote Command	$[: S E N S e]:$ POWer [:RF] : EATTenuation <rel_ampl> $[: S E N S e]: P O W e r[: R F]:$ EATTenuation?
Notes	Electronic Attenuation's spec is defined only when Mechanical Attenuation is 6 dB.
Dependencies	This key only appears in the dual attenuator configuration. However, in the single attenuator configuration, EATT SCPI commands are accepted for compatibility with other X-series instruments and set a "soft" attenuation as described in "Attenuator Configurations and Auto/Man" on page 513. The "soft" attenuation is treated as an addition to the "main" attenuation value set by the Atten softkey or the POW:ATT SCPI command and affects the total attenuation displayed on the Attenuation key and the Meas Bar. When Enable Elec Atten is off, the Elec Atten key is grayed out.
Preset	0 dB
State Saved	Saved in instrument state
Min	0 dB
Max	Dual attenuator configuration: 24 dB Single attenuator configuration: the total of ATT and EATT cannot exceed 50 dB, so if the EATT is set to 24 dB first, the main attenuation cannot be greater than 26 dB and will be reduced accordingly; if the main attenuator is set to 40 dB first, EATT cannot be greater than 10 dB
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Adjust Atten for Min Clip

Sets the combination of mechanical and electronic attenuation based on the current measured signal level so that clipping will be at a minimum.

This is an "immediate action" function, that is, it executes once, when the key is pressed.
This key is grayed out in measurements that do not support this functionality. The spectrum analyzer measurement, Swept SA, does not support this functionality.

Key Path	AMPTD Y Scale, Attenuation
Remote Command	[:SENSe]:POWer[:RF]:RANGe:OPTimize IMMediate
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Pre-Adjust for Min Clip

If this function is on, it does the adjustment described under "Adjust Atten for Min Clip" on page 516 each time a measurement restarts. Therefore, in Continuous measurement mode, it only executes before the first measurement.

In dual attenuator models, you can set Elec+Mech Atten, in which case both attenuators participate in the autoranging, or Elec Atten Only, in which case the mechanical attenuator does not participate in the autoranging. This latter case results in less wear on the mechanical attenuator and is usually faster.

This key is grayed out in measurements that do not support this functionality. The spectrum analyzer measurement, Swept SA, does not support this functionality.

Key Path	AMPTD Y Scale, Attenuation	
Remote Command	[:SENSe]:POWer[:RF]:RANGe:OPTimize:ATTenuation OFF\|ELECtrical	COMBined [:SENSe]:POWer[:RF]:RANGe:OPTimize:ATTenuation?
Notes	The SCPI parameter ELECtrical sets this function to On in single attenuator models. The SCPI parameter COMBined is mapped to ELECtrical in single attenuator models; if you send COMBined, it sets the function to On and returns ELEC to a query.	
Preset	OFF for Swept SA measurement; ON for all other measurements that support Pre-Adjust for Min Clip	
State Saved	Saved in instrument state	
Range	Dual attenuator models: Off \| Elec Atten Only	Mech + Elec Atten Single attenuator models: Off \| On
Initial S/W Revision	Prior to A.02.00	
Modified at S/W Revision	A.03.00	

| Remote Command | $[:$ SENSe]:POWer[:RF]:RANGe:AUTO ON\|OFF|1|0

 $[: S E N S e]: P O W e r[: R F]: R A N G e: A U T O ? ~$ |
| :--- | :--- |

AMPTD Y Scale

Notes	ON aliases to "Elec Atten Only" OFF aliases to "Off" The query returns true if not "Off"
Initial S/W Revision	Prior to A.02.00

(Mech) Atten Step

This controls thestep size used when making adjustments to the input attenuation.
This key is labeled Mech Atten Step in dual attenuator models and Atten Step in single attenuator models. In the dual attenuator configuration, this key only affects the step size of the mechanical attenuator.

Key Path	AMPTD Y Scale, Attenuation
Remote Command	```[:SENSe]:POWer[:RF]:ATTenuation:STEP[:INCRement] 10 dB \| 2 dB [:SENSe]:POWer[:RF]:ATTenuation:STEP[:INCRement]?```
Example	POW:ATT:STEP 2
Notes	Note this feature works like a 1-N choice from the front panel, but it takes a specific value (in dB) when used remotely. The only valid values are 2 and 10.
Dependencies	Blanked in CXA and EXA if option FSA (2 dB steps) is not present. If blanked, attempts to set it via SCPI will yield an error.
Couplings	When the attenuation step size changes, the current mechanical attenuation value is adjusted (if necessary) to be quantized to the new step size. That is, if step is set to 10 dB , mech atten is increased if necessary so it is a multiple of 10 dB
Preset	PXA and MXA: 2 dB EXA and CXA: 10 dB (2 dB with option FSA)
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Max Mixer Level

Controls the limitation on the Ref Level for a given attenuation setting, and therefore also interacts with the Auto rules for selecting the attenuation as a coupling from the reference level.

Key Path	AMPTD Y Scale, Attenuation
Remote Command	$[:$ SENSe] :POWer [:RF] : MIXer:RANGe[:UPPer] <real> $[: S E N S e]: P O W e r[: R F]: M I X e r: R A N G e[: U P P e r] ? ~$
Example	POW:MIX:RANG -15 dBm

Preset	-10 dBm
State Saved	Saved in instrument state
Min	-50 dBm
Max	-10 dBm
Initial S/W Revision	Prior to A.02.00
Default Unit	Depends on the current selected Y axis unit, see Swept SA discussion of Y Axis Unit

Range

This key is only available when I/Q is the selected input. It replaces the Attenuation key in that case.
Each input channel (I and Q) has four internal gain ranges. The maximum allowed voltage in each gain range is slightly more than the nominal value, so the break point between ranges is a couple of millivolts higher than the nominal (setting a peak voltage of 0.502 mV will still map to the 0.5 V Peak range).

Gain Setting	Volts RMS	Volts Peak	Volts Peak - Peak	dBm (50W)	Break Point
0 dB	0.7071	1.0	2.0	10	n / a
6 dB	0.3536	0.5	1.0	4	0.502 V Peak
12 dB	0.1768	0.25	0.5	-2	0.252 V Peak
18 dB	0.0884	0.125	0.25	-8	0.127 V Peak

Key Path	AMPTD Y Scale
Notes	Visible only when the selected input is I/Q.
State Saved	No
Readback Text	When Range is Auto, "[Auto]" When Range is Man and I \& Q are the same, "[<range value>]" When Range is Man and I \& Q are different: "[I: <I range value> Q: <Q range value>]" See I Range and Q Range for the <range value> enumeration definition.
Initial S/W Revision	Prior to A.02.00

Range Auto/Man

The Auto setting for Range causes the range to be set based on the Y Scale settings. When Range is "Auto", the I \& Q Range are set based on the top of the Y Scale when the Y scale is in dB units (for example, power), or to the max(abs(top), abs(bottom)) when the Y scale reference is not at the top of the screen.

AMPTD Y Scale

Not all measurements support Range Auto/Man. If Auto is not supported in the current measurement, this key is grayed out and shows "Man" and MAN is returned to a SCPI query; but this does NOT change the Auto/Man setting for Range.When you go to a measurement that supports Auto, it goes back to Auto if it was previously in Auto mode.

Key Path	AMPTD Y Scale, Range		
Scope	Meas Global		
Remote Command	[:SENSe] : VOLTage: IQ:RANGe:AUTO OFF\|ON	0	1 [:SENSe] :VOLTage: IQ:RANGe:AUT0?
Example	Put the I Range and Q Range in manual. VOLT:IQ:RANG:AUTO OFF		
Dependencies	If Auto is not supported, sending the SCPI command will generate an error.		
Couplings	When in Auto, both I Range and Q Range are set to the same value, computed Maximum absolute value is computed for the Y Scale. The top and bottom of the graph are computed based on Ref Value, Scale/Div, and Ref Position. Formula: YMax = max(abs(top), abs(bottom)). The I Range and Q Range are then set to YMax.		
Preset	ON		
State Saved	Saved in instrument state		
Range	Auto \| Man		
Initial S/W Revision	Prior to A.02.00		

Remote Command	[:SENSe]:POWer:IQ:RANGe:AUTO OFF $\|0 N\| 0 \mid 1$ $[: S E N S e]: P O W e r: I Q: R A N G e: A U T O ? ~$
Example	Put the I Range and Q Range in manual. POW:IQ:RANG:AUTO OFF
Notes	The POW:IQ:RANG:AUTO is an alternate form of the VOLT:IQ:RANG:AUTO command. This is to maintain consistency with I Range and Q Range, which support both the POWer and VOLTage forms of the command.
Preset	ON
Range	Auto \| Man
Initial S/W Revision	Prior to A.02.00

I Range

This is the internal gain range for the I channel when Input Path is I Only or Ind I/Q, and it is used for
both the I and Q channels when the Input Path is I+jQ. See "I/Q Gain Ranges" on page 524.

Key Path	AMPTD Y Scale, Range		
Remote Command	[:SENSe]:VOLTage:IQ[:I]:RANGe[:UPPer] <voltage> [:SENSe]:VOLTage:IQ[:I]:RANGe[:UPPer]?		
Example	Set the I Range to 0.5 V Peak VOLT:IQ:RANG 0.5 V		
Notes	The numeric entries are mapped to the smallest gain range whose break point is greater than or equal to the value, or 1 V Peak if the value is greater than 1 V.		
Couplings	When Q Same as I is On, the I Range value will be copied to the Q Range. Changing the value will also set Range = Man.		
Preset	1 V Peak		
State Saved	Saved in instrument state		
Range	1 V Peak \| 0.5 V Peak	0.25 V Peak	0.125 V Peak
Initial S/W Revision	Prior to A.02.00		

Remote Command	[:SENSe]:POWer:IQ[:I]:RANGe[:UPPer] <ampl> [:SENSe]:POWer:IQ[:I]:RANGe[:UPPer]?
Example	Set the I Range to 0.5 V Peak when Reference Z is 50Ω, and to 1.0 V Peak when Reference Z is 75Ω. POW:IQ:RANG 4 dBm
Notes	The POWer form of the command is provided for convenience. It maps to the same underlying gain range parameter as the VOLTage form of the command. The Reference Z (not the I channel Input Z) is used to convert the power to peak voltage, which is then used to set the I Range as with the VOLTage form of the command. The power values of the 4 range states (1V Peak, 0.5V Peak, 0.25 V Peak, and 0.125 V Peak) will vary with Reference Z. Here are some examples: $\begin{aligned} & 50 \Omega: 10,4,-2,-8 \\ & 75 \Omega: 8.2,2.2,-3.8,-9.8 \\ & 600 \Omega:-0.8,-6.8,-12.8,-18.9 \end{aligned}$
Preset	10.0 dBm
Range	-20 dBm to 10 dBm
Min	-20 dBm
Max	10 dBm
Initial S/W Revision	Prior to A.02.00

AMPTD Y Scale

Q Range

Accesses the Q Range menu.

Key Path	AMPTD Y Scale, Range	
Readback Text	Q Same as I $\mid 1 \mathrm{~V}$ Peak $\mid 0.5 \mathrm{~V}$ Peak $\mid 0.25 \mathrm{~V}$ Peak \\| 0.125 V Peak When Q Same as I is On, the readback is "Q Same as I", otherwise it is the Q Range value.	
Initial S/W Revision	Prior to A.02.00	

Q Same as I

Many, but not all, usages require the I and Q channels to have an identical setup. To simplify channel setup, the Q Same as I will cause the Q channel range to be mirrored from the I channel. That way you only need to set up one channel (the I channel). The I channel values are copied to the Q channel, so at the time Q Same as I is Off, the I and Q channel setups will be identical.

Key Path	AMPTD Y Scale, Range, Q Range
Remote Command	$[:$ SENSe $]:$ VOLTage \mid POWer: IQ:MIRRored OFF \mid ON $\|0\| 1$ $[: S E N S e]: V O L T a g e \mid P O W e r: I Q: M I R R o r e d ? ~$
Example	Turn off the mirroring of I Range to Q Range. VOLT:IQ:MIRR OFF POW:IQ:MIRR OFF
Couplings	When On, the I Range value is mirrored (copied) to the Q Range.
Preset	On
State Saved	Saved in instrument state.
Range	On \| Off
Readback Text	"Q Same as I" when On, otherwise none.
Initial S/W Revision	Prior to A.02.00

Q Range Value

This is the internal gain range for the Q channel. See "I/Q Gain Ranges" on page 524I/Q Gain Ranges. The Q Range only applies to Input Path Q Only and Ind I/Q. For input I+jQ the I Range determines both I and Q channel range settings.

Key Path	AMPTD Y Scale, Range
Remote Command	[:SENSe]:VOLTage:IQ:Q:RANGe[:UPPer] <voltage> [:SENSe]:VOLTage:IQ:Q:RANGe[:UPPer]?
Example	Set the Q Range to 0.5 V Peak VOLT:IQ:Q:RANG 0.5 V

Notes	The numeric entries are mapped to the smallest gain range whose break point is greater than or equal to the value, or 1 V Peak if the value is greater than 1 V. The Q Range is only used for Input Path Q Only and Ind I/Q. For input I +jQ		
the I Range determines both I and Q channel range settings.		,	When Q Same as I is On, the I Range value will be copied to the Q Range and
:---			
the range value keys are disabled.			
Changing the value will also set Range = Man.	$	$	Couplings
:---	:---		
State Saved	Saved in instrument state		
Range	1 V Peak $\mid 0.5 \mathrm{~V}$ Peak $\mid 0.25 \mathrm{~V}$ Peak $\mid 0.125 \mathrm{~V}$ Peak		
Initial S/W Revision	Prior to A.02.00		

Remote Command	[:SENSe]:POWer:IQ:Q:RANGe[:UPPer] <ampl> [:SENSe]:POWer:IQ:Q:RANGe[:UPPer]?
Example	Will set the Q Range to 0.5 V Peak when Reference Z is 50Ω, and to 1.0 V Peak when Reference Z is 75Ω. POW:IQ:Q:RANG 4 dBm
Notes	The POWer form of the command is provided for convenience. It maps to the same underlying gain range parameter as the VOLTage form of the command. The Reference Z (not the Q channel Input Z) is used to convert the power to peak voltage, which is then used to set the Q Range as with the VOLTage form of the command. The power values of the 4 range states (1V Peak, 0.5 V Peak, 0.25 V Peak, and 0.125 V Peak) will vary with Reference Z. Here are some examples: $\begin{aligned} & 50 \Omega: 10,4,-2,-8 \\ & 75 \Omega: 8.2,2.2,-3.8,-9.8 \\ & 600 \Omega:-0.8,-6.8,-12.8,-18.9 \end{aligned}$
Preset	10.0 dBm
Range	-20 dBm to 10 dBm
Min	-20 dBm
Max	10 dBm
Initial S/W Revision	Prior to A.02.00

AMPTD Y Scale

I/Q Gain Ranges

1 V Peak

Set the channel gain state to 1 Volt Peak.

Key Path	AMPTD Y Scale, I Range I Q Range
Initial S/W Revision	Prior to A.02.00

0.5 V Peak

Set the channel gain state to 0.5 Volt Peak.

Key Path	AMPTD Y Scale, I Range I Q Range
Initial S/W Revision	Prior to A.02.00

0.25 V Peak

Set the channel gain state to 0.25 Volt Peak.

Key Path	AMPTD Y Scale, I Range I Q Range
Initial S/W Revision	Prior to A.02.00

0.125 V Peak

Set the channel gain state to 0.125 Volt Peak.

Key Path	AMPTD Y Scale, I Range I Q Range
Initial S/W Revision	Prior to A.02.00

Scale / Div

Sets the units per vertical graticule division on the display. This function is only available when Scale Type (Log) is selected and the vertical scale is power. When Scale Type (Lin) is selected, Scale/Div is grayed out.

Key Path	AMPTD Y Scale
Remote Command	:DISPlay:WINDow[1] :TRACe:Y[:SCALe]:PDIVision <rel_ampl> $:$ DISPlay:WINDow[1] :TRACe:Y[:SCALe] :PDIVision?
Example	DISP:WIND:TRAC:Y:PDIV 5 DB
Dependencies	Scale/Div is grayed out in linear Y scale. Sending the equivalent SCPI command does change the Scale/Div, though it has no affect while in Lin.
Preset	10.00 dB / Div
State Saved	Saved in instrument state

Min	0.10 dB
Max	20 dB
Initial S/W Revision	Prior to A.02.00

Scale Type

Chooses a linear or logarithmic vertical scale for the display and for remote data readout.
When Scale Type (Log) is selected, the vertical graticule divisions are scaled in logarithmic units. The top line of the graticule is the Reference Level and uses the scaling per division Scale/Div to assign values to the other locations on the graticule.

When Scale Type (Lin) is selected, the vertical graticule divisions are linearly scaled with the reference level value at the top of the display and zero volts at the bottom. Each vertical division of the graticule represents one-tenth of the Reference Level.

NOTE	The Y Axis Unit used for each type of display is set by pressing Y Axis Unit. The analyzer remembers separate Y Axis Unit settings for both Log and Lin.

Key Path	AMPTD Y Scale
Remote Command	:DISPlay:WINDow[1] :TRACe:Y[:SCALe] : SPACing LINear\|LOGarithmic :DISPlay:WINDow[1] :TRACe: Y[:SCALe] : SPACing?
Example	DISP:WIND:TRAC:Y:SPAC LOG DISP:WIND:TRAC:Y:SPAC?
Dependencies	If Normalize is on, Scale Type forced to Log and is grayed out.
Couplings	Changing the Scale Type always sets the Y Axis unit to the last unit specified for the current amplitude scale. In other words, we restore the Y Axis unit setting appropriate per log/lin.
Preset	LOG
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Presel Center

When this key is pressed, the centering of the preselector filter is adjusted to optimize the amplitude accuracy at the frequency of the selected marker. If the selected marker is not on when Presel Center is pressed, the analyzer will turn on the selected marker, perform a peak search, and then perform centering on the marker's center frequency. If the selected marker is already on and between the start and stop frequencies of the analyzer, the analyzer performs the preselector calibration on that marker's frequency. If the selected marker is already on, but outside the frequency range between Start Freq and Stop Freq, the analyzer will first perform a peak search, and then perform centering on the marker's center

AMPTD Y Scale

frequency.

The value displayed on the Presel Adjust key will change to reflect the new preselector tuning (see Presel Adjust).

A number of considerations should be observed to ensure proper operation. See "Proper Preselector Operation" on page 526.

Key Path	AMPTD Y Scale
Remote Command	[:SENSe]:POWer[:RF]:PCENter
Example	POW:PCEN
Notes	Note that the rules outlined above under the key description apply for the remote command as well as the key. The result of the command is dependent on marker position, and so forth. Any message shown by the key press is also shown in response to the remote command.
Dependencies	- Grayed out if the microwave preselector is off.) - If the selected marker's frequency is below Band 1, advisory message 0.5001 is generated and no action is taken. - Grayed out if entirely in Band 0. - Blank in models that do not include a preselector, such as option 503. If the SCPI is sent in these instruments, it is accepted without error, and the query always returns 0 . - Grayed out in the Spectrogram View.
Couplings	The active marker position determines where the centering will be attempted. If the analyzer s in a measurement such as averaging when centering is initiated, the act of centering the preselector will restart averaging but the first average trace will not be taken until the centering is completed.
Status Bits/OPC dependencies	When centering the preselector, *OPC will not return true until the process is complete and a subsequent measurement has completed, nor will results be returned to a READ or MEASure command. The Measuring bit should remain set while this command is operating and should not go false until the subsequent sweep/measurement has completed.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Proper Preselector Operation

A number of considerations should be observed to ensure proper operation:
If the selected marker is off, the analyzer will turn on a marker, perform a peak search, and adjust the preselector using the selected marker’s frequency. It uses the "highest peak" peak search method unqualified by threshold or excursion, so that there is no chance of a 'no peak found' error. It continues with that peak, even if it is the peak of just noise. Therefore, for this operation to work properly, there should be a signal on screen in a preselected range for the peak search to find.

If the selected marker is already on, the analyzer will attempt the centering at that marker's frequency. There is no preselector for signals below about 3.6 GHz , therefore if the marker is on a signal below 3.6 GHz , no centering will be attempted and an advisory message generated

In some models, the preselector can be bypassed. If it is bypassed, no centering will be attempted in that range and a message will be generated.

Preselector Adjust

Allows you to manually adjust the preselector filter frequency to optimize its response to the signal of interest. This function is only available when "Presel Center" on page 525 is available.

For general purpose signal analysis, using Presel Center is recommended. Centering the filter minimizes the impact of long-term preselector drift. Presel Adjust can be used instead to manually optimize the preselector. One application of manual optimization would be to peak the preselector response, which both optimizes the signal-to-noise ratio and minimizes amplitude variations due to small (short-term) preselector drifting.

Key Path	AMPTD Y Scale
Scope	Meas Global
Remote Command	[:SENSe]:POWer[:RF]:PADJust <freq> [:SENSe]:POWer[:RF]:PADJust?
Example	POW:PADJ 100KHz POW:PADJ?
Notes	The value on the key reads out to 0.1 MHz resolution.
Dependencies	- Grayed out if microwave preselector is off.) - Grayed out if entirely in Band 0. - Blank in models that do not include a preselector, such as option 503. If the SCPI is sent in these instruments, it is accepted without error, and the query always returns 0 . - Grayed out in the Spectrogram View.
Preset	0 MHz
State Saved	The Presel Adjust value set by Presel Center, or by manually adjusting Presel Adjust, is not saved in Instrument State, and does not survive a Preset or power cycle.
Min	$-500 \mathrm{MHz}$
Max	500 MHz
Backwards Compatibility SCPI	[:SENSe]:POWer[:RF]:MW:PADJust [:SENSe]:POWer[:RF]:MMW:PADJust (These were undocumented commands for PSA which X-Series will accept)

AMPTD Y Scale

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00
Default Unit	Hz

| Remote Command | [:SENSe]:POWer[:RF]:PADJust:PRESelector MWAVe\|MMWave|EXTernal
 [:SENSe]:POWer[:RF]:PADJust:PRESelector? |
| :---: | :---: |
| Notes | [:SENSe]:POWer[:RF]:PADJust:PRESelector MWAVe\|MMWave|EXTernal where: MWAV $=3-26 \mathrm{GHz}$
 MMWave $=26-50 \mathrm{GHz}$
 EXTernal = External
 Preselector Selection - PSA had multiple preselectors, and you could select which preselector to center. Since the X-Series will have only one preselector, the preselector selection softkey will no longer be available. However, in order to provide backward compatibility, we will support the remote command.
 The command form is a NOP
 The query will return MWAVe |
| Initial S/W Revision | Prior to A.02.00 |

Y Axis Unit

Displays the menu keys that enable you to change the vertical (Y) axis amplitude unit. The analyzer retains the entered Y Axis Unit separately for both Log and Lin amplitude scale types. For example, if Scale Type has been set to Log, and you set Y Axis Unit to dBm, pressing Scale Type (Log) sets the Y Axis Unit to dBm. If Scale Type has been set to Lin and you set Y Axis Unit to V, pressing Scale Type (Lin) sets the Y Axis Unit to V. Pressing Scale Type (Log) again sets the Y axis unit back to dBm.

NOTE

The units of current ($\mathrm{A}, \mathrm{dBmA}, \mathrm{dBuA}$) are calculated based on 50 ohms input impedance.

All four of the EMI units ($\mathrm{dB} \mu \mathrm{A} / \mathrm{m}, \mathrm{dB} \mu \mathrm{V} / \mathrm{m}, \mathrm{dBG}, \mathrm{dBpT}$) are treated by the instrument exactly as though they were dBuV . The user must load an appropriate correction factor using Amplitude Corrections for accurate and meaningful results.

If a SCPI command is sent to the analyzer that uses one of the EMI units as a terminator, the analyzer treats it as though DBUV had been sent as the terminator.

Key Path	AMPTD Y Scale

Mode	SA										
Scope	Meas Global										
Remote Command	:UNIT: POWer DBM\|DBMV	DBMA	V	W	A	DBUV	DBUA	DBUVM	DBUAM	DBPT	DBG :UNIT:POWer?
Example	UNIT:POW dBmV UNIT:POW?										
Notes	The Y axis unit has either logarithmic or linear characteristics. The set of units that is logarithmic consists of $\mathrm{dBm}, \mathrm{dBmV}, \mathrm{dBmA}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dB} \mu \mathrm{A}, \mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}, \mathrm{dBp}$, and dBG . The set if units that is linear consists of V, W, and A. The chosen unit will determine how the reference level and all the amplitude-related outputs like trace data, marker data, etc. read out.										
Notes	The settings of Y Axis Unit and Scale Type, affect how the data is read over the remote interface. When using the remote interface no unit is returned, so you must know what the Y axis unit is to interpret the results: Example 1, set the following: Scale Type (Log) Y Axis Unit, dBm Scale/Div, 1 dB Ref Level, 10 dBm This sets the top line to 10 dBm with each vertical division representing 1 dB . Thus, if a point on trace 1 is on the fifth graticule line from the top, it represents 5 dBm and will read out remotely as 5 . Example 2, set the following: Scale Type (Lin) Y Axis Unit, Volts Ref Level, 100 mV ($10 \mathrm{mV} /$ div) This sets the top line to 100 mV and the bottom line to 0 V , so each vertical division represents 10 mV . Thus, if a point on trace 1 is on the fifth graticule line from the top, it represents 50 mV and will read out remotely as 50 .										
Dependencies	If an amplitude correction with an Antenna Unit other than None is applied and enabled, then that antenna unit is forced and the key with that unit is the only Y Axis Unit available. All other Y Axis Unit keys are grayed out. If an amplitude correction with an Antenna Unit other than None is applied and enabled, and you then turn off that correction or set Apply Corrections to No, the Y Axis Unit that existed before the Antenna Unit was applied is restored.										
Couplings	The analyzer retains the entered Y Axis Unit separately for both Log and Lin amplitude scale types										

AMPTD Y Scale

Preset	dBm for log scale, V for linear. The true 'preset' value is dBm, since at preset the Y Scale type is set to logarithmic.
State Saved	Saved in instrument state
Readback line	1-of-N selection
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00, A.04.00

dBm

Sets the amplitude unit for the selected amplitude scale (log/lin) to dBm.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBM
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	dBm
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

dBmV

Sets the amplitude unit for the selected amplitude scale (log/lin) to dBmV .

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBMV
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	dBmV
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

dBmA

Sets the amplitude unit for the selected amplitude scale (log/lin) to dBmA.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBMA
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	dBmA
Initial S/W Revision	Prior to A.02.00

Modified at S/W Revision	A.02.00

W

Sets the amplitude unit for the selected amplitude scale (log/lin) to watt.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW W
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	W
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

V
Sets the amplitude unit for the selected amplitude scale (log/lin) to volt.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW V
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	V
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

A

Sets the amplitude unit for the selected amplitude scale (log/lin) to Ampere.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW A
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	A
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

dBmV

Sets the amplitude unit for the selected amplitude scale (\log / lin) to $\mathrm{dB} \mu \mathrm{V}$.

Key Path	AMPTD Y Scale, Y Axis Unit

AMPTD Y Scale

Example	UNIT:POW DBUV
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	$\mathrm{dB} \mu \mathrm{V}$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

dBmA

Sets the amplitude unit for the selected amplitude scale (log/lin) to $\mathrm{dB} \mu \mathrm{A}$.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBUA
Dependencies	Grayed out if an Amplitude Correction with an Antenna Unit is ON.
Readback	$\mathrm{dB} \mu \mathrm{A}$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

dBmV/m

Sets the amplitude unit for the selected amplitude scale (\log / lin) to $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$. This is an antenna unit, and this key is grayed out unless a Correction with this Antenna Unit selected is ON. If this is the case, all of the other Antenna Units are grayed out.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBUVM
Dependencies	Grayed out if no Amplitude Correction with an Antenna Unit is on.
Readback	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$
Initial S/W Revision	A.02.00

dBmA/m

Sets the amplitude unit for the selected amplitude scale (\log / lin) to $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$. This is an antenna unit, and this key is grayed out unless a Correction with this Antenna Unit selected is ON. If this is the case, all of the other Antenna Units are grayed out.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBUAM
Dependencies	Grayed out if no Amplitude Correction with an Antenna Unit is on.
Readback	$\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$

Initial S/W Revision	A.02.00

dBpT

Sets the amplitude unit for the selected amplitude scale (log/lin) to dBpT. This is an antenna unit, and this key is grayed out unless a Correction with this Antenna Unit selected is ON. If this is the case, all of the other Antenna Units are grayed out.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBPT
Dependencies	Grayed out if no Amplitude Correction with an Antenna Unit is on.
Readback	dBpT
Initial S/W Revision	A.02.00

dBG
Sets the amplitude unit for the selected amplitude scale (log/lin) to dBG. This is an antenna unit, and this key is grayed out unless a Correction with this Antenna Unit selected is ON. If this is the case, all of the other Antenna Units are grayed out.

Key Path	AMPTD Y Scale, Y Axis Unit
Example	UNIT:POW DBG
Dependencies	Grayed out if no Amplitude Correction with an Antenna Unit is on.
Readback	dBG
Initial S/W Revision	A.02.00

Reference Level Offset

Adds an offset value to the displayed reference level. The reference level is the absolute amplitude represented by the top graticule line on the display.

See "More Information" on page 534

Key Path	AMPTD Y Scale
Mode	SA
Scope	Meas Global
Remote Command	:DISPlay:WINDow[1]:TRACe: Y[:SCALe] :RLEVEl: OFFSet <rel_ampl> :DISPlay:WINDow[1]:TRACe:Y[:SCALe] : RLEVEl : OFFSet?

AMPTD Y Scale

Example	DISP:WIND:TRAC:Y:RLEV:OFFS 12.7 Sets the Ref Level Offset to 12.7 dB . The only valid suffix is dB. If no suffix is sent, dB will be assumed.
Preset	0 dBm
State Saved	Saved in instrument state
Min	The range for Ref Lvl Offset is variable. It is limited to values that keep the reference level within the range of -327.6 dB to 327.6 dB.
Max	327.6 dB
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

More Information

Offsets are used when gain or loss occurs between a device under test and the analyzer input. Thus, the signal level measured by the analyzer may be thought of as the level at the input of an external amplitude conversion device. Entering an offset does not affect the trace position or attenuation value, just the value of the top line of the display and the values represented by the trace data. Thus, the values of exported trace data, queried trace data, marker amplitudes, trace data used in calculations such as N dB points, trace math, peak threshold, and so forth, are all affected by Ref Level Offset.

NOTE

Changing the offset causes the analyzer to immediately stop the current sweep and prepare to begin a new sweep, but the data will not change until the trace data updates, because the offset is applied to the data as it is taken. If a trace is exported with a nonzero Ref Level Offset, the exported data will contain the trace data with the offset applied.

The maximum reference level available is dependent on the reference level offset. That is, Ref Level Ref Level Offset must be in the range -170 to +30 dBm . For example, the reference level value range can be initially set to values from -170 dBm to 30 dBm with no reference level offset. If the reference level is first set to -20 dBm , then the reference level offset can be set to values of -150 to +50 dB .

If the reference level offset is first set to -30 dB , then the reference level can be set to values of -200 dBm to 0 dBm . In this case, the reference level is "clamped" at 0 dBm because the maximum limit of +30 dBm is reached with a reference level setting of 0 dBm with an offset of -30 dB . If instead, the reference level offset is first set to 30 dB , then the reference level can be set to values of -140 to +60 dBm.

$\mu \mathrm{W}$ Path Control

The $\boldsymbol{\mu} \mathbf{W}$ Path Control functions include the $\boldsymbol{\mu} \mathbf{W}$ Preselector Bypass (Option MPB) and Low Noise Path (Option LNP) controls in the High Band path circuits.

When the $\mu \mathrm{W}$ Preselector is bypassed, the user has better flatness, but will be subject to spurs from out of band interfering signals. When the Low Noise Path is enabled, the analyzer automatically switches around certain circuitry in the high frequency bands which can contribute to noise, when it is appropriate
based on other analyzer settings.
For most applications, the preset state is Standard Path, which gives the best remote-control throughput, minimizes acoustic noise from switching and minimizes the risk of wearout in the hardware switches. For applications that utilize the wideband IF paths, the preset state is the $\mu \mathrm{W}$ Preselector Bypass path, if option MPB is present. This is because, when using a wideband IF such as the 140 MHz IF, the $\mu \mathrm{W}$ Preselector's bandwidth can be narrower than the available IF bandwidth, causing degraded amplitude flatness and phase linearity, so it is desirable to bypass the preselector in the default case.
Users may choose Low Noise Path Enable. It gives a lower noise floor, especially in the $21-26.5 \mathrm{GHz}$ region, though without improving many measures of dynamic range, and without giving the best possible noise floor. The preamp, if purchased and used, gives better noise floor than does the Low Noise Path, however its compression threshold and third-order intercept are much poorer than that of the non-preamp Low Noise Path. There are some applications, typically for signals around 30 dBm , for which the third-order dynamic range of the standard path is good enough, but the noise floor is not low enough even with 0 dB input attenuation. When the third-order dynamic range of the preamp path is too little and the noise floor of the standard path is too high, the Low Noise Path can provide the best dynamic range.

Key Path	AMPTD Y Scale		
Mode	SA, BASIC, PNOISE, VSA		
Scope	Meas Global		
Remote Command	[:SENSe]:POWer[:RF]:MW:PATH STD\|LNPath	MPBypass	FULL [:SENSe]:POWer[:RF]:MW:PATH?
Example	:POW:MW:PATH LNP Enables the Low Noise path		
Notes	If a Presel Center is performed, the analyzer will momentarily switch to the Standard Path, regardless of the setting of $\mu \mathbf{W}$ Path Control The DC Block will always be switched in when the low noise path is switched in, to protect succeeding circuitry from DC. Note that this does not mean "when the low noise path is enabled" but when, based on the Low Noise Path rules, the path is actually switched in. This can happen when the selection is Low Noise Path Enable. In the case where the DC Block is switched in the analyzer is now AC coupled. However, if the user has selected DC coupling, the UI will still behave as though it were DC coupled, including all annunciation, warnings, status bits, and responses to SCPI queries. This is because, based on other settings, the analyzer could switch out the low noise path at any time and hence go back to being DC coupled. Alignment switching ignores the settings in this menu, and restores them when finished.		
Dependencies	Blanked in BBIQ		
Preset	All modes other than IQ Analyzer mode: STD IQ Analyzer mode: MPB option present and licensed: MPB MPB option not present and licensed: STD		

AMPTD Y Scale

State Saved	Save in instrument state
Readback	Value selected in the submenu
Initial S/W Revision	A.04.00

Standard Path

This path gives the best remote-control throughput, minimizes acoustic noise from switching and minimizes the risk of wear in the hardware switches, particularly in remote test scenarios where both low band and high band setups will follow in rapid succession.

In this path, the bypass of the low band/high band switch and microwave preamp is never activated, which can cause some noise degradation but preserves the life of the bypass switch.

Key Path	AMPTD Y Scale, $\boldsymbol{\mu} \mathbf{W}$ Path Control
Example	$:$ POW:MW:PATH STD
Readback Text	Standard Path
Initial S/W Revision	A.04.00

Low Noise Path Enable

You may choose Low Noise Path Enable, which gives a lower noise floor under some circumstances, particularly when operating in the $21-26.5 \mathrm{GHz}$ region. With the Low Noise Path enabled, the low band/high band switch and microwave preamp are bypassed whenever all of the following are true:

- The analyzer is not in the Low Band, meaning:
- the start frequency is above 3.5 GHz and
- the stop frequency is above 3.6 GHz .
- the internal preamp is not installed or (if installed) is set to Off or Low Band

Note that this means that, when any part of a sweep is done in Low Band, the Low Noise Path is not used, whether or not the Low Noise Path Enable is selected in the user interface. Also, if the preamp is turned on, the Low Noise Path is not used, whether or not the Low Noise Path Enable is selected in the user interface. The only time the Low Noise Path is used is when Low Noise Path Enable is selected, the sweep is completely in High Band (>3.6 GHz) and no preamp is in use.

See "More Information" on page 537

Key Path	AMPTD Y Scale, $\mu \mathrm{W}$ Path Control
Measurement	Swept SA
Example	$:$ POW:MW:PATH LNP

Notes	For measurements that use IQ acquisition, the low noise path is used when the Center Frequency is in High Band ($>3.6 \mathrm{GHz}$) and no preamp is in use. In other words, the rules above are modified to use only the center frequency to qualify which path to switch in. This is not the case for FFT's in the Swept SA measurement; they use the same rules as swept measurements.
Dependencies	Key is blanked if current mode does not support it. Key is grayed out if mode supports it but current measurement does not support it. Unless Option LNP is present and licensed, key is blank and if SCPI command sent, error -241, "Hardware missing; Option not installed" is generated.
Readback Text	Low Noise Path Enable
Initial S/W Revision	A.04.00

More Information

The user should understand that the Low Noise Path, while giving improved DANL, has the disadvantage of decreased TOI performance and decreased gain compression performance relative to the standard path.

The user should also understand that the bypass switch is a mechanical switch and has finite life; so if the Low Noise Path is enabled, it is possible to cause frequent cycling of this switch by frequently changing analyzer settings such that the above conditions hold true only some of the time. A user making tests of this nature should consider opting for the Standard Path, which will never throw the bypass switch, at the expense of some degraded noise performance.

The low noise path is useful for situations where the signal level is so low that the analyzer performance is dominated by noise even with 0 dB attenuation, but still high enough that the preamp option would have excessive third-order intermodulation or compression. The preamp, if purchased and used, gives better noise floor than does the "Low Noise Path." However, its compression threshold and third-order intercept are much poorer than that of the non-preamp path. There are some applications, typically for signals around 30 dBm , for which the third-order dynamic range of the standard path is good enough, but the noise floor is not low enough even with 0 dB input attenuation. When the third-order dynamic range of the preamp path is too little and the noise floor of the standard path is too high, the Low Noise Path can provide the best dynamic range

The graph below illustrates the concept. It shows, in red, the performance of an analyzer at different attenuation settings, both with the preamp on and off, in a measurement that is affected by both analyzer noise and analyzer TOI. The green shows the best available dynamic range, offset by 0.5 dB for clarity. The blue shows how the best available dynamic range improves for moderate signal levels with the low noise path switched in. In this illustration, the preamp improves the noise floor by 15 dB while degrading the third-order intercept by 30 dB , and the low noise path reduces loss by 8 dB . The attenuator step size

AMPTD Y Scale

is 2 dB .

There are other times where selecting the low noise path improves performance, too. Compression-limited measurements such as finding the nulls in a pulsed-RF spectrum can profit from the low noise path in a way similar to the TOI-limited measurement illustrated. Accuracy can be improved when the low noise path allows the optimum attenuation to increase from a small amount like 0 , 2 or 4 dB to a larger amount, giving better return loss at the analyzer input. Harmonic measurements, such as second and third harmonic levels, are much improved using the low noise path because of the superiority of that path for harmonic (though not intermodulation) distortion performance.

$\mu \mathrm{W}$ Preselector Bypass

This key toggles the preselector bypass switch for band 1 and higher. When the microwave presel is on, the signal path is preselected. When the microwave preselector is off, the signal path is not preselected. The preselected path is the normal path for the analyzer.

The preselector is a tunable bandpass filter which prevents signals away from the frequency of interest from combining in the mixer to generate in-band spurious signals (images). The consequences of using a preselector filter are its limited bandwidth, the amplitude and phase ripple in its passband, and any amplitude and phase instability due to center frequency drift.

Option MPB or pre-selector bypass provides an unpreselected input mixer path for certain X-Series signal analyzers with frequency ranges above 3.6 GHz . This signal path allows a wider bandwidth and less amplitude variability, which is an advantage when doing modulation analysis and broadband signal analysis. The disadvantage is that, without the preselector, image signals will be displayed. Another disadvantage of bypassing the preselector is increased LO emission levels at the front panel input port.

Key Path	AMPTD Y Scale, $\mu \mathrm{W}$ Path Control
Example	$:$ POW:MW:PATH MPB

Dependencies	Key is blanked if current mode does not support it. Key is grayed out if mode supports it but current measurement does not support it. Key is blank unless Option MPB is present and licensed. If SCPI command sent when MPB not present, error -241, "Hardware missing; Option not installed" is generated.
Readback Text	μ W Preselector Bypass
Initial S/W Revision	A.04.00

Example	$:$ POW:MW:PRES OFF Bypasses the microwave preselector
Preset	ON
Backwards Compatibility SCPI	[:SENSe]:POWer[:RF]:MW:PRESelector[:STATe] ON $\|\mathrm{OFF}\| 0 \mid 1$ $[: S E N S e]: P O W e r[: R F]: M W: P R E S e l e c t o r[: S T A T e] ? ~$
Backwards Compatibility Notes	The ON parameter sets the STD path. The OFF parameter sets Path MPB.

Internal Preamp

Accesses a menu of keys that control the internal preamps. Turning on the preamp gives a better noise figure, but a poorer TOI to noise floor dynamic range. You can optimize this setting for your particular measurement.

The instrument takes the preamp gain into account as it sweeps. If you sweep outside of the range of the preamp the instrument will also account for that. The displayed result will always reflect the correct gain.

Key Path	AMPTD Y Scale		
Scope	Meas Global		
Remote Command	$[$:SENSe] : POWer [:RF] : GAIN[:STATe] OFF\|ON	0	1 $[: S E N S e]:$ POWer[: RF] : GAIN[:STATe] $?$
Dependencies	Preamp is not available on all hardware platforms. If the preamp is not present or is unlicensed, the key is not shown. The preamp is not available when the electronic/soft attenuator is enabled.		
Preset	OFF		
State Saved	Saved in instrument state		
Initial S/W Revision	Prior to A.02.00		

Key Path	AMPTD Y Scale, Internal Preamp

AMPTD Y Scale

Scope	Meas Global
Remote Command	$[: S E N S e]:$ POWer [:RF]:GAIN:BAND LOW\|FULL $[: S E N S e]: P O W e r[: R F]: G A I N: B A N D ? ~$
Dependencies	Preamp is not available on all hardware platforms. If the preamp is not present or is unlicensed, the key is not shown. If a POW:GAIN:BAND FULL command is sent when a low band preamp is available, the preamp band parameter is to LOW instead of FULL, and an "Option not installed" message is generated.
Preset	LOW
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Off

Turns the internal preamp off

Key Path	AMPTD Y Scale, Internal Preamp
Example	$:$ POW:GAIN OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

Low Band

Sets the internal preamp to use only the low band.
The frequency range of the installed (optional) low-band preamp is displayed in square brackets on the Low Band key label.

Key Path	AMPTD Y Scale, Internal Preamp
Example	:POW:GAIN ON :POW:GAIN:BAND LOW
Readback	Low Band
Initial S/W Revision	Prior to A.02.00

Full Range

Sets the internal preamp to use its full range. The low band ($0-3.6 \mathrm{GHz}$ or $0-3 \mathrm{GHz}$, depending on the model) is supplied by the low band preamp and the frequencies above low band are supplied by the high band preamp.

The frequency range of the installed (optional) preamp is displayed in square brackets on the Full Range
key label. If the high band option is not installed the Full Range key does not appear.

Key Path	AMPTD Y Scale, Internal Preamp
Example	:POW:GAIN ON
	:POW:GAIN:BAND FULL
Readback	Full Range
Initial S/W Revision	Prior to A.02.00

AMPTD Y Scale

Cont (Continuous Measurement/Sweep)

Sets the analyzer for Continuous measurement operation. The single/continuous state is Meas Global so the setting will affect all measurements. If you are Paused, pressing Cont does a Resume.

Key Path	Front-panel key
Remote Command	: INITiate: CONTinuous OFF $\|0 N\| 0 \mid 1$: INITiate : CONTinuous?
Example	:INIT:CONT 0 puts analyzer in Single measurement operation. :INIT:CONT 1 puts analyzer in Continuous measurement operation
Preset	ON (Note that SYST:PRESet sets INIT:CONT to ON but *RST sets INIT:CONT to OFF)
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

In Swept SA Measurement (Spectrum Analysis Mode):
The analyzer takes repetitive sweeps, averages, measurements, etc., when in Continuous mode. When the average count reaches the Average/Hold Number the count stops incrementing, but the analyzer keeps sweeping. See the Trace/Detector section for the averaging formula used both before and after the Average/Hold Number is reached. The trigger condition must be met prior to each sweep. The type of trace processing for multiple sweeps, is set under the Trace/Detector key, with choices of Trace Average, Max Hold, or Min Hold.

In Other Measurements/Modes:
With Avg/Hiold Num (in the Meas Setup menu) set to Off or set to On with a value of 1, a sweep is taken after the trigger condition is met; and the analyzer continues to take new sweeps after the current sweep has completed and the trigger condition is again met. However, with Avg/Hold Num set to On with a value >1, multiple sweeps (data acquisitions) are taken for the measurement. The trigger condition must be met prior to each sweep. The sweep is not stopped when the average count k equals the number N set for Avg/Hold Num is reached, but the number k stops incrementing. A measurement average usually applies to all traces, marker results, and numeric results. But sometimes it only applies to the numeric results.

If the analyzer is in Single measurement, pressing the Cont key does not change k and does not cause the sweep to be reset; the only action is to put the analyzer into Continuous measurement operation.

If it is already in continuous sweep:

- the INIT:CONT 1 command has no effect
- the INIT:CONT 0 command will place the analyzer in Single Sweep but will have no effect on the current sequence until $\mathrm{k}=\mathrm{N}$, at which point the current sequence will stop and the instrument will go to the idle state.

Cont (Continuous Measurement/Sweep)

BW

The BW key opens the bandwidth menu, which contains keys to control the Resolution Bandwidth and Video Bandwidth functions of the instrument.

The Resolution BW functions control filter bandwidth and filter type. There are two filter types, Gaussian and Flattop. The Gaussian filters have a response curve that is parabolic on a log scale. The Flattop filter shape is a close approximation of a rectangular filter.

NOTE

The AVERAGE functions, which appeared in the BW menu in earlier analyzers, can now be found in the Trace menu and the Meas Setup menu. In the Trace menu, you may turn Trace Averaging on or off for the desired traces (rather than globally as in the past); and in the Meas Setup menu you may configure Averaging, by setting the Average Number and the Average Type.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Res BW

Activates the resolution bandwidth active function, which allows you to manually set the resolution bandwidth (RBW) of the analyzer. Normally, Res BW (Auto) selects automatic coupling of the Res BW to Span using the ratio set by the Span:3 dB RBW key. To decouple the resolution bandwidth, press Res BW until Man is underlined, or simply enter a different value for Res BW.

See "More Information" on page 546

Key Path	BW			
Remote Command	[:SENSe]:BANDwidth\|BWIDth[:RESolution] <freq> [:SENSe]:BANDwidth\|BWIDth[:RESolution]? [:SENSe]:BANDwidth\|BWIDth[:RESolution]:AUTO OFF	ON	0	1 [:SENSe]:BANDWidth\|BWIDth[:RESolution]:AUTO?
Example	BAND 1 KHZ BAND? BWID:AUTO ON BWID:AUTO?			
Notes	For numeric entries, all RBW Types choose the nearest (arithmetically, on a linear scale, rounding up) available RBW to the value entered.			
Notes	The setting and querying of values depends on the current bandwidth type.			

Dependencies	When in Zero Span with no EMI Standard selected, there is no Auto setting for Res BW. The Auto/Man line on the Res BW softkey disappears in this case, and if the SCPI command [:SENSe]:BWID[:RESolution]:AUTO ON is sent, it generates a message. While using the Tracking Generator, you must make sure the Start Frequency is high enough to avoid capturing LO feedthrough in the trace. How high you must make the Start Frequency to avoid this will depend on the RBW you have set. The analyzer displays a condition warning message if the Start Frequency falls below roughly 2.5 times the current RBW. The warning is "Source Uncal;adj Start Freq or RBW". When you see this warning, you should increase the Start Freq, or narrow the RBW.
Couplings	Res BW is normally coupled to Span; if Res BW is set to Auto, as the Span decreases, so will the Res BW. Normally, in Zero Span, this coupling is turned off and Res BW has no Auto setting. When a CISPR or MIL EMI Standard is in use, the Res BW is coupled to Center Frequency and not to Span, and this is true even in Zero Span. Sweep time is coupled to RBW when in a non-zero span. If Sweep Time is set to Auto, then the sweep time is changed as the RBW changes, to maintain amplitude calibration. Video bandwidth (VBW) is normally coupled to RBW. If VBW is set to Auto, then the VBW is changed as the RBW changes, to maintain the ratio set by VBW:3 dB RBW. See the "VBW:3dB RBW " on page 549 key description.
State Saved	Initial S/W Revision
Default Unit	MHz On
Max	8 MHz is the max equivalent -3 dB RBW, which means that the named RBW (the one shown on the key etc) can actually exceed 8 MHz if using a filter other than -3 dB Gaussian
Prior to A.02.00 in Instrument State	

More Information

When the Res BW is manually selected, it may be returned to the coupled state by pressing the Res BW key until Auto is underlined. This may also be done by pressing Auto Couple or by performing a Preset.

When Res BW is set to Auto, the bandwidth selected depends on the Filter Type (see "Filter Type" below).

Only certain discrete resolution bandwidths are available. The available bandwidths are dependent on the Filter Type or the EMC Standard. If an unavailable bandwidth is entered with the numeric keypad, the closest available bandwidth is selected.

The zero-span case deserves some mention, because RBW is coupled to Span when in a swept (non-zero) span and in zero span there is normally no meaningful RBW coupling in Zero Span.

However, when a MIL or CISPR EMC Standard is selected, there IS a meaningful coupling for RBW in Zero Span - in fact, it is coupled to Center Frequency, in order to make measurements according to the EMI specifications.

The annotation under RBW in the bottom left of the screen shows the type of filter or bandwidth that is being used. The following examples illustrate this:
-3 dB (Normal) filter BW: Res BW 300 Hz
-6 dB filter BW: Res BW (-6 dB) 422 Hz
Noise filter BW: Res BW (Noise) 317 Hz
Impulse filter BW: Res BW (Impulse) 444 Hz
CISPR filter BW :Res BW (CISPR) 200 Hz
MIL filter BW:Res BW (MIL) 1 kHz
Flattop filter type:Res BW (Flattop) 300 Hz

Video BW

Lets you change the analyzer post-detection filter (VBW or "video bandwidth") from 1 Hz to 8 MHz in approximately 10% steps. In addition, a wide-open video filter bandwidth may be chosen by selecting 50 MHz . The VBW is annotated at the bottom of the display, in the center.

NOTE

An * is displayed next to the VBW annotation when certain detector types (Average, EMI Average, Quasi Peak, and RMS Average) are in use. This is because the VBW filter is out of the circuit for these detectors and does not affect any traces which use them. If there is any active trace using one of these detectors the * is displayed. See "Annotation Examples" on page 549.

Normally, Video BW (Auto) selects automatic coupling of the Video BW filter to the resolution bandwidth filter using the ratio set by the VBW:3 dB RBW key. To decouple the video bandwidth, press Video BW until Man is underlined, or simply enter a new value.

When the Video BW is manually selected, it may be returned to the coupled state by pressing the Video BW key until Auto is underlined. This may also be done by pressing Auto Couple or by performing a Preset.

Key Path	Bw			
Remote Command	$[:$ SENSe $]:$ BANDwidth\|BWIDth:VIDeo <freq>			
	$[:$ SENSe $]:$ BANDwidth\|BWIDth:VIDeo?			
	$[:$ SENSe $]:$ BANDwidth\|BWIDth:VIDeo:AUTO OFF	ON	0	1
	$[:$ SENSe $]:$ BANDwidth\|BWIDth:VIDeo:AUTO?			

Example	BAND:VID 1 KHZ BAND:VID? BWID:VID:AUTO ON BWID:VID:AUTO?
Notes	For numeric entries, the analyzer chooses the nearest (arithmetically, on a linear scale, rounding up) available VBW to the value entered. The 50 MHz VBW is defined to mean "wide open".
Notes	The values shown in this table reflect the conditions after a Mode Preset.
Dependencies	Sata: • When the Average Detector is selected and Sweep Type is set to Swept, the video bandwidth filter cannot be used, because it uses the same hardware as the Average Detector. - When the Quasi-Peak, EMI Average or RMS Average detector is selected Video BW is not actually used to process the trace the VBW is implemented by the digital IF as part of the detector
When this is the case, the VBW still acts to change the Sweep Time, if Sweep	
Time is in Auto, and still affects the data on other traces for which this is not	
the case.	

Annotation Examples

All active traces using VBW

One or more active traces not using VBW

VBW:3dB RBW

Selects the ratio between the video bandwidth and the equivalent 3 dB resolution bandwidth to be used for setting VBW when VBW is in Auto.

VBW:3dB RBW (Auto) selects automatic coupling of the VBW:3 dB RBW ratio to Detector using the rules described below in "Auto Rules" on page 550. To decouple the ratio, press VBW:3 dB RBW until Man is underlined, or simply enter a new value.

When the VBW:3dB RBW is manually selected, it may be returned to the coupled state by pressing the VBW:3 dB RBW key until Auto is underlined. This may also be done by pressing Auto Couple or by performing a Preset.

Key Path	BW			
Remote Command	[:SENSe]:BANDwidth\|BWIDth:VIDeo:RATio <real> [:SENSe]:BANDwidth\|BWIDth:VIDeo:RATio? [:SENSe]:BANDwidth\|BWIDth:VIDeo:RATio:AUTO OFF	ON	0	1 [:SENSe]:BANDwidth\|BWIDth:VIDeo:RATio:AUTO?
Example	BAND:VID:RAT 2 BAND:VID:RAT? BAND:VID:RAT:AUTO 0 BAND:VID:RAT:AUTO?			
Notes	The values shown in this table reflect the conditions after a Mode Preset.			
Couplings	See "Coupling Auto Rules"			
Preset	$\begin{aligned} & 1 \\ & \mathrm{ON} \end{aligned}$			
State Saved	Saved in Instrument State			
Min	0.00001			

Max	3000000
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Auto Rules

The Auto Rules for the VBW:3dB RBW function follow.
First, if Source Mode is set to "Tracking": Use 1.0
Otherwise, we go through the following list of detector numbers and find the lowest numbered detector being used on any active traces (traces for which Update is On):

1. Peak
2. Normal
3. Average
4. Sample
5. Negative Peak
6. EMI Average
7. Quasi Peak
8. RMS Average

Use that detector to pick the ratio based on the following criteria:

1. If the detector is Peak and the EMC Standard is set to either CISPR or MIL, use 10.0 (we use wide VBWs to capture peak levels accurately).
2. Otherwise, if the detector is Negative Peak, use 1.0 (in the Negative Peak case, there are no known significant use models so we use a medium ratio).
3. Otherwise, if the detector is Normal, use 1.0.
4. Otherwise, if the detector is Average, and the span in nonzero, use 0.1. The use of a small ratio in Average detection is desirable because of its effect on the sweep time equations. The VBW filter is not actually in-circuit when the average detector is on. If the detector is Average, and the span is zero, use 10.0, which gives optimal behavior for Interval Markers in zero span.
5. Otherwise, if the detector is EMI Average, Quasi Peak or CISPR RMS, use 1.0. In fact this is a "don't care" since no VBW is used for these detectors, as noted under "Dependencies" for the VBW key.
6. Otherwise, the detector is simply Peak or Sample. These two detectors can use the same rules. In these cases, if any active trace is in max hold or min hold, use 10.0, because Max and Min Hold operations will usually be intended to capture peaks and pits without smoothing from the VBW filter; otherwise, use 1.0 as a compromise, because you have not set the analyzer in a way that implies that you are measuring noise, pulsed-RF or CW signals, and for backward compatibility with earlier analyzers.

Note that because the above couplings depend on which traces are active, they are re-examined
whenever any trace goes active or inactive, except when this leaves no traces active. Transitioning to the state where no traces are active should not affect the couplings; in that way, the annotation will always reflect the state of the last trace which was active.

Span:3dB RBW

Selects the ratio between span and resolution bandwidth.
Normally, Span:3dB RBW (Auto) selects a Span:3 dB RBW ratio of 106:1. If you manually enter the ratio, Man will become underlined, which enables you to manually select ratios more suitable for certain measurements.

When the Span:3dB RBW is manually selected, it may be returned to the coupled state by pressing the Span:3dB RBW key until Auto is underlined. This may also be done by pressing Auto Couple or by performing a Preset.

Key Path	BW		
Remote Command	[:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio <integer> [:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio? [:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio:AU TO OFF\|ON	0	1 [:SENSe]:FREQuency:SPAN:BANDwidth[:RESolution]:RATio:AU TO?
Example	FREQ:SPAN:BAND:RAT 200 sets a ratio of 200:1, and turns off the auto coupling. FREQ:SPAN:BAND:RAT:AUTO ON FREQ:SPAN:BAND:RAT?		
Notes	The values shown in this table reflect the conditions after a Mode Preset.		
Dependencies	Grayed out when the EMC Standard is set to CISPR or MIL, since RBW is coupled to Center Frequency rather than Span in this case. If the grayed out key is pressed, an advisory message is generated. If the equivalent SCPI command is sent, the command is acted upon, but it doesn't affect the current measurement.		
Preset	$\begin{aligned} & 106 \\ & \text { ON } \end{aligned}$		
State Saved	Saved in Instrument State		
Min	2		
Max	10000		
Initial S/W Revision	Prior to A.02.00		

RBW Control

Selects the type/shape for the resolution bandwidth filters. Historically, the Res BW filters in Agilent spectrum analyzers were Gaussian filters, specified using the -3 dB bandwidth of the filter. That is, a 10 MHz Res BW filter was a Gaussian shape with its -3 dB points 10 MHz apart. In the X-Series you can, using the Filter BW key, specify bandwidths other than the -3 dB bandwidth (-6 dB , Noise, Impulse) for the width of the Gaussian filters. Furthermore, the Filter BW menu lets you choose between a Guassian and Flat Top filter shape, for varying measurement conditions.

Key Path	BW
Dependencies]The RBW Control key is grayed out if the EMC Standard is set to CISPR or MIL. In this case the Filter Type is always Gaussian; the Filter BW is chosen as appropriate for the filter and the standard.
Readback line	[<filter type>] or, if Filter Type is Gaussian, [Gaussian,<filter BW>]
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Filter Type

Besides the familiar Gaussian filter shape, there are certain special filter types, such as Flat Top, that are desirable under certain conditions. The Filter Type menu gives you control over these types.

See "More Information" on page 552

Key Path	BW, RBW Control	
Remote Command	[:SENSe] : BANDwidth\|BWIDth:SHAPe GAUSsian	FLATtop [:SENSe] : BANDwidth\|BWIDth:SHAPe?
Example	BAND:SHAP GAUS	
Notes	GAUSsian= Gaussian FLATtop = Flattop	
Dependencies	When EMC Standard is set to CISPR or MIL, the Filter Type is always Gaussian. Any attempt to set it to Flattop will give an error.	
Preset	Auto Couple chooses the preset value	
State Saved	Saved in State	
Readback line	1-of-N selection	
Initial S/W Revision	Prior to A.02.00	
Modified at S/W Revision	A.02.00	

More Information

Gaussian filters

When the Guassian filter type is chosen, a set of 160 RBW filters are available whose shape is
approximately Gaussian. The actual bandwidths used to realize the X-Series's Gaussian filters are chosen to come as close as possible to a 24 step per decade series, within the limitations of the digital IF.

For Guassian filters, the annotation at the bottom of the screen shows the filter bandwidth type (unless it is Normal). This will be shown parenthetically between the words "Res BW" and the value, for example

Res BW 10.0 Hz (Normal bandwidth)
Res BW (Impulse) 14.8 Hz (Impulse bandwidth)
Flattop filters
When the Flattop filter type is chosen, a new set of 134 RBW hardware settings are available. These settings realize filters that are approximately rectangular in shape. When this shape is chosen the filter bandwidth options are irrelevant and therefore unavailable.

The annotation at the bottom of the screen will show that the Flattop shape is being used, for example:
Res BW (Flattop) 10 Hz

Gaussian

Selects the Gaussian filter type. There are 160 of these RBWs. They are arranged in a 24 -per-decade sequence from 1 Hz through 3 MHz , plus the 4, 5, 6 and 8 MHz settings.

Key Path	BW, RBW Control, Filter Type
Example	BAND:SHAP GAUS
Notes	Parameter is GAUSsian. See remote command in section "Filter Type " on page 552.
Readback	Gaussian
Initial S/W Revision	Prior to A.02.00

Flattop

Selects the flat top filter type

Key Path	BW, RBW Control, Filter Type
Example	BAND:SHAP FLAT
Readback	Flattop
Initial S/W Revision	Prior to A.02.00

Filter BW

When using the Gaussian filters for certain types of applications it can be useful to be able to specify the filter width using points other than the -3 dB points. The Filter BW function allows you to pick the filter based on its -3 dB (Normal) bandwidth, its -6 dB bandwidth, its Noise bandwidth, or its Impulse bandwidth.Note that in all four cases the -3 dB bandwidth is the same. The filter does not change, but the way you specify it changes.

See "More Information" on page 554

Key Path	BW, RBW Control			
Remote Command	$[:$ SENSe $]:$ BANDwidth\|BWIDth:TYPE DB3	DB6	IMPulse	NOISe $[: S E N S e]:$ BANDwidth\|BWIDth:TYPE?
Example	BAND:TYPE NOIS			
Notes	DB3 $=-3 \mathrm{~dB}$ (Normal) DB6 = -6 dB IMPulse = Impulse NOISe = Noise			
Dependencies	Grayed out if the Flattop filter type is selected. When EMC Standard is set to CISPR or MIL, the Filter BW is chosen as appropriate for the filter and the standard.Any attempt to set it otherwise will give an error.			
Preset	Auto Couple chooses the preset value			
State Saved	Saved in State			
Readback line	1-of-N selection			
Initial S/W Revision	Prior to A.02.00			
Modified at S/W Revision	A.02.00			

More Information

The analyzer provides four ways of specifying the bandwidth of a Gaussian filter:

1. The -3 dB bandwidth of the filter
2. The -6 dB bandwidth of the filter
3. The equivalent Noise bandwidth of the filter, which is defined as the bandwidth of a rectangular filter with the same peak gain which would pass the same power for noise signals.
4. The equivalent Impulse bandwidth of the filter, which is defined as the bandwidth of a rectangular filter with the same peak gain which would pass the same power for impulsive (narrow pulsed) signals.

The figure below shows the relationships of the various filter bandwidths for filters with the X-Series’ shape factor (shape factor is defined as the ratio of the -60 dB bandwidth to the -3 dB bandwidth):

The Filter Type menu lets you choose the filter bandwidth ($-3 \mathrm{~dB},-6 \mathrm{~dB}$, Noise or Impulse) that will be used when specifying the width of the filter. Note that for a given Gaussian filter, changing the filter bandwidth specification does not affect the filter width at all but only the means of specifying it. For example, the filter whose -3 dB bandwidth is 1.0 kHz is the same as the filter whose -6 dB bandwidth is 1.41 kHz , whose Noise bandwidth is 1.06 kHz , and whose Impulse bandwidth is 1.48 kHz . As you cycle through these various filter bandwidths the filter does not change, but the way the filter is annotated and the value which appears in the active function area and on the softkey does.

-3 dB (Normal)

Selects the normal gaussian-shaped bandwidths that are defined by their -3 dB bandwidths.

Key Path	BW, RBW Control, Filter BW
Example	BAND:TYPE DB3
Readback	-3 dB
Initial S/W Revision	Prior to A.02.00

-6 dB

Selects the filter bandwidths where the bandwidth is defined at the -6 dB points. This uses the normal RBW filters, but the value displayed on the key, active function line and screen annotation changes to reflect the -6 dB bandwidth instead of the -3 dB bandwidth.

Key Path	BW, RBW Control, Filter BW
Example	BAND:TYPE DB6
Readback	-6 dB
Initial S/W Revision	Prior to A.02.00

Noise

Selects the noise filter bandwidths. This uses the normal RBW filters, but the value displayed on the key, active function line and screen annotation changes to reflect the equivalent noise bandwidth, instead of the -3 dB bandwidth.

Key Path	BW, RBW Control, Filter BW
Example	BAND:TYPE NOIS
Readback	Noise
Initial S/W Revision	Prior to A.02.00

Impulse

Selects the impulse bandwidths. This uses the normal RBW filters, but the value displayed on the key, active function line and screen annotation changes to reflect the equivalent impulse bandwidth instead of the -3 dB bandwidth.

Key Path	BW, RBW Control, Filter BW
Example	BAND:TYPE IMP
Readback	Impulse
Initial S/W Revision	Prior to A.02.00

Frequency Channel (FREQ Channel)

The Frequency key opens up a menu of keys that allow you to control the Frequency parameters of the instrument.

See "FREQ Channel" on page 909 for more information.

NOTE
In iDEN Demod, iDEN Power, Vector Analysis and Monitor Spectrum measurements, when user changes the slot format and carrier configuration, the center frequency will be coupled and changed.

iDEN Slot Format	WiDEN Slot Format 25kHz	WiDEN Slot Format 50kHz	WiDEN Slot Format 75kHz	WiDEN Slot Format 100 kHz	WiDEN Slot Format 50kHz Out
806 MHz	806 MHz	806.0125 MHz	806.025 MHz	806.0375 MHz	806.0375 MHz

Key Path
Instrument S/W Revision

Front-panel key
A. 02.00

Frequency Channel (FREQ Channel)

Input/Output

The Input/Output features are common across multiple Modes and Measurements. These common features are described in this section. See the Measurement description for information on features that are unique.
The Input/Output key accesses the softkeys that control the Input/Output parameters of the instrument. In general, these are functions associated with external connections to the analyzer, either to the inputs or the outputs. Since these connections tend to be fairly stable within a given setup, in general the input/output settings do not change when you Preset the analyzer.

Other functions related to the input/output connections, but which tend to change on a measurement by measurement basis, can be found under the Trigger and AMPTD Y Scale keys. In addition, some of the digital I/O bus configurations can be found under the System key.

NOTE The functions in the Input/Output menu are "global" (common) to all Modes

 (applications). But individual Input/Output functions only appear in a Mode if they apply to that Mode. Functions that apply to a Mode but not to all measurements in the Mode may be grayed-out in some measurements."Input/Output variables - Preset behavior" on page 559
The Input Port selection is the first menu under the Input/Output key:

| Remote Command | [:SENSe] :FEED
 RF\|AIQ |IQ| IONLy |QONLy | INDependent |AREFerence
 [:SENSe] :FEED? |
| :--- | :--- |
| Preset | This setting is unaffected by a Preset or power cycle. It survives a Mode Preset
 and mode changes.
 It is set to RF on a "Restore Input/Output Defaults" or "Restore System
 Defaults->All" |
| State Saved | Saved in instrument state |
| Backwards Compatibility SCPI | The calibrator was one of the inputs in legacy analyzers but is outside the
 input selection in the X-Series. The legacy parameter [:SENSe]:FEED
 AREFerence is aliased to the new command [:SENSe]:FEED:AREF REF50
 for backwards compatibility. This causes the input to be switched to the 50
 MHz calibrator, but after sending this, the query [:SENSe]:FEED? will NOT
 return "AREF" but instead the currently selected input. |
| Initial S/W Revision | Prior to A.02.00 |

Input/Output variables - Preset behavior

Virtually all the input/output settings are NOT a part of mode preset. They can be set to their default value by one of the three ways - by using the Restore Input/Output Defaults key on the first page of the input/output menu, by using the System->Restore System Defaults->Input/Output Settings or by using

Input/Output

the System -> Restore System Defaults->All. Also, they survive a Preset and a Power cycle.
A very few of the Input/Output settings do respond to a Mode Preset; for example, if the Calibrator is on it turns off on a Preset, and if DC coupling is in effect it switches to AC on a Preset. These exceptions are made in the interest of reliability and usability, which overrides the need for absolute consistency. Exceptions are noted in the SCPI table for the excepted functions.

RF Input

Selects the front-panel RF input port to be the analyzer signal input. If RF is already selected, pressing this key accesses the RF input setup functions.

Key Path	Input/Output
Example	[:SENSe]:FEED RF
Readback	The RF input port, RF coupling, and current input impedance settings appear on this key as: "XX, YY, ZZ" where XX is RF, RF2, RFIO1, RFIO2, depending on what input is selected (only appears on analyzers with multiple RF inputs) YY is AC or DC ZZ is 50 or 75
Initial S/W Revision	Prior to A.02.00

Input Z Correction

Sets the input impedance for unit conversions. This affects the results when the y-axis unit is voltage or current units ($\mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}, \mathrm{dB} \mu \mathrm{A}, \mathrm{V}, \mathrm{A}$), but not when it is power units (dBm, W). The impedance you select is for computational purposes only, since the actual impedance is set by internal hardware to 50 ohms. Setting the computational input impedance to 75 ohms is useful when using a 75 ohm to 50 ohm adapter to measure a 75 ohm device on an analyzer with a 50 ohm input impedance.

There are a variety ways to make 50 to 75 ohm transitions, such as impedance transformers or minimum loss pads. The choice of the solution that is best for your measurement situation requires balancing the amount of loss that you can tolerate with the amount of measurement frequency range that you need. If you are using one of these pads/adaptors with the Input Z Corr function, you might also want to use the Ext Gain key. This function is used to set a correction value to compensate for the gain (loss) through your pad. This correction factor is applied to the displayed measurement values.

Key Path	Input/Output, RF Input
Remote Command	$[$:SENSe] $:$ CORRection: IMPedance[:INPut][:MAGNitude] 50\|75 [:SENSe] :CORRection: IMPedance[:INPut][:MAGNitude]?
Example	CORR:IMP 75 sets the input impedance correction to 75 ohms. CORR:IMP?

Preset	This is unaffected by a Preset but is set to 50 ohms on a "Restore Input/Output Defaults" or "Restore System Defaults->All" Some instruments/options may have 75 ohms available.
State Saved	Saved in instrument state
Readback	50Ω or 75Ω Current setting reads back to the RF key.
Initial S/W Revision	Prior to A.02.00

RF Coupling

Specifies alternating current (AC) or direct current (DC) coupling at the analyzer RF input port. Selecting AC coupling switches in a blocking capacitor that blocks any DC voltage present at the analyzer input. This decreases the input frequency range of the analyzer, but prevents damage to the input circuitry of the analyzer if there is a DC voltage present at the RF input.

In AC coupling mode, you can view signals below the corner frequency of the DC block, but below a certain frequency the amplitude accuracy is not specified. The frequency below which specifications do not apply is:

X-Series Model	Lowest Freq for meeting specs when AC coupled	Lowest Freq for meeting specs when DC coupled
N9000A	100 kHz	n / a
N9010A	10 MHz	9 kHz
N9020A	10 MHz	3 Hz
N9030A	10 MHz	3 Hz

Some amplitude specifications apply only when coupling is set to DC. Refer to the appropriate amplitude specifications and characteristics for your analyzer.
When operating in DC coupled mode, ensure protection of the analyzer input circuitry by limiting the DC part of the input level to within 200 mV of 0 Vdc . In AC or DC coupling, limit the input RF power to +30 dBm (1 Watt).

Key Path	Input/Output, RF Input
Remote Command	: INPut : COUPling AC\|DC :INPut : COUPling?
Example	INP:COUP DC
Dependencies	This key does not appear in models that are always AC coupled. When the SCPI command to set DC coupling is sent to these models, it results in the error "Illegal parameter value;This model is always AC coupled" In these models, the SCPI query INP:COUP? always returns AC.
Preset	AC
State Saved	Saved in instrument state.

Input/Output

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

RF Input Port

Specifies the RF input port used. The RF Input Port key only appears on units with multiple inputs, and lets you switch between the two inputs.

Switching from the RF input port to one of the RFIO ports, on units which have them, changes the receiver performance of the instrument.

Key Path	Input/Output, RF Input
Remote Command	[:SENSe] : FEED: RF : PORT[: INPut] RFIN \mid RFIN2 \mid RFIO1 \mid RFIO2 [:SENSe] : FEED: RF : PORT[: INPut]?
Example	:FEED:RF:PORT RFIN
Dependencies	This key only appears in models that support multiple inputs. If the SCPI command is sent with unsupported parameters in any other model, an error is generated, -221.1900, "Settings conflict;option not installed"
Preset	This is unaffected by Mode Preset but is set to RF on a "Restore Input/Output Defaults" or "Restore System Defaults -> All"
State Saved	Saved in State
Initial S/W Revision	A.05.01
Read Back	The current RF Input Port selected is read back to this key

I/Q

This feature is not available unless the "Baseband I/Q (Option BBA)" on page 563 is installed.
Selects the front-panel I/Q input ports to be the analyzer signal input. If I/Q is already selected, pressing this key accesses the I/Q setup menu.

Key Path	Input/Output
Mode	BASIC, CDMA2K, EDGEGSM, TDSCMDA, VSA89601, WIMAXOFDMA
Example	FEED AIQ
Notes	Not all measurements support the use of the I/Q signal input. When I/Q is selected in a measurement that does not support it, the "No Result; Meas invalid with I/Q inputs " error condition message appears. This is error 135

\(\left.$$
\begin{array}{|l|l|}\hline \text { Notes } & \begin{array}{l}\text { The parameters IQ|IONLy|QONLy are only supported for backwards } \\
\text { compatibility The E44406 SCPI has the following that corresponds to } \\
\text { FEED:IQ:TYPE for X-Series. } \\
\text { [:SENSe]:FEED IQ|IONLy|QONLy }\end{array}
$$

[:SENSe]:FEED?\end{array}\right]\)| [:SENSe]:FEED IQ will set the I/Q path to IQ |
| :--- |
| [:SENSe]:FEED IONLy will set the I/Q path to I Only |
| [:SENSe]:FEED QONLy will set the I/Q path to QOnly |
| Note that [:SENSe]:FEED? will not be backward compatible. |
| The query [:SENSe]:FEED? will always returns AIQ whatever the type of |
| legacy parameters IQ\|IONLy|QONLy has been used. |

Baseband I/Q (Option BBA)

The Baseband I/Q functionality is a hardware option. It is option BBA. If the option is not installed, none of the I/Q functionality is enabled.

The Baseband I/Q has four input ports and one output port. The input ports are I, I-bar, Q, and Q-bar. The I and I-bar together compose the I channel and the Q and Q -bar together compose the Q channel. Each channel has two modes of operation, Single-Ended (also called "unbalanced") and Differential Input (also called "balanced"). When in Single-Ended operation, only the main port (I or Q) is used and the complementary port (I-bar or Q-bar) is ignored. When in Differential Input mode, both main and complementary ports are used.

The input settings (range, attenuation, skew, impedance, external gain) apply to the channels, not the individual ports.

The system supports a variety of $1 \mathrm{M} \Omega$ input passive probes as well as the Agilent 113 x Series active differential probes using the Infinimax probe interface.

The Agilent 113x Series active probes can be used for both single ended and differential measurements. In either case a single connection is made for each channel (on either the I or Q input). The input is automatically configured to 50Ω single ended and the probe power is supplied through the Infinimax interface. The probe can be configured for a variety of input coupling and low frequency rejection modes. In addition, a wide range of offset voltages and probe attenuation accessories are supported at the probe interface. The active probe has the advantage that it does not significantly load the circuit under test, even with unity gain probing.

With passive $1 \mathrm{M} \Omega$ probes, the probe will introduce a capacitive load on the circuit, unless higher attenuation is used at the probe interface. Higher attenuation reduces the signal level and degrades the signal-to-noise-ratio of the measurement. Passive probes are available with a variety of attenuation values for a moderate cost. Most Agilent passive probes can be automatically identified by the system, setting the input impedance setting required as well as the nominal attenuation. For single ended measurements a single probe is used for each channel. Other passive probes can by used, with the attenuation and impedance settings configured manually.

For full differential measurements, the system supports probes on each of the four inputs. The

Input/Output

attenuation of the probes should be the same for good common mode rejection and channel match.
Both active and passive probes in single ended and differential configurations can be calibrated. This calibration uses the Cal Out BNC connection and a probe connection accessory. The calibration achieves excellent absolute gain flatness in a probed measurement. It matches both the gain and frequency response of the I and Q channels as well as any delay skew, resulting in high accuracy in derived measurements such as Error Vector Magnitude (EVM).

When a probe is connected a status message will be displayed. The message will indicate if calibration data is available or not. Calibration data is saved for each type of probe (including "none") for each port and will be reapplied whenever that type of probe is re-connected to the same port. For probes with EEPROM identification, the calibration data will be stored based on the unique probe identifier and will reapply data for that particular probe if it is available. The data will not follow a probe from one port to another. For probes without EEPROM identification, the instrument cannot distinguish between different probes of the same type and it will use the data from the last calibration for that probe type on that port.

When in differential mode, both the main and complementary probes are expected to be of the same type.

In some situations, the I and Q channels should be configured identically. In other situations it is convenient to control them independently. Some menus have a "Q Same as I" setting that will cause the Q channel configuration to mirror the I channel configuration, avoiding the overhead of double data entry when the channels should be the same.

The output port is for calibrating the I/Q input ports, although it can also be manually controlled.
There are two types of calibrations available: cable calibration and probe calibration. The cable calibration will guide the user through connecting each input port in turn. All ports must be calibrated together. The probe calibration is done for a specific channel (I or Q). If in Single-Ended mode, only the main port is calibrated. When in Differential Input mode, the user is guided through calibrating both main and complementary ports.

The front panel I/Q port LEDs indicate the current state of that port. On (green) indicates it is active, and off (dark) indicates it is not in use. For example, the Cal Out port LED is on if and only if there is signal coming out of that port.

The input is a context and some parameters have separate values for each context. The SCPI for these parameters has an optional "[:RF|IQ]" node. If the specific context is omitted, the command acts on the current input context's value. Here are the parameters that are input context sensitive:

- Center Frequency

- Trigger Source

It is important to distinguish between the I and Q input ports and the displayed I and Q data values. The I and Q input ports feed into a digital receiver that does digital tuning and filtering. The I and Q data seen by the user (either on the display or through SCPI) corresponds to the real ("I") and the imaginary ("Q") output from the digital receiver. When the input path is $\mathrm{I}+\mathrm{jQ}$ or I Only and the center frequency is 0 Hz the I input ends up in as the real output from the receiver and appears as "I" data. Likewise, when the input path is $\mathrm{I}+\mathrm{jQ}$ and the center frequency is 0 Hz , the Q input ends up as the imaginary output from the receiver and appears as "Q" data. However, when the input path is Q Only, the Q input is sent to the receiver as $\mathrm{Q}+\mathrm{j} 0$, so the receiver output has the Q input coming out on the real output, and so in Q Only, the signal from the Q input port appears as the "I" data. Another situation where the I and Q data do not necessarily correspond directly to the I and Q inputs is when the center frequency is non-zero. The
digital processing involved in the tuning is a complex operation. This will result in I Only data appearing as both "I" and "Q" data, the same as that signal would appear if seen through the RF input port.

I/Q Path

Selects which I/Q input channels are active. The LED next to each I/Q input port will be on when that port is active.

The analysis bandwidth for each channel is the same as that of the instrument. So, for example, the base N9020A has a bandwidth of 10 MHz . With I/Q input the I and Q channels would each have an analysis bandwidth of 10 MHz , giving 20 MHz of bandwidth when the I/Q Path is I+jQ. With option B25, the available bandwidth becomes 25 MHz , giving 25 MHz each to I and Q and 50 MHz to I+jQ.
I / Q voltage to power conversion processing is dependent on the I/Q Path selected.

- With I+jQ input we know that the input signal may not be symmetrical about 0 Hz , because it has a complex component. Therefore, above 0 Hz only the positive frequency information is displayed, and below 0 Hz only the negative frequency information is displayed.
- With all other Input Path selections, the input signal has no complex component and therefore is always symmetrical about 0 Hz . In this case, by convention, the power conversion shows the combined voltage for both the positive and negative frequencies. The information displayed below 0 Hz is the mirror of the information displayed above 0 Hz . This results in a power reading 6.02 dB higher (for both) than would be seen with only the positive frequency voltage. Note also that, in this case the real signal may have complex modulation embedded in it, but that must be recovered by further signal processing.

Key Path	Input/Output, I/Q		
Remote Command	[:SENSe]:FEED:IQ:TYPE IQ\|IONLy	QONLy	INDependent [:SENSe]:FEED:IQ:TYPE?
Example	Set the input to be both the I and Q channels, combined as $I+j * Q$. FEED:IQ:TYPE IQ		
Notes	The Independent I and Q selection is only available in GPVSA		
Preset	IQ		
State Saved	Yes This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"		
Range	I+jQ \| I Only	Q Only	Independent I and Q
Readback Text	I+jQ \| I Only	Q Only	Ind I/Q
Initial S/W Revision	Prior to A.02.00		

| Remote Command | IINPut[1]:IQ:TYPE IQ\|I|Q
 $:$ INPut[1]:IQ:TYPE? |
| :--- | :--- |
| Preset | IQ |

Input/Output

Initial S/W Revision	Prior to A.02.00

I+jQ

Sets the signal input to be both the I and Q channels. The I and Q channel data will be combined as I + j * Q .

Key Path	Input/Output, I/Q, I/Q Path
Example	Set the input to be both the I and Q channels, combined as I + j * Q. FEED:IQ:TYPE IQ
Initial S/W Revision	Prior to A.02.00

I Only

Sets the signal input to be only the I channel. The Q channel will be ignored. The data collected is still complex. When the center frequency is 0 the imaginary part will always be zero, but for any other center frequency both the real and imaginary parts will be significant.

Key Path	Input/Output, I/Q, I/Q Path
Example	Set the input to be only the I channel. FEED:IQ:TYPE IONL
Initial S/W Revision	Prior to A.02.00

Q Only

Sets the signal input to be only the Q channel. The I channel will be ignored. The Q channel will be sent to the digital receiver block as $\mathrm{Q}+\mathrm{j} 0$. The receiver's output is still complex. When the center frequency is 0 the imaginary part will always be zero, but for any other center frequency both the real and imaginary parts will be significant. Note that since the receiver's real output is displayed as the "I" data, when the center frequency is 0 , the Q Only input appears as the "I" data.

Key Path	Input/Output, I/Q, I/Q Path
Example	Set the input to be only the Q channel. FEED:IQ:TYPE QONL
Initial S/W Revision	Prior to A.02.00

Independent I and Q

Sets the signal input to be both the I and Q channels, but as independent inputs. It is equivalent to treating I as channel 1 and Q as channel 2 in an oscilloscope. Each channel's data is still complex. When the center frequency is 0 the imaginary part will always be zero, but for any other center frequency both the real and imaginary parts will be significant.

This selection is only available in VXA.

Key Path	Input/Output, I/Q, I/Q Path
Example	Turn on both I and Q channels and treat I as channel 1 and Q as channel 2. FEED:IQ:TYPE IND
Notes	The Independent I and Q selection is only available in GPVSA
Readback Text	Ind I/Q
Initial S/W Revision	Prior to A.02.00

I Setup

Access the channel setup parameters for the I channel.

Key Path	Input/Output, I/Q
Initial S/W Revision	Prior to A.02.00

I Differential Input

Selects differential input on or off for the I channel. For differential input (also called balanced input), the analyzer uses both main and complementary ports. When differential input is off (also called single-ended or unbalanced input), the analyzer uses only the main port.

Key Path	Input/Output, I/Q, I Setup			
Remote Command	:INPut : IQ[: I] : DIFFerential OFF $\|0 N\| 0 \mid 1$ $:$ INPut : IQ[: I] : DIFFerential?			
Example	Put the I channel in Differential Input mode INP:IQ:DIFF ON			
Notes	When I Differential Input = On, the analyzer will check for attenuation mismatches between the I and I-bar ports. If the difference in attenuation values exceeds 0.5 dB a Settings Alert error condition, error 159 will be set. When I Differential Input = On, and IQ Path is I+jQ, the Q Differential input must also be On. Similarly, when I Differential Input = Off, and IQ Path is			
I+jQ, the Q Differential input must also be Off. If the states of the two inputs				
do not match, an error condition message is generated, 159;Settings Alert;I/Q				
mismatch:Differential.		$	$	Some active probes include built-in differential capability. When one of these
:---				
probes is sensed, this key is disabled. Since the differential capability is				
handled in the probe, the Analyzer will use only the main port and the key will				
show that the Analyzer's Differential Input mode is Off (indicating that the				
complementary port not in use).				
When Q Same as I is On, the value set for I will also be copied to Q.				

Input/Output

State Saved	Yes This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
Range	Off \| On
Initial S/W Revision	Prior to A.02.00

| Remote Command | :INPut [1]:IQ: BALanced [:STATe] OFF\|ON|0|1
 $:$ INPut [1]: IQ: BALanced [:STATe]? |
| :--- | :--- |
| Notes | This backwards compatibility SCPI command was for an instrument without
 independent settings for the I and Q channels. Therefore, it is tied only to the I
 channel and does not provide an equivalent for the Q channel. For proper
 operation of the backwards compatibility command Q Same as I should be set
 to On. |
| Preset | OFF |
| Initial S/W Revision | Prior to A.02.00 |

I Input Z

Selects the input impedance for the I channel. The impedance applies to both the I and I-bar ports.
The input impedance controls the hardware signal path impedance match. It is not used for converting voltage to power. The voltage to power conversion always uses the Reference Z parameter. The Reference Z parameter applies to both I and Q channels.

Key Path	Input/Output, I/Q, I Setup
Remote Command	:INPut [1] : IQ[: I] : IMPedance LOW\|HIGH :INPut [1] : IQ[: I] : IMPedance?
Example	Set the I channel input impedance to $1 \mathrm{M} \Omega$ INP:IQ:IMP HIGH
Notes	LOW = 50Ω, HIGH = $1 \mathrm{M} \Omega$ When IQ Path is I+jQ, the I Input Z setting must be the same as the Q Input Z setting. If the settings of the two inputs do not match, an error condition message is generated, 159;Settings Alert;I/Q mismatch:Input Z.
Couplings	Input impedance is a built-in characteristic of a probe. Therefore, whenever a probe is sensed, this key is disabled and the value is set to match the probe. When no probe is sensed on Q and Q Same as I is On, the value set for I will also be copied to Q.
Preset	LOW
State Saved	Yes This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"

Input/Output

Range	$50 \Omega \mid 1 \mathrm{M} \Omega$
Initial S/W Revision	Prior to A.02.00

I Skew

Sets the skew factor for the I channel. The skew will shift the channel's data in time. Use this to compensate for differences in the electrical lengths of the input paths due to cabling.

Key Path	Input/Output, I/Q, I Setup
Remote Command	[:SENSe] : CORRection: IQ[: I] : SKEW <seconds> [:SENSe] : CORRection: IQ[: I] : SKEW?
Example	Delay the data for the I channel by 10 ns. CORR:IQ:SKEW 10 ns
Preset	0
State Saved	Yes This is unaffected by Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
Range	0 s to 100 ns
Initial S/W Revision	Prior to A.02.00

I Probe

Access the probe setup parameters for the I channel. See "I/Q Probe Setup" on page 573.

Key Path	Input/Output, I/Q, I Setup
State Saved	No
Readback Text	[$<$ I port probe id $>$] This is reporting the type of probe sensed on the I port. There is no parameter for overriding what is sensed.
Initial S/W Revision	Prior to A.02.00

Combined Differential/Input Z (Remote Command Only)

This is Remote Command only (no front panel) and is for backwards compatibility only. It combines the Differential Input and Input Z selections into a single SCPI command.

| Remote Command | :INPut:IMPedance:IQ U50\|B50|U1M|B1M
 $:$ INPut: IMPedance: IQ? |
| :--- | :--- |

Input/Output

Example	:INPut:IMPedance:IQ U50 This is equivalent to the following two SCPI commands: :INP:IQ:DIFF OFF :INP:IQ:IMP 50
Notes	The enum values translate as follows: U50: Differential Input $=$ Off, Input $Z=50 \Omega$ B50: Differential Input $=$ On, Input $Z=50 \Omega$ U1M: Differential Input = Off, Input Z $=1 \mathrm{M} \Omega$ B1M: Differential Input $=$ On, Input $Z=1 \mathrm{M} \Omega$ This command is for backwards compatibility. It combines the Input Z (50Ω or $1 \mathrm{M} \Omega$) parameter with the Differential Input (Off = "Unbalanced", On = "Balanced") parameter into a single enumeration. This backwards compatibility SCPI command was for an instrument without independent settings for the I and Q channels. Therefore, it is tied only to the I channel and does not provide an equivalent for the Q channel. For proper operation of the backwards compatibility command Q Same as I should be set to On. Also, note the subtle difference between this SCPI command and the backwards compatibility command for Input Z. The Input Z SCPI has "IQ" before "IMP" while this command has that order reversed.
Couplings	This command does not have an independent parameter, but instead is tied to the Differential Input and Input Z parameters. The coupling for those parameters apply to this command too.
Preset	U50
Initial S/W Revision	Prior to A.02.00

Q Setup

Access the channel setup parameters for the Q channel.

Key Path	Input/Output, I/Q
Readback Text	When Q Same as I is On the readback is "Q Same as I".
Initial S/W Revision	Prior to A.02.00

Q Same as I

Many, but not all, usages require the I and Q channels have an identical setup. To simplify channel setup, the Q Same as I will cause the Q channel parameters to be mirrored from the I channel. That way your only need to set up one channel (the I channel). The I channel values are copied to the Q channel, so at the time Q Same as I is turned off the I and Q channel setups will be identical. This does not apply to

Probe settings or to parameters that determined by the probe.

Key Path	Input/Output, I/Q, Q Setup
Remote Command	:INPut : IQ: MIRRored OFF $\|O N\| 0 \mid 1$:INPut : IQ: MIRRored?
Example	Turn off the mirroring of parameters from I to Q. INP:IQ:MIRR OFF
Couplings	Only displayed for the Q channel. When Yes, the I channel values for some parameters are mirrored (copied) to the Q channel. However, when a parameter is determined by the type of probe and a probe is sensed, the probe setting is always used and the I channel setting is ignored. The following parameters are mirrored: Differential Input (when not determined by probe) Input Z (when not determined by probe)
Preset	This is unaffected by a Preset but is set to the default value (Q Same as I set to "On") on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state.
Range	On \| Off
Readback Text	"Q Same as I" when On, otherwise none.
Initial S/W Revision	Prior to A.02.00

Q Differential Input

Selects differential input on or off for the Q channel. For differential input (also called balanced input), the analyzer uses both the Q and Q-bar ports. When differential input is off (also called single-ended or unbalanced input), the analyzer uses only the Q port.

Key Path	Input/Output, I/Q, Q Setup
Remote Command	:INPut : IQ: Q: DIFFerential OFF $\|O N\| 0 \mid 1$:INPut : IQ:Q:DIFFerential?
Example	Put the Q channel in Differential Input mode INP:IQ:Q:DIFF ON
Notes	When Differential Input = On, the analyzer will check for attenuation mismatches between the Q and Q-bar ports. If the difference in attenuation values exceeds 0.5 dB a Settings Alert error condition, error 159 will be set. When Q Differential Input = On, and IQ Path is I+jQ, the I Differential input must also be On. Similarly, when Q Differential Input = Off, and IQ Path is I+jQ, the I Differential input must also be Off. If the states of the two inputs do not match, an error condition message is generated, 159;Settings Alert;I/Q mismatch:Differential.

Input/Output

Couplings	Some active probes include built-in differential capability. When one of these probes is sensed, this key is disabled. Since the differential capability is handled in the probe, the Analyzer will use only the main port and the key will show that the Analyzer's Differential Input mode is Off (indicating that the complementary port not in use). When a differential probe is not sensed and Q Same as I is On, the value set for I will be copied to Q. This key is disabled when Q Same as I is On.	
Preset	Off	
State Saved	On This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"	
Range	Off \\| On	
Initial S/W Revision	Prior to A.02.00	

Q Input Z

Selects the input impedance for the Q channel. The impedance applies to both the Q and Q -bar ports.
The input impedance controls the hardware signal path impedance match. It is not used for converting voltage to power. The voltage to power conversion always uses the Reference Z parameter. The Reference Z parameter applies to both I and Q channels.

Key Path	Input/Output, I/Q, Q Setup
Remote Command	:INPut [1] : IQ:Q: IMPedance LOW\|HIGH $:$ INPut [1] : IQ: Q: IMPedance?
Example	Set the Q channel input impedance to $1 \mathrm{M} \Omega$ INP:IQ:Q:IMP HIGH
Notes	LOW = $50 \Omega, \mathrm{HIGH}=1 \mathrm{M} \Omega$ When IQ Path is I+jQ, the I Input Z setting must be the same as the Q Input Z setting. If the settings of the two inputs do not match, an error condition message is generated, 159;Settings Alert;I/Q mismatch:Input Z.
Couplings	Input impedance is a built-in characteristic of a probe. Therefore, whenever a probe is sensed, this key is disabled and the value is set to match the probe. When no probe is sensed and Q Same as I is On, the value set for I will also be copied to Q. This key is disabled when Q Same as I is On.
Preset	LOW
State Saved	On This is unaffected by Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
Range	$50 \Omega \mid 1 \mathrm{M} \Omega$
Initial S/W Revision	Prior to A.02.00

Q Skew

Sets the skew factor for the Q channel. The skew will shift the channel's data in time. Use this to compensate for differences in the electrical lengths of the input paths due to cabling and probes.

Key Path	Input/Output, I/Q, Q Setup
Remote Command	[:SENSe] : CORRection: IQ:Q:SKEW <seconds> [:SENSe] : CORRection: IQ:Q:SKEW?
Example	Delay the data for the Q channel by 10 ns. CORR:IQ:Q:SKEW 10 ns
Preset	0
State Saved	Yes This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
Range	0 s to 100 ns
Initial S/W Revision	Prior to A.02.00

Q Probe

Accesses the probe setup parameters for the Q channel. See "I/Q Probe Setup" on page 573.

Key Path	Input/Output, I/Q, Q Setup
State Saved	No
Readback Text	[<Q port probe id $>$] This is reporting the type of probe sensed on the Q port. There is no parameter for overriding what is sensed.
Initial S/W Revision	Prior to A.02.00

I/Q Probe Setup

The set of I/Q probe setup parameters will change based on the type of probe that is sensed. All probe types have the Attenuation parameter, and all probe types can be calibrated. The remaining parameters are only available for some probe types and will not be shown when not available. The probe type is determined by and reported for only for the I and Q ports, never the I-bar or Q-bar ports. The menu title will be "<ch>: <probe id>", where "<ch>" is either "I" or "Q" and "<probe id>" is the type of probe. For example, for the I Probe setup with an Agilent 1130A probe connected to the I port, the title will be "I: 1130A".

Probe calibration data is stored for each probe type for each channel. When no probe is sensed, the probe type "Unknown" is used, and this is also treated like a probe type with its own calibration data. When a probe is changed, the calibration data for that probe type for that port is restored. An advisory message will be displayed showing the new probe type and the calibration status. The calibration data is stored permanently (survives a power cycle) and is not affected by a Preset or any of the Restore commands. When the probe has EEPROM identification (most newer Agilent probes have this), the calibration data

Input/Output

is stored by probe serial number and port, so if you have two probes of the same type, the correct calibration data will be used for each. For probes that do not have EEPROM identification, the calibration data is stored by probe type and port and the instrument cannot distinguish between different probes of the same type. In all cases (with or without EEPROM identification), the calibration data is port specific, so it will not follow a specific probe from port to port if the probe is moved.

The "Unknown" probe type is used whenever no probe is sensed. When no calibration data exists for "Unknown" the latest cable calibration data is used (see Section "I/Q Guided Calibration" on page 618).

Attenuation

The attenuation is part of the calibration data stored with the probe type and is initially the value that was returned by the last calibration. You can modify this value and any changes will be stored with the calibration data and will survive power cycles and presets. When a probe calibration is performed the attenuation value will be overwritten by the calibration.

| Key Path | Input/Output, I/Q, I Setup \| Q Setup, I Probe |Q Probe |
| :--- | :--- |
| Remote Command | [:SENSe] : CORRection: IQ: I\|Q:ATTenuation: RATio <real>
 [:SENSe] : CORRection: IQ: I\|Q:ATTenuation: RATio? |
| Example | Set the attenuation for the current I probe to 100.00:1.
 CORR:IQ:I:ATT:RAT 100 |
| Notes | Each probe type has its own attenuation setting. As probes are changed the
 attenuation value will reflect the new probe's setting. Changing the attenuation
 affects only the current probe type's setting and leaves all others unchanged.
 When the IQ Path is I+jQ, the Q probe attenuation setting must match the I
 Probe attenuation setting within 1 dB. If this is not the case, an error condition
 message is generated, 159;Settings Alert;I/Q mismatch:Attenuation. |
| Preset | Each probe type has its own default. The default for the "Unknown" probe
 type is 1:1. |
| State Saved | Saved with probe calibration data. It survives a power cycle and is not affected
 by a Preset or Restore. |
| Range | 0.001 to 10000 |
| Initial S/W Revision | Prior to A.02.00 |

Remote Command	$[: S E N S e]: C O R R e c t i o n: I Q: I \mid Q: A T T e n u a t i o n ~<r e l _a m p l>~$ $[: S E N S e]: C O R R e c t i o n: I Q: I \mid Q: A T T e n u a t i o n ? ~$
Example	Set the attenuation for the current I probe type to 100.00:1. CORR:IQ:I:ATT 20 dB
Range	-60 dB to +80 dB
Initial S/W Revision	Prior to A. 02.00

Offset

Some active probes have DC offset capability. When one of these probes is connected this control will be visible. The signal is adjusted for the DC offset before entering the analyzer's port. This allows for removal of a DC offset before hitting the analyzer's input port voltage limits. For example, a signal that varies 1 V peak-to-peak with a DC offset equal to the analyzer's max input voltage would exceed the input limits of the analyzer for half its cycle. Removing the DC offset allows the analyzer to correctly process the entire signal.

| Key Path | Input/Output, I/Q, I Setup \| Q Setup, I Probe | Q Probe |
| :--- | :--- |
| Remote Command | $:$ INPut : OFFSet : I \mid Q <voltage>
 $:$ INPut : OFFSet : I \mid Q? |
| Example | Remove a DC offset of -0.5 V from the I channel input.
 INP:OFFS:I -0.5 |
| Notes | Only some probe types support Offset. For those that do, each probe type has
 its own Offset setting. As probes are changed the Offset value will reflect the
 new probe's setting. Changing the Offset affects only the current probe type's
 setting and leaves all others unchanged. |
| Preset | 0 V |
| State Saved | Saved with probe calibration data. It survives power cycle and is not affected
 by Preset or Restore. |
| Range | -18 V to +18 V |
| Initial S/W Revision | Prior to A.02.00 |

Coupling

Some probe types allow coupling to reject low frequencies. This will filter out the DC component of a signal that is composed of a DC bias plus some AC signal. This control is visible only for probe types that have this capability.

Key Path	Input/Output, I/Q, I Setup \| Q Setup, I Probe	Q Probe			
Remote Command	: INPut : COUPling: I \\| Q DC	LFR1	LFR2 : INPut : COUPling: I \\| Q?		
Example	Set the probe to low frequency rejection below $1.7 \mathrm{Hz}$. INP:COUP:I LFR1				
Notes	Only some probe types support Coupling. For those that do, each probe type has its own Coupling setting. As probes are changed the Coupling value will reflect the new probe's setting. Changing the Coupling affects only the current probe type's setting and leaves all others unchanged.				
Preset	DC				
State Saved	Saved with probe calibration data. It survives a power cycle and is not affected by a Preset or Restore.				

Input/Output

Range	DC \mid AC 1.7 Hz LFR1 \mid AC 0.14 Hz LFR2
Readback Text	DC \mid LFR1 \mid LFR2
Initial S/W Revision	Prior to A.02.00

DC

Turns off low frequency rejection, allowing signals down to DC.

Key Path	Input/Output, I/Q, I Setup \| Q Setup, I Probe I Q Probe, Coupling
Example	Turn off low frequency rejection on the I channel INP:COUP:I DC
Initial S/W Revision	Prior to A.02.00

LFR1

Turns on low frequency rejection, rejecting signal component lower than 1.7 Hz .

| Key Path | Input/Output, I/Q, I Setup \| Q Setup, I Probe | Q Probe, Coupling |
| :--- | :--- |
| Example | Turn on low frequency rejection on the I channel for frequencies lower than |
| | 1.7 Hz |
| | INP:COUP:I LFR1 |
| Initial S/W Revision | Prior to A.02.00 |

LFR2

Turns on low frequency rejection, rejecting signal component lower than 0.14 Hz .

Key Path	Input/Output, I/Q, I Setup I Q Setup, I Probe I Q Probe, Coupling
Example	Turn on low frequency rejection on the I channel for frequencies lower than 0.14 Hz
	INP:COUP:I LFR2
Initial S/W Revision	Prior to A.02.00

Calibrate

Invokes the guided probe calibration. The guided probe calibration is context sensitive and depends on the channel (I or Q) and the Differential Input state. The calibration is only performed on the selected channel. When Differential Input is on, both the probe attached to the main port and the probe attached to the complementary port are calibrated. When Differential Input is off, only the probe attached to the main port is calibrated. See "I/Q Guided Calibration" on page 618.

Key Path	Input/Output, I/Q, I Setup \| Q Setup, I Probe I Q Probe, Coupling

Readback Text	The last calibration date, or if no calibration exists, "(empty)".
	Last: <cal date>
	<cal time>
	Example:
	Last: $8 / 22 / 2007$
	$1: 02: 49$ PM
Initial S/W Revision	Prior to A.02.00

Clear Calibration

Clears the calibration data for the current port and probe. It does not clear the data for other probe types or other ports. If the sensed probe has EEPROM identification, only the data for that specific probe is cleared. After this command has completed, the probe calibration state will be the same as if no probe calibration had ever been performed for the specified channel and probe. The probe attenuation will be the default value for that probe type and the Cable Calibration frequency response corrections will be used. This command is dependent on the Differential Input state. When Differential Input is on, both the data for the probe attached to the main port and the data for the probe attached to the complementary port are cleared. When Differential Input is off, only data for the probe attached to the main port is cleared.

| Key Path | Input/Output, I/Q, I Setup \| Q Setup, I Probe | Q Probe |
| :--- | :--- |
| Remote Command | :CALibration: IQ:PROBe: I \|Q:CLEar |
| Example | Clear the calibration data for the I channel and the current probe (with
 EEPROM identification) or probe type (without EEPROM identification).
 :CAL:IQ:PROBe:I:CLE |
| Initial S/W Revision | Prior to A.02.00 |

Reference Z

Sets the value of the impedance to be used in converting voltage to power for the I and Q channels. This does not change the hardware's path impedance (see "I Input Z" on page 568).

Key Path	Input/Output, I/Q
Remote Command	: INPut : IMPedance : REFerence <integer> $:$ INPut : IMPedance : REFerence?
Example	Set the I/Q reference impedance to 50Ω INP:IMP:REF 50
Preset	50Ω
State Saved	Yes This is unaffected by a Preset but is set to the default value on a "Restore Input/Output Defaults" or "Restore System Defaults->All"

Input/Output

Range	1Ω to $1 \mathrm{M} \Omega$
Initial S/W Revision	Prior to A.02.00

I/Q Cable Calibrate...

Invokes the guided cable calibration. The guided cable calibration steps the user through a calibration of all ports (I, I-bar, Q, and Q-bar) using just a cable (no probe attached). See "I/Q Cable Calibrate..." on page 619 for more information.

Key Path	Input/Output, I/Q
Initial S/W Revision	Prior to A.02.00

RF Calibrator

Lets you choose a calibrator signal to look at or turns the calibrator "off" (switches back to the selected input). When one of the calibrator signals is selected, the analyzer routes that signal (an internal amplitude reference) to the analyzer, while leaving the main input selection (RF or I/Q) unchanged.

This function presets to OFF on a Mode Preset, which causes the internal circuitry to switch back to the selected input (RF or I/Q).

Key Path	Input/Output	
Remote Command	[:SENSe] : FEED : AREFerence REF50\|REF4800	OFF [:SENSe] : FEED : AREFerence?
Example	FEED:AREF REF50 selects the 50 MHz amplitude reference as the signal input. FEED:AREF REF4800 selects the 4.8 GHz amplitude reference as the signal input FEED:AREF OFF turns the calibrator "off" (switches back to the selected input - RF or I/Q)	
Dependencies	Selecting an input (RF or I/Q) turns the Calibrator OFF. This is true whether the input is selected by the keys or with the [:SENSe]:FEED command. The 4.8 GHz internal reference is only available in some models and frequency range options. If the 4.8 GHz reference is not present, the 4.8 GHz softkey will be blanked, and if the REF4800 parameter is sent, the analyzer will generate an error.	
Preset	OFF	
State Saved	Readback	

Input/Output

Backwards Compatibility SCPI	For ESA backwards compatibility, the legacy SCPI command CALibration:SOURce:STATe <boolean> (ESA’s Amptd Ref Out SCPI) will still be supported and mapped as follows: When CALibration:SOURce:STATe ON is received [SENSe]:FEED:AREF REF50 will execute When CALibration:SOURce:STATe OFF is received [SENSe]:FEED:AREF OFF will execute When CALibration:SOURce:STATe? is received, 1 will be returned if any of the references is selected and 0 if the Calibrator is "Off"
Initial S/W Revision	Prior to A.02.00

50 MHz

Selects the 50 MHz internal reference as the input signal.

Key Path	Input/Output, RF Calibrator
Example	:FEED:AREF REF50
Readback	50 MHz
Initial S/W Revision	Prior to A.02.00

4.8 GHz

Selects the 4.8 GHz internal reference as the input signal.

Key Path	Input/Output, RF Calibrator
Example	:FEED:AREF REF4800
Dependencies	The 4.8 GHz internal reference is only available in some models and frequency range options. If the 4.8 GHz reference is not present, the 4.8 GHz softkey will be blanked, and if the REF4800 parameter is sent, the analyzer will generate an error.
Readback	4.8 GHz
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Off

Switches the input back to the selected input (RF or I/Q)

Key Path	Input/Output, RF Calibrator
Example	:FEED:AREF OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

Input/Output

External Gain

Compensates for gain or loss in the measurement system outside the spectrum analyzer. The External Gain is subtracted from the amplitude readout (or the loss is added to the amplitude readout). So, the displayed signal level represents the signal level at the output of the device-under-test, which can be the input of an external device that provides gain or loss.

Entering an External Gain value does not affect the Reference Level, therefore the trace position on screen changes, as do all of values represented by the trace data. Thus, the values of exported trace data, queried trace data, marker amplitudes, trace data used in calculations such as N dB points, trace math, peak threshold, etc., are all affected by External Gain. Changing the External Gain, even on a trace which is not updating, will immediately change all of the above, without new data needing to be taken.

NOTE Changing the External Gain causes the analyzer to immediately stop the current sweep and prepare to begin a new sweep, but the data will not change until the trace data updates, because the offset is applied to the data as it is taken. If a trace is exported with a nonzero External Gain, the exported data will contain the trace data with the offset applied.

In the Spectrum Analyzer mode, a Preamp is the common external device providing gain or loss. In a measurement application mode like GSM or W-CDMA, the gain or loss could be from a BTS (Base Transceiver Station) or an MS (Mobile Station). So in the Spectrum Analyzer mode MS and BTS would be grayed out and the only choice would be Ext Preamp. Similarly in some of the digital communications applications, Ext Preamp will be grayed out and you would have a choice of MS or BTS.

Key Path	Input/Output
Couplings	The Ext Preamp, MS, and BS keys may be grayed out depending on which measurement is currently selected. If any of the grayed out keys are pressed, or the equivalent SCPI command is sent, an advisory message is generated.
Readback	1-of-N selection \| [variable]
Initial S/W Revision	Prior to A.02.00

Ext Preamp

This function is similar to the reference level offset function. Both affect the displayed signal level. Ref Lvl Offset is a mathematical offset only, no analyzer configuration is affected. Ext Preamp gain is used when determining the auto-coupled value of the Attenuator. The External Gain value and the Maximum Mixer Level settings are both part of the automatic setting equation for the RF attenuation setting. (10 dB of Attenuation is added for every 10 dB of External Gain.)

Note that the Ref Lvl Offset and Maximum Mixer Level are described in the Amplitude section. They are reset by the instrument Preset. The External Preamp Gain is reset by the "Restore Input/Output Defaults" or "Restore System Defaults->All functions. . The External Gain is subtracted from the amplitude readout so that the displayed signal level represents the signal level at the output of the
device-under-test, which is the input of the external device that is providing gain or loss.

Key Path	Input/Output, External Gain
Remote Command	[:SENSe] :CORRection:SA[:RF]:GAIN <rel_ampl> [:SENSe] :CORRection:SA[:RF]:GAIN?
Example	CORR:SA:GAIN 10 sets the Ext Gain value to 10 dB CORR:SA:GAIN -10 sets the Ext Gain value to -10 dB (that is, an attenuation of 10 dB)
Notes	Does not auto return.
Dependencies	The reference level limits are determined in part by the External Gain/Atten, Max Mixer Level, and RF Atten. This key is grayed out in Modes that do not support External Gain
Preset	This is unaffected by Preset but is set to 0 dB on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state
Min	-81.90 dB
Max	81.90 dB
Readback	Preamp Gain, <Ext Gain value> dB
Backwards Compatibility SCPI	[:SENSe]:CORRection:OFFSet[:MAGNitude]
Initial S/W Revision	Prior to A.02.00

MS

Sets an external gain/attenuation value for MS (Mobile Station) tests.

Key Path	Input/Output, External Gain
Remote Command	[:SENSe] : CORRection:MS[:RF]:GAIN <rel_ampl> [:SENSe]: CORRection:MS[:RF]:GAIN?
Example	CORR:MS:GAIN 10 sets the Ext Gain value to 10 dB CORR:MS:GAIN -10 sets the Ext Gain value to -10 dB (that is, a loss of 10 dB. $)$
Notes	Does not auto return.
Dependencies	The reference level limits are determined in part by the External Gain, Max Mixer Level, RF Atten This key is grayed out in modes that do not support MS.
Preset	This is unaffected by a Preset but is set to 0 dB on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state.

Input/Output

Min	-100 dB
Max	100 dB
Readback	MS, <Ext Gain value> dB
Backwards Compatibility SCPI	[:SENSe]:CORRection:MS[:RF]:LOSS <rel_ampl> [:SENSe]:CORRection:MS[:RF]:LOSS? Important notes regarding the alias commands: A positive value of <rel_ampl> in the above command means a loss and a negative value indicates a gain. So, for example, sending the command a) CORR:MS:LOSS 10 dB will set the value on the softkey and the active function to -10 dB since the softkey and the active function always show the Gain. The query CORR:MS:LOSS? returns 10 dB The query CORR:MS:GAIN? returns -10 dB b) CORR:MS:LOSS -10 dB will set the value on the softkey and the active function to 10 dB since the softkey and the active function always show the Gain The query CORR:MS:LOSS? returns -10 dB The query CORR:MS:GAIN? returns 10 dB
Initial S/W Revision	Prior to A.02.00

BTS

Sets an external attenuation value for BTS (Base Transceiver Station) tests.

Key Path	Input/Output, External Gain
Remote Command	[:SENSe] : CORRection: BTS[:RF]:GAIN <rel_ampl> [:SENSe] : CORRection: BTS[:RF] : GAIN?
Example	CORR:BTS:GAIN 10 sets the Ext Gain value to 10 dB CORR:BTS:GAIN -10 sets the Ext Gain value to -10 dB (that is, a loss of 10 dB. $)$
Notes	Does not auto return.
Dependencies	The reference level limits are determined in part by the External Gain, Max Mixer Level, RF Atten This key is grayed out in modes that do not support BTS.
Preset	This is unaffected by a Preset but is set to 0 dB on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state.
Min	-100 dB

Max	100 dB
Readback	BTS, <Ext Gain value> dB
Backwards Compatibility SCPI	[:SENSe]:CORRection:BTS[:RF]:LOSS <rel_ampl> [:SENSe]:CORRection:BTS[:RF]:LOSS? Important notes regarding the alias commands: A positive value of <rel_ampl> in the above command means a loss and a negative value indicates a gain. So, for example, sending the command a) CORR:BTS:LOSS 10 dB will set the value on the softkey and the active function to -10 dB since the softkey and the active function always show the Gain. The query CORR:BTS:LOSS? returns 10 dB
	The query CORR:BTS:GAIN? returns -10 dB b) CORR:BTS:LOSS -10 dB will set the value on the softkey and the active function to 10 dB since the softkey and the active function always show the Gain The query CORR:BTS:LOSS? returns -10 dB The query CORR:BTS:GAIN? returns 10 dB
Initial S/W Revision	Prior to A.02.00

I Ext Gain

This function affects only the I channel input, except when the Input Path is $\mathrm{I}+\mathrm{jQ}$. In $\mathrm{I}+\mathrm{jQ}$ this setting is applied to both I and Q channel inputs. It is not available unless the Baseband I/Q option (BBA) is installed.

Key Path	Input/Output, External Gain
Remote Command	[:SENSe] :CORRection:IQ: I:GAIN <rel_ampl> $[$:SENSe] : CORRection:IQ: I : GAIN?
Example	Set the I Ext Gain to 10 dB CORR:IQ:I:GAIN 10 Set the I Ext Gain to -10 dB (that is, a loss of 10 dB.) CORR:IQ:I:GAIN -10
Notes	Not available unless option BBA is installed
Preset	0 dB This is unaffected by a Preset but is set to 0 dB on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state.
Min	-100 dB

Input/Output

Max	100 dB
Readback Text	I Gain, $<$ I Ext Gain $>\mathrm{dB}$
Initial S/W Revision	Prior to A.02.00

Q Ext Gain

This function affects only the Q channel input and only when the Input Path is not $\mathrm{I}+\mathrm{jQ}$. It is not available unless the Baseband I/Q option (BBA) is installed.

Key Path	Input/Output, External Gain
Remote Command	[:SENSe]:CORRection:IQ:Q:GAIN <rel_ampl> [:SENSe]: CORRection:IQ:Q:GAIN?
Example	Set the Q Ext Gain to 10 dB CORR:IQ:Q:GAIN 10 Set the Q Ext Gain to -10 dB (that is, a loss of 10 dB.) CORR:IQ:Q:GAIN -10
Notes	Not available unless option BBA is installed.
Preset	0 dB This is unaffected by a Preset but is set to 0 dB on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in instrument state.
Min	-100 dB
Max	100 dB
Readback Text	Q Gain, <I Ext Gain> dB
Initial S/W Revision	Prior to A.02.00

Restore Input/Output Defaults

This selection causes the group of settings and data associated with the Input/Output key to be a reset to their default values. In addition, when a Source is installed, licensed and selected, Restore Input/Output defaults will initiate a Source Preset.

This level of Restore System Defaults does not affect any other system settings or mode settings and does not cause a mode switch. All the features described in this section are reset using this key, including Input Corrections and Data (described in the Corrections section).

Key Path	Input/Output
Example	:SYST:DEF INP presets all the Input/Output variables to their factory default values.

Notes	Refer to the Utility Functions for information about Restore System Defaults and the complete description of the :SYSTem:DEFault INPut: command.
Initial S/W Revision	Prior to A.02.00

Data Source

Gives you the choice of either using a hardware input signal as the input or raw data stored in a data storage buffer from an earlier acquisition. You can also share raw data across certain measurements that support this feature. The measurements must be capable of storing raw data. There are three choices under this menu. You can select "Inputs" which is the same as selecting one of the inputs from the input port, for example RF, AREF, I/Q, or IFALign. Selecting "Capture Buffer" allows you to use data that has been stored earlier in the same measurement or from a previous measurement using the "Current Meas -> Capture Buffer" feature. Selecting "Recorded Data" allows you to playback long data capture records stored in the record buffer.

When you make a recording (see "Record Data Now" on page 587) or when you recall a recording (see the Recall section) the data source is automatically set to Recorded Data. You can toggle the data source between Inputs and the current Recording (if there is one). That is, the recording remains in memory until it is replaced by a new recording, or the application is closed.

Key Path	Input/Output		
Remote Command	$[$:SENSe $]:$ FEED : DATA INPut \|STORed	RECorded $[$:SENSe] : FEED: DATA?	
Example	FEED:DATA REC FEED:DATA?		
Notes	INPuts = Inputs STORed = Capture Buffer RECorded = Record Data Buffer		
Dependencies	Not all inputs are available in all modes. Unavailable keys are grayed out.	,	This is unaffected by Preset but is set to INPut on a "Restore Input/Output
:---			
Defaults" or "Restore System Defaults->All"			

Input/Output

Inputs

Sets the measurement to use the input selections (RF, AREF, I/Q)

Key Path	Input/Output, Data Source
Example	FEED:DATA INP causes the measurement to look at the input selection
Notes	Does not auto return.
Readback	Inputs
Initial S/W Revision	Prior to A.02.00

Capture Buffer

Some WCDMA and demod measurements support this feature. This allows sharing of the raw data across certain measurements. If you want to make another measurement on the same signal, you would store that raw data using the "Current Meas -> Capture Buffer" key. Then the data is available for the next measurement to use. You must have raw data stored in the instrument memory before the Capture Buffer choice is available for use.

Key Path	Input/Output, Data Source
Example	FEED:DATA STOR causes stored measurement data to be used with a different measurement that supports this.
Notes	Does not auto return. This key is grayed out when you switch to a measurement that does not support this feature.
Dependencies	If you switch to a measurement that does not support this feature, then the instrument switches to use "Inputs" and grays out this key. If the grayed out key is pressed, it generates a message.
Readback	Stored Data
Initial S/W Revision	Prior to A.02.00

Recorded Data

Directs the instrument to get data from the record data buffer in the measurement, rather than from the RF Input Signal.

Key Path	Input/Output, Data Source
Example	FEED:DATA REC causes the measurement to extract data from the record data buffer.
Notes	Does not auto return.
Dependencies	Grayed out in the SA measurement.
Readback	Recorded Data
Initial S/W Revision	Prior to A.02.00

Current Meas -> Capture Buffer

Pressing this key stores the raw data of one measurement in the internal memory of the instrument where it can then be used by a different measurement by pressing "Stored Data". When raw data is stored, then the data source selection switch automatically changes to "Stored Data". Stored raw data cannot be directly accessed by a user. There is no save/recall function to save the raw data in an external media. However if you want to get the stored raw data, you must first perform a measurement using the stored raw data. Now you can access the used raw data, which is the same as stored raw data, using the FETch or READ commands.

Key Path	Input/Output, Data Source
Remote Command	[:SENSe] : FEED: DATA: STORe
Example	FEED:DATA:STOR stores recorded data
Notes	This is command only, there is no query
Dependencies	Grayed out in the SA measurement.
Backwards Compatibility SCPI	[:SENSe]:FEED:SOURce:STORe
Initial S/W Revision	Prior to A.02.00

Record Data Now

This causes the data source to change to Inputs (if it is not already set) and a recording is made with the current instrument setup. The length of the recording must be specified in advance.

This key changes to Abort Recording once the recording process has started. It changes back when the recording is complete.

The following dialogs show the progress of the recording:

This key is also available in the Sweep/Control menu.

Key Path	Input/Output, Data Source

Input/Output

Mode	VSA
Remote Command	[:SENSe]:RECording: INITiate[:IMMediate]
Example	REC:INIT
Notes	This is command only, there is no query. See the Recall functionality to access previously saved data.
Dependencies	Grayed out in the SA measurement.
Couplings	Changes Data source to Recorded Data.
Initial S/W Revision	Prior to A.02.00

Key Path	Input/Output, Data Source
Remote Command	$[$:SENSe]:RECording:ABORt
Example	REC:ABOR
Notes	This is command only, there is no query. The command does nothing if it is sent when there is no recording in progress.
Initial S/W Revision	Prior to A.02.00

Record Length

This specifies the length of the next recording. (You cannot use this to modify the length of the current recording.) The length defaults to seconds, but you can also specify it in points at the current sample rate, or in time records at the current time record length.

Key Path	Input/Output, Data Source	
Mode	VSA	
Remote Command	[:SENSe] : RECording: LENGth <real>, SEConds \|RECords	POINts [:SENSe] : RECording: LENGth:STATe MAX\|MANual [:SENSe] : RECording: LENGth:STATe?
Example	REC:LENG 20,REC REC:LENG 4.1E-4,SEC REC:LENG:STAT MAX REC:LENG:STAT?	
Notes	There is no default unit. The unit must be specified. The length command does not have a query form. Length information is queried using the two commands following this table. If set to MAX, all of the available "recording memory" us used.	
Preset	50 Records, Manual	
State Saved	No	

Min	0	
Max	Depends on memory available.	
Readback	<value><Seconds\|Points	Records>
Initial S/W Revision	Prior to A.02.00	

Mode	VSA
Remote Command	[:SENSe]:RECording:LENGth:VALue?
Example	REC:LENG:VAL?
Notes	Query Only Returns the first (numeric) parameter of the most recent [:SENSe]:RECording:LENGth command.
Preset	50 Records
Initial S/W Revision	Prior to A.02.00

Mode	VSA	
Remote Command	[:SENSe]:RECording:LENGth:UNIT?	
Example	REC:LENG:UNIT?	
Notes	Query Only Returns the second parameter of the most recent [:SENSe]:RECording:LENGth command. Possible values are SEC\|REC	POIN. If no second parameter was sent, then the return value is SEC.
Preset	RECords	
Initial S/W Revision	Prior to A.02.00	

Corrections

This key accesses the Amplitude Corrections menu.
Amplitude Corrections arrays can be entered, sent over SCPI, or loaded from a file. They allow you to correct the response of the analyzer for various use cases. The X-series supports four separate Corrections arrays, each of which can contain up to 2000 points. They can be turned on and off individually and any or all can be on at the same time.

Trace data is in absolute units and corrections data is in relative units, but we want to be able to display trace data at the same time as corrections data. Therefore we establish a reference line to be used while building or editing a Corrections table. The reference line is halfway up the display and represents 0 dB of correction. It is labeled " 0 dB CORREC". It is drawn in blue.

Corrections data is always in dB . Whatever dB value appears in the correction table represents the correction to be applied to that trace at that frequency. So if a table entry shows 30 dB that means we

Input/Output

ADD 30 dB to each trace to correct it before displaying it.
In zero span, where the frequency is always the center frequency of the analyzer, we apply the (interpolated) correction for the center frequency to all points in the trace. In the event where there are two correction amplitudes at the center frequency, we apply the first one in the table.

Note that the corrections are applied as the data is taken; therefore, a trace in View (Update Off) will not be affected by changes made to the corrections table after the trace is put in View.

Key Path	Input/Output, Corrections
Mode	SA, DVB-T/H, DTMB, SEQAN, TDSCDMA
Dependencies	This key will only appear if you have the proper option installed in your instrument. Amplitude correction may not be available in all modes; if a mode does not support amplitude correction, the Corrections key should be blanked while in that mode. If an application supports corrections but the current measurement does not, then the key should be grayed out in that measurement
Preset	Corrections arrays are reset (deleted) by Restore Input/Output Defaults. They survive shutdown and restarting of the analyzer application, which means they will survive a power cycle.
Initial S/W Revision	A.02.00

Select Correction

Specifies the selected correction. The term "selected correction" is used throughout this document to specify which correction will be affected by the functions.

Key Path	Input/Output, Corrections				
Mode	SA				
Notes	The selected correction is remembered even when not in the correction menu.				
Preset	Set to Correction 1 by Restore Input/Output Defaults				
Readback	Correction 1\|Correction 2	Correction 3	Correction 4	Correction 5	Correction 6
Initial S/W Revision	A.02.00				

Correction On/Off

Turning the Selected Correction on allows the values in it to be applied to the data. This also automatically turns on "Apply Corrections" (sets it to ON), otherwise the correction would not take effect.

A new sweep is initiated if an amplitude correction is switched on or off. Note that changing, sending or loading corrections data does NOT directly initiate a sweep, however in general these operations will turn corrections on, which DOES initiate a sweep.

Key Path	Input/Output, Corrections

| Remote Command | ```[:SENSe]:CORRection:CSET[1]\|2|3|4|5|6[:STATe] ON|OFF|1|0 [:SENSe]:CORRection:CSET[1]|2|3|4|5|6[:STATe]?``` |
| :---: | :---: |
| Example | SENS:CORR:CSET1 ON |
| Dependencies | Turning this on automatically turns on "Apply Corrections"
 Only the first correction array (Correction 1) supports antenna units. When this array is turned on, and it contains an Antenna Unit other than "None", the Y Axis Unit of the analyzer is forced to that Antenna Unit. All other Y Axis Unit choices are grayed out.
 Note that this means that a correction file with an Antenna Unit can only be loaded into the Corrections 1 register. Consequently only for Correction 1 does the dropdown in the Recall dialog include.ant, and if an attempt is made to load a correction file into any other Correction register which DOES contain an antenna unit, a Mass Storage error is generated.
 This command will generate an "Option not available" error unless you have the proper option installed in your instrument. |
| Preset | Not affected by a Preset. Set to OFF by Restore Input/Output Defaults |
| State Saved | Saved in instrument state. |
| Initial S/W Revision | A.02.00 |

Properties

Accesses a menu that lets you set the properties of the selected correction.

Key Path	Input/Output, Corrections
Initial S/W Revision	A.02.00

Select Correction

Specifies the selected correction. The term "selected correction" is used throughout this document to specify which correction will be affected by the functions.

Key Path	Input/Output, Corrections, Properties				
Notes	The selected correction is remembered even when not in the correction menu.				
Preset	Set to Correction 1 by Restore Input/Output Defaults.				
Readback	Correction 1\|Correction 2	Correction 3	Correction 4	Correction 5	Correction 6
Initial S/W Revision	A.02.00				

Antenna Unit

For devices (like antennae) which make measurements of field strength or flux density, the correction array should contain within its values the appropriate conversion factors such that, when the data on the analyzer is presented in $\mathrm{dB} \mu \mathrm{V}$, the display is calibrated in the appropriate units. The "Antenna Unit" used

Input/Output

for the conversion is contained within the corrections array database. It may be specified by the user or loaded in from an external file or SCPI.

When an array with an Antenna Unit other than "None" is turned on, the Y Axis Unit of the analyzer is forced to that unit. When this array is turned on, and it contains an Antenna Unit other than "None", the Y Axis Unit of the analyzer is forced to that Antenna Unit., and all other Y Axis Unit choices are grayed out.

Antenna Unit does not appear in all Modes that support Corrections. Only the modes listed in the Mode row of the table below support Antenna Units.

Key Path	Input/Output, Corrections, Properties									
Mode	SA									
Remote Command	```[:SENSe]:CORRection:CSET[1]\|2	3	4:ANTenna[:UNIT] GAUSs	PTESla	UVM	UAM	NOConversion [:SENSe]:CORRection:CSET[1]	2	3	4:ANTenna[:UNIT]?```
Example	CORR:CSET:ANT GAUS									
Dependencies	Only the first correction array (Correction 1) supports antenna units. Note that this means that a correction file with an Antenna Unit can only be loaded into the Corrections 1 register. Consequently only for Correction 1 does the dropdown in the Recall dialog include.ant, and if an attempt is made to load a correction file into any other Correction register which DOES contain an antenna unit, a Mass Storage error is generated.									
Preset	Unaffected by Preset. Set to NOC by Restore Input/Output Defaults									
State Saved	Saved in State									
Initial S/W Revision	A.02.00									

$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$

Sets the antenna unit to $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$. If this correction is turned on, and Apply Corrections is on, the Y Axis Unit will then be forced to $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ and all other Y Axis Unit selections will be grayed out.

Key Path	Input/Output, Corrections, Properties, Antenna Unit
Example	:CORR:CSET2:ANT UVM
Readback	"dB $\mu V / \mathrm{m"}$
Initial S/W Revision	A. 02.00

dB $\mu \mathrm{A} / \mathrm{m}$

Sets the antenna unit to $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$. If this correction is turned on, and Apply Corrections is on, the Y Axis Unit will then be forced to $\mathrm{dB} \mu \mathrm{A} / \mathrm{m}$ and all other Y Axis Unit selections will be grayed out.

Key Path	Input/Output, Corrections, Properties, Antenna Unit
Example	:CORR:CSET2:ANT UVA

Readback	$" \mathrm{~dB} \mu \mathrm{~A} / \mathrm{m} "$
Initial S/W Revision	A. 02.00

dBpT

Sets the antenna unit to dBpT. If this correction is turned on, and Apply Corrections is on, the Y Axis Unit will then be forced to dBpT and all other Y Axis Unit selections will be grayed out.

Key Path	Input/Output, Corrections, Properties, Antenna Unit
Example	:CORR:CSET3:ANT PTES
Readback	"dBpT"
Initial S/W Revision	A.02.00

dBG

Sets the antenna unit to dBG. If this correction is turned on, and Apply Corrections is on, the Y Axis Unit will then be forced to dBG and all other Y Axis Unit selections will be grayed out.

Key Path	Input/Output, Corrections, Properties, Antenna Unit
Example	:CORR:CSET:ANT GAUS
Readback	"dBG"
Initial S/W Revision	A. 02.00

None

Selects no antenna unit for this Correction set. Thus no Y Axis unit will be forced.

Key Path	Input/Output, Corrections, Properties, Antenna Unit
Example	:CORR:CSET4:ANT NOC
Readback	"None"
Initial S/W Revision	A.02.00

Frequency Interpolation

This setting controls how the correction values per-bucket are calculated. We interpolate between frequencies in either the logarithmic or linear scale.

This setting is handled and stored individually per correction set.
See "Interpolation" on page 594

Key Path	Input/Output, Corrections, Properties

Input/Output

Remote Command	[:SENSe]:CORRection: CSET[1] $\|2\| 3\|4\| 5 \mid 6: \mathrm{X}:$ SPACing LINear\|LOGarithmic [:SENSe]: CORRection: CSET[1] $\|2\| 3\|4\| 5 \mid 6: \mathrm{X}:$ SPACing?
Example	CORR:CSET:X:SPAC LIN
Preset	Unaffected by a Preset. Set to Linear by Restore Input/Output Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Interpolation

For each bucket processed by the application, all of the correction factors at the frequency of interest (center frequency of each bucket) are summed and added to the amplitude. All trace operations and post processing treat this post-summation value as the true signal to use.

To effect this correction, the goal, for any particular start and stop frequency, is to build a correction trace, whose number of points matches the current Sweep Points setting of the instrument, which will be used to apply corrections on a bucket by bucket basis to the data traces.

For amplitudes that lie between two user specified frequency points, we interpolate to determine the amplitude value. You may select either linear or logarithmic interpolation between the frequencies.

If we interpolate on a log scale, we assume that the line between the two points is a straight line on the \log scale. For example, let's say the two points are $(2,4)$ and $(20,1)$. A straight line between them on a log scale looks like:

On a linear scale (like that of the spectrum analyzer), this translates to:

vsd19

On the other hand, if we interpolate on a linear scale, we assume that the two points are connected by a straight line on the linear scale, as below:

vsd18

The correction to be used for each bucket is taken from the interpolated correction curve at the center of the bucket.

Description

Sets an ASCII description field which will be stored in an exported file. Can be displayed in the active function area by selecting as the active function, if desired to be in a screen dump.

Key Path	Input/Output, Corrections, Properties
Remote Command	$[:$ SENSe] : CORRection: CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ DESCription "text" [:SENSe] : CORRection: CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ DESCription?
Example	:CORR:CSET1:DESC "11941A Antenna correction"
Notes	45 chars max; may not fit on display if max chars used
Preset	Unaffected by a Preset. Set to empty by Restore Input/Output Defaults
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Input/Output

Comment

Sets an ASCII comment field which will be stored in an exported file. Can be displayed in the active function area by selecting as the active function, if desired to be in a screen dump.

Key Path	Input/Output, Corrections, Properties
Remote Command	[:SENSe]: CORRection: CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ COMMent "text" [:SENSe]: CORRection:CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ COMMent?
Example	:CORR:CSET1:COMM "this is a comment"
Notes	45 chars max; may not fit on display if max chars used
Preset	Unaffected by Preset. Set to empty by Restore Input/Output Defaults
State Saved	Saved in instrument state
Initial S/W Revision	A.02.00

Edit

Invokes the integrated editing facility for this correction set.
When entering the menu, the editor window turns on, the selected correction is turned On, Apply Corrections is set to On, the amplitude scale is set to Log, and the Amplitude Correction ("Ampcor") trace is displayed. The actual, interpolated correction trace is shown in green for the selected correction. Note that since the actual interpolated correction is shown, the correction trace may have some curvature to it. This trace represents only the correction currently being edited, rather than the total, accumulated amplitude correction for all amplitude corrections which are currently on, although the total, accumulated correction for all corrections which are turned on is still applied to the data traces.

Because corrections data is always in dB , but the Y -axis of the analyzer is in absolute units, it is necessary to establish a reference line for display of the Corrections data. The reference line is halfway up the display and represents 0 dB of correction. It is labeled " 0 dB CORREC". It is drawn in blue.

Corrections data is always in dB . Whatever dB value appears in the correction table represents the correction to be applied to that trace at that frequency. So if a table entry shows 30 dB that means we ADD 30 dB to each trace to correct it before displaying it. By definition all points are connected. If a gap is desired for corrections data, enter 0 dB .

Note that a well-designed Corrections array should start at 0 dB and end at 0 dB . This is because whatever the high end point is will be extended to the top frequency of the instrument, and whatever the low end point is will be extended down to 0 Hz . So for a Corrections array to have no effect outside its range, you should start and end the array at 0 dB .

NOTE The table editor will only operate properly if the analyzer is sweeping, because its

 updates are tied to the sweep system. Thus, you should not try to use the editor in single sweep, and it will be sluggish during compute-intensive operations like narrow-span FFT sweeps.When exiting the edit menu (by using the Return key or by pressing an instrument front-panel key), the editor window turns off and the Ampcor trace is no longer displayed; however, Apply Corrections
remains On, any correction that was on while in the editor remains on, and the amplitude scale returns to its previous setting.

Corrections arrays are not affected by a Preset, because they are in the Input/Output system. They also survive shutdown and restarting of the analyzer application, which means they will survive a power cycle.

Key Path	Input/Output, Corrections
Initial S/W Revision	A.02.00

Navigate

Lets you move through the table to edit the desired point.

Key Path	Input/Output, Corrections, Edit
Notes	There is no value readback on the key
Min	1
Max	2000
Initial S/W Revision	A. 02.00

Frequency

Lets you edit the frequency of the current row.

Key Path	Input/Output, Corrections, Edit
Notes	There is no value readback on the key.
Min	0
Max	1 THz
Initial S/W Revision	A.02.00

Amplitude

Lets you edit the Amplitude of the current row.

Key Path	Input/Output, Corrections, Edit
Notes	There is no value readback on the key.
Min	-1000 dB
Max	1000 dB
Initial S/W Revision	A. 02.00

Insert Point Below

Inserts a point below the current point. The new point is a copy of the current point and becomes the

Input/Output

current point. The new point is not yet entered into the underlying table, and the data in the row is displayed in light gray.

Key Path	Input/Output, Corrections, Edit
Initial S/W Revision	A.02.00

Delete Point

Deletes the currently-selected point, whether or not that point is being edited, and selects the Navigate functionality. The point following the currently-selected point (or the point preceding if there is none) will be selected.

Key Path	Input/Output, Corrections, Edit
Initial S/W Revision	A.02.00

Scale X Axis

Matches the X Axis to the selected Correction, as well as possible. Sets the Start and Stop Frequency to contain the minimum and maximum Frequency of the selected Correction. The range between Start Frequency and Stop Frequency is 12.5% above the range between the minimum and maximum Frequency, so that span exceeds this range by one graticule division on either side. If in zero-span, or there is no data in the Ampcor table, or the frequency range represented by the table is zero, no action is taken. Standard clipping rules apply if the value in the table is outside the allowable range for the X axis.

Key Path	Input/Output, Corrections, Edit
Initial S/W Revision	A.02.00

Delete Correction

Deletes the correction values for this set. When this key is pressed a prompt is placed on the screen that says "Please press Enter or OK key to delete correction. Press ESC or Cancel to close this dialog." The deletion is only performed if you press OK or Enter.

Key Path	Input/Output, Corrections
Remote Command	$[:$ SENSe $]:$ CORRection:CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ DELete
Example	CORR:CSET:DEL CORR:CSET1:DEL CORR:CSET4:DEL
Notes	Pressing this key when no corrections are present is accepted without error.
Initial S/W Revision	A.02.00

Apply Corrections

Applies amplitude corrections which are marked as ON to the measured data. If this is set to OFF, then no amplitude correction sets will be used, regardless of their individual on/off settings. If set to ON, the
corrections that are marked as ON (see "Correction On/Off" on page 590) are used.

Key Path	Input/Output, Corrections	
Remote Command	[:SENSe] :CORRection:CSET:ALL[:STATe] ON \mid OFF\|1	0 [:SENSe]:CORRection:CSET:ALL[:STATe]?
Example	SENS:CORR:CSET:ALL OFF This command makes sure that no amplitude corrections are applied, regardless of their individual on/off settings.	
Preset	Not affected by Preset. Set to OFF by Restore Input/Output Defaults	
State Saved	Saved in instrument state.	
Initial S/W Revision	A.02.00	

Delete All Corrections

Erases all correction values for all 4 Amplitude Correction sets.
When this key is pressed a prompt is placed on the screen that says "Please press Enter or OK key to delete all corrections. Press ESC or Cancel to close this dialog." The deletion is only performed if you press OK or Enter.

Key Path	Input/Output, Corrections
Remote Command	[:SENSe] : CORRection: CSET:ALL: DELete
Example	CORR:CSET:ALL:DEL
Initial S/W Revision	A.02.00

Remote Correction Data Set Commands

Set (Replace) Data (Remote Command Only)

The command takes an ASCII series of alternating frequency and amplitude points, each value separated by commas.

The values sent in the command will totally replace all existing correction points in the specified set.
An Ampcor array can contain 2000 points maximum.

| Remote Command | ```[:SENSe]:CORRection:CSET[1]\|2|3|4|5|6:DATA <freq>, <ampl>, . . . [:SENSe]:CORRection:CSET[1]|2|3|4|5|6:DATA?``` |
| :---: | :---: |
| Example | CORR:CSET1:DATA 10000000,-1.0,20000000,1.0
 This defines two correction points at ($10 \mathrm{MHz},-1.0 \mathrm{~dB}$) and ($20 \mathrm{MHz}, 1.0$ dB) for correction set 1 . |
| Preset | Empty after Restore Input/Output Defaults. Survives a shutdown or restart of analyzer application (including a power cycle). |

Input/Output

State Saved	Saved in instrument state.
Min	Freq: 0 Hz Amptd: -1000 dBm
Max	Freq: 1 THz Amptd: +1000 dBm
Initial S/W Revision	A.02.00

Merge Correction Data (Remote Command Only)

The command takes an ASCII series of alternating frequency and amplitude points, each value separated by commas. The difference between this command and Set Data is that this merges new correction points into an existing set.

Any new point with the same frequency as an existing correction point will replace the existing point's amplitude with that of the new point.

An Ampcor array can contain 2000 total points, maximum.

Remote Command	[:SENSe]:CORRection:CSET[1] $\|2\| 3\|4\| 5 \mid 6:$ DATA: MERGe <freq>, <ampl>, \ldots
Example	CORR:CSET1:DATA:MERGE $15000000,-5.0,25000000,5.0$ This adds two correction points at (15 MHz, $-5.0 \mathrm{~dB})$ and $(25 \mathrm{MHz}, 5.0 \mathrm{~dB})$ to whatever values already exist in correction set 1.
Preset	Empty after Restore Input/Output Defaults. Survives shutdown/restart of analyzer application (including power cycle)
Min	Freq: 0 Hz Amptd: -1000 dBm
Max	Freq: 1 THz Amptd: +1000 dBm
Initial S/W Revision	A. 02.00

Freq Ref In

Specifies the frequency reference as being the internal reference, external reference or sensing the presence of an external reference.

When the frequency reference is set to internal, the internal 10 MHz reference is used even if an external reference is connected.

When the frequency reference is set to external, the instrument will use the external reference. However, if there is no external signal present, or it is not within the proper amplitude range, a condition error message is generated. When the external signal becomes valid, the error is cleared.

If Sense is selected, the instrument checks whether a signal is present at the external reference connector and will automatically switch to the external reference when a signal is detected. When no signal is
present, it automatically switches to the internal reference. No message is generated as the reference switches between external and internal. The monitoring of the external reference occurs approximately on 1 millisecond intervals, and never occurs in the middle of a measurement acquisition, only at the end of the measurement (end of the request).

If for any reason the instrument's frequency reference is not able to obtain lock, Status bit 2 in the Questionable Frequency register will be true and a condition error message is generated. When lock is regained, Status bit 2 in the Questionable Frequency register will be cleared and the condition error will be cleared.

If an external frequency reference is being used, you must enter the frequency of the external reference if it is not exactly 10 MHz . The External Ref Freq key is provided for this purpose.

Key Path	Input/Output	
Remote Command	[:SENSe] :ROSCillator : SOURce:TYPE INTernal\|EXTernal	SENSe [:SENSe] :ROSCillator : SOURce :TYPE?
Preset	This is unaffected by a Preset but is set to SENSe on a "Restore Input/Output Defaults" or "Restore System Defaults->All".	
State Saved	Saved in instrument state.	
Status Bits/OPC dependencies	STATus:QUEStionable:FREQuency bit 2 set if unlocked.	
Initial S/W Revision	Prior to A.02.00	

Remote Command	[:SENSe]:ROSCillator:SOURce?
Notes	The query [SENSe]:ROSCillator:SOURce? returns the current switch setting. This means: 1. If it was set to SENSe but there is no external reference so the instrument is actually using the internal reference, then this query returns INTernal and not SENSe. 2. If it was set to SENSe and there is an external reference present, the query returns EXTernal and not SENSe. 3. If it was set to EXTernal, then the query returns "EXTernal" 4. If it was set to INTernal, then the query returns INTernal
Preset	SENSe
Backwards Compatibility SCPI	The query [:SENSe]:ROSCillator:SOURce? was a query-only command in ESA which always returned whichever reference the instrument was using. The instrument automatically switched to the ext ref if it was present. In PSA (which had no sensing) the command [:SENSe]:ROSCillator:SOURce set the reference (INT or EXT), so again its query returned the actual routing. Thus the query form of this command is 100% backwards compatible with both instruments.
Initial S/W Revision	Prior to A.02.00

Input/Output

Remote Command	$[:$ SENSe] : ROSCillator : SOURce INTernal\|EXTernal
Notes	([:SENSe]:ROSCillator:SOURce:TYPE INTernal\|EXTernal and directly sets the routing to either internal or external.)
Initial S/W Revision	Prior to A.02.00

Sense

The external reference is used if a valid signal is sensed at the Ext Ref input. Otherwise the internal reference is used.

Key Path	Input/Output, Freq Ref In
Example	:ROSC:SOUR:TYPE SENS
Readback	Sense
Initial S/W Revision	Prior to A.02.00

Internal

The internal reference is used.

Key Path	Input/Output, Freq Ref In
Example	:ROSC:SOUR:TYPE INT
Readback	Internal
Initial S/W Revision	Prior to A.02.00

External

The external reference is used.

Key Path	Input/Output, Freq Ref In
Example	:ROSC:SOUR:TYPE EXT
Readback	External
Initial S/W Revision	Prior to A.02.00

Ext Ref Freq

This key tells the analyzer the frequency of the external reference. When the external reference is in use (either because the reference has been switched to External or because the Reference has been switched to Sense and there is a valid external reference present) this information is used by the analyzer to determine the internal settings needed to lock to that particular external reference signal.

For the instrument to stay locked, the value entered must be within 5 ppm of the actual external reference frequency. So it is important to get it close, or you risk an unlock condition.

Note that this value only affects the instrument's ability to lock. It does not affect any calculations or
measurement results. See "Freq Offset" in the Frequency section for information on how to offset frequency values.

Key Path	Input/Output, Freq Ref In
Remote Command	[:SENSe] : ROSCillator : EXTernal: FREQuency <freq> [:SENSe]: ROSCillator : EXTernal: FREQuency?
Example	ROSC:EXT:FREQ 20 MHz sets the external reference frequency to 20 MHz, but does not select the external reference. ROSC:SOUR:TYPE EXT selects the external reference.
Notes	Still available with Internal selected, to allow setup for when External is in use.
Preset	This is unaffected by a Preset but is set to 10 MHz on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
Min	CXA: 10 MHz EXA: 10 MHz or 13 MHz, depending on whether N9010A-R13 is licensed MXA: 1 MHz PXA: 1 MHz
Max	CXA: 10 MHz EXA: 10 MHz MXA: 50 MHz PXA: 50 MHz
Initial S/W Revision	Prior to A.02.00
Default Unit	Hz

External Reference Lock BW

This control lets you adjust the External Reference phase lock bandwidth. This control is available in some models of the X -Series.

The PXA variable reference loop bandwidth allows an external reference to be used and have the analyzer close-in phase noise improved to match that of the reference. This could result in an improvement of tens of decibels. The choice of "Wide" or "Narrow" affects the phase noise at low offset frequencies, especially 4 to 400 Hz offset. When using an external reference with superior phase noise, we recommend setting the external reference phase-locked-loop bandwidth to wide (60 Hz), to take advantage of that superior performance. When using an external reference with inferior phase noise performance, we recommend setting that bandwidth to narrow (15 Hz). In these relationships, inferior and superior phase noise are with respect to $134 \mathrm{dBc} / \mathrm{Hz}$ at 30 Hz offset from a 10 MHz reference. Because most reference sources have phase noise behavior that falls off at a rate of $30 \mathrm{~dB} / \mathrm{decade}$, this is usually equivalent to $120 \mathrm{dBc} / \mathrm{Hz}$ at 10 Hz offset.

Key Path	Input/Output, Freq Ref In

Input/Output

Scope	Mode Global
Remote Command	[:SENSe] : ROSCillator : BANDwidth WIDE \|NARRow [:SENSe]: ROSCillator: BANDwidth?
Example	ROSC:BAND WIDE
Dependencies	This key only appears in analyzers equipped with the required hardware.
Preset	This is unaffected by a Preset but is set to Narrow on a "Restore Input/Output Defaults" or "Restore System Defaults -> All"
State Saved	Saved in Input/Output state.
Initial S/W Revision	A.04.00

External Ref Coupling

Only appears with option ERC installed and licensed.
This function lets you couple the sweep system of the analyzer to the state of the External Reference. If Normal is selected, data acquisition proceeds regardless of the state of the External Reference. When you select Ext Ref Out Of Range Stops Acquisition, the data acquisition (sweep or measurement) stops when either the "521, External ref out of range" or the "503, Frequency Reference unlocked" error message is asserted. Note that this will only take place if the Freq Ref In selection is External.

With the acquisition stopped, the data display will stop updating (even if this occurs in the middle of a sweep or measurement) and no data will be returned to a READ? or MEASure? query; that is, these queries will not complete because the analyzer will not respond to them. Furthermore, no response will be generated to a *WAI? or *OPC? query.

Proper SCPI sequences are shown below, which will always fail to return if the acquisition stops during the requested sweep or measurement. Note that, for predictable operation of this function, it is best to operate the analyzer in single measurement mode (INIT:CONT OFF), because if operating in continuous mode, the analyzer may respond to the above queries even after the acquisition stops, with data left over from the previous acquisition.
:INIT:CONT OFF
:INIT:IMM;*OPC?

--

:INIT:CONT OFF
:INIT:IMM;*WAI?
--
:INIT:CONT OFF
:READ?
--
:INIT:CONT OFF
:MEASure?

When the acquisition ceases, in addition to the error condition(s) described above, a popup error message will be generated informing you that the acquisition has ceased due to an invalid external reference. This message will stay on the screen while the acquisition is suspended.

If you press the Restart key this message will be taken off the screen and a new acquisition will be attempted; if the External Reference problem persists the message will go right back up. You can also take the message down by changing back to the Normal setting of Sweep/Ext Ref Coupling, or by pressing Freq Ref In, Internal, or Freq Ref In, Sense, or Restore Input/Output Defaults.

The setting of External Ref Coupling is persistent across power-cycling and is not reset with a Preset. It is reset to the default state (Normal) when Restore Input/Output Defaults is invoked, which will also restart normal data acquisition.

The detection of invalid external reference is under interrupt processing. If the external reference becomes invalid then returns to valid in too short a time, no error condition will be detected or reported and therefore the acquisition will not be stopped.

Key Path	Input/Output, Freq Ref In
Mode	All
Remote Command	[:SENSe] : ROSCillator : COUPling NORMal\|NACQuisition $[: S E N S e]: R O S C i l l a t o r: C O U P l i n g ? ~$
Preset	This setting is persistent: it survives power-cycling or a Preset and is reset with Restore Input/Output defaults.
State Saved	Not saved in instrument state
Readback	Normal\|Stop Acq
Initial S/W Revision	A.02.00

Output Config

Accesses keys that configure various output settings, like the frequency reference output, trigger output

Input/Output

and analog output.

Key Path	Input/Output
Initial S/W Revision	Prior to A.02.00

Trig Out (1 and 2)

Select the type of output signal that will be output from the rear panel Trig 1 Out or Trig 2 Out connectors.

Key Path	Input/Output, Output Config												
Remote Command	$:$ TRIGger \|TRIGger1	TRIGger2[:SEQuence] : OUTPut HSWP\|MEASuring	MAIN	GATE	GTRigger	OEVen	SPOint	SSWeep	S SETtled\|S1Marker	S2Marker	S3Marker	S4Marker	OFF $: T R I G g e r\|T R I G g e r 1\| T R I G g e r 2[: S E Q u e n c e]: ~ O U T P u t ? ~$
Example	TRIG:OUTP HSWP TRIG2:OUTP GATE												
Dependencies	The second Trigger output (Trig 2 Out) does not appear in all models; in models that do not support it, the Trig 2 Out key is blanked, and sending the SCPI command for this output generates an error, "Hardware missing; Not available for this model number" In models that do not support the Trigger 2 output, this error is returned if trying to set Trig 2 Out and a query of Trig 2 Out returns OFF.												
Preset	Trigger 1: Sweeping (HSWP) Trigger 2: Gate This is unaffected by a Preset but is preset to the above values on a "Restore Input/Output Defaults" or "Restore System Defaults->All"												
State Saved	Saved in instrument state												
Initial S/W Revision	Prior to A.02.00												

Polarity

Sets the output to the Trig 1 Out or Trig 2 Out connector to trigger on either the positive or negative polarity.

Key Path	Input/Output, Output Config, Trig 1/2 Output	
Remote Command	:TRIGger\|TRIGger1	TRIGger2[:SEQuence] : OUTPut : POLarity POSitive\|NEGative $: T R I G g e r\|T R I G g e r 1\| T R I G g e r 2[: S E Q u e n c e] ~: ~ O U T P u t ~: ~ P O L a r i t y ? ~$
Example	TRIG1:OUTP:POL POS	
Preset	This is unaffected by a Preset but is set to POSitive on a "Restore Input/Output Defaults" or "Restore System Defaults->All"	

State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Sweeping (HSWP)

Selects the Sweeping Trigger signal to be output to the Trig 1 Out or Trig 2 Out connector when a measurement is made. This signal has historically been known as "HSWP" (High = Sweeping), and is 5 V TTL level with 50 ohm output impedance."

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP HSWP
Readback	Sweeping
Initial S/W Revision	Prior to A.02.00

Measuring

Selects the Measuring trigger signal to be output to the Trig 1 Out or Trig 2 Out connector. This signal is true while the Measuring status bit is true.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP MEAS
Readback	Measuring
Initial S/W Revision	Prior to A.02.00

Main Trigger

Selects the current instrument trigger signal to be output to the Trig 1 Out or Trig 2 Out connector.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP MAIN
Readback	Main Trigger
Initial S/W Revision	Prior to A.02.00

Gate Trigger

Selects the gate trigger signal to be output to the Trig 1 Out or Trig 2 Out connector. This is the source of the gate timing, not the actual gate signal.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP GTR
Readback	Gate Trigger
Initial S/W Revision	Prior to A.02.00

Input/Output

Gate

Selects the gate signal to be output to the Trig 1 Out or Trig 2 Out connector. The gate signal has been delayed and its length determined by delay and length settings. When the polarity is positive, a high on the Trig 1 Out or Trig 2 Out represents the time the gate is configured to pass the signal.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP GATE
Readback	Gate
Initial S/W Revision	Prior to A.02.00

Odd/Even Trace Point

Selects either the odd or even trace points as the signal to be output to the Trig 1 Out or Trig 2 Out connector when performing swept spectrum analysis. When the polarity is positive, this output goes high during the time the analyzer is sweeping past the first point (Point 0) and every other following trace point. The opposite is true if the polarity is negative.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP OEV
Readback	Odd/Even
Initial S/W Revision	Prior to A.02.00

Off

Selects no signal to be output to the Trig 1 Out or Trig 2 Out connector.

Key Path	Input/Output, Output Config, Trig 1/2 Output
Example	TRIG1:OUTP OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

Analog Out

This menu lets you control which signal is fed to the "Analog Out" connector on the analyzer rear panel.
See "More Information" on page 609

Key Path	Input/Output, Output Config			
Remote Command	: OUTPut : ANALog OFF \|SVIDeo	LOGVideo	LINVideo	DAUDio : OUTPut : ANALog?
Example	OUTP:ANAL SVIDeo ! causes the analog output type to be Screen Video			
Preset	OFF			

Preset	This is unaffected by Preset but is set to DAUDio on a "Restore Input/Output Defaults" or "Restore System Defaults->All
State Saved	Saved in Input/Output State
Readback line	1-of-N selection [variable]
Backwards Compatibility Notes	Prior to A.04.00, OFF was the default functionality except when in the Analog Demod application or with Tune and Listen, in which case it was DAUDio, and there was no selection menu. So for backwards compatibility, Auto (:OUTP:ANAL:AUTO ON) will duplicate the prior behavior. The DNWB and SANalyzer parameters, which were legal in PSA but perform no function in the X-Series, are accepted without error.
Initial S/W Revision	A.04.00

More Information

The table below gives the range for each output.

Analog Out	Nominal Range exc. $(10 \%$ overrange $)$	Scale Factor	Notes
Off	0 V		8566 compatible
Screen Video	$0-1$ V open circuit	$10 \% /$ division	$0-1 \mathrm{~V}$ terminated
Log Video	$0-1 \mathrm{~V}$ terminated	$100 \% / \mathrm{V}$	Linear referenced to Ref Level, 1 V out for RF envelope at the Ref Level.
Linear Video	(varies with analyzer setting) dBm at the mixer.		
Demod Audio			

Auto

Selects the Auto state for the Analog Output menu. In this state, the Analog Output will automatically be set to the most sensible setting for the current mode or measurement.

If you make a selection manually from the Analog Out menu, this selection will remain in force until you change it (or re-select Auto), even if you go to a mode or measurement for which the selected output does not apply.

Key Path	Input/Output, Output Config, Analog Out		
Remote Command	OUTPut:ANALog:AUTO OFF\|ON	O	1 OUTPut:ANALog:AUTO?
Example	OUTP:ANAL:AUTO ON		
Preset	ON		

Input/Output

State Saved	Saved in Input/Output State
Initial S/W Revision	A.04.00

Off
Turns off the analog output.

Key Path	Input/Output, Output Config, Analog Out
Example	OUTP:ANAL OFF ! causes the analog output to be off
Readback Text	Off
Initial S/W Revision	A.04.00

Screen Video

Selects the analog output to be the screen video signal. In this mode, the pre-detector data is output to the Analog Out connector. The output looks very much like the trace displayed on the analyzer's screen, and depends on the Log/Lin display Scale, Reference Level, and dB per division, but is not influenced by the selected detector or any digital flatness corrections or trace post-processing (like Trace Averaging).

Note that this mode is similar to the Analog Output of the HP 8566 family and the Video Out (opt 124) capability of the Agilent PSA analyzer (E444x), although there are differences in the behavior.

See "Backwards Compatibility:" on page 611.

Key Path	Input/Output, Output Config, Analog Out
Example	OUTP:ANAL SVID

$\left.\left.\left.\begin{array}{|l|l|}\hline \text { Dependencies } & \begin{array}{l}\text { Because the Screen Video output uses one of the two IF processing channels, } \\ \text { only one detector is available while Screen Video is selected. All active traces } \\ \text { will change to use the same detector as the selected trace when Screen Video } \\ \text { is activated. } \\ \text { Screen Video output is not available while any EMI Detector is selected } \\ \text { (Quasi Peak, RMS Average or EMI Average), because these detectors use } \\ \text { both IF processing channels. Consequently, if the user chooses an EMI } \\ \text { Detector, there will be no Screen Video output. }\end{array} \\ \text { The output holds at its last value during an alignment and during a marker } \\ \text { count. After a sweep: } \\ \text { - If a new sweep is to follow (as in Continuous sweep mode), the output } \\ \text { holds at its last value during the retrace before the next sweep starts. If the } \\ \text { analyzer is in zero-span, there is no retrace, as the analyzer remains tuned } \\ \text { to the Center Frequency and does not sweep. Therefore, in zero-span, the } \\ \text { output simply remains live between display updates. }\end{array}\right\} \begin{array}{l}\text { If no new sweep is to follow (as in Single sweep mode), the output } \\ \text { remains live, and continues to show the pre-detector data }\end{array}\right\} \begin{array}{l}\text { This function depends on optional capability; the key will be blanked and the } \\ \text { command will generate an "Option not available" error unless you have } \\ \text { Option YAV or YAS licensed in your instrument. }\end{array}\right\}$

Backwards Compatibility:

The Screen Video function is intended to be very similar to the 8566 Video Output and the PSA Option 124. However, unlike the PSA, it is not always on; it must be switched on by the Screen Video key. Also, unlike the PSA, there are certain dependencies (detailed above) - for example, the Quasi Peak Detector is unavailable when Screen Video is on.

Futhermore, the PSA Option 124 hardware was unipolar and its large range was padded to be exactly right for use as a Screen Video output. In the X-Series, the hardware is bipolar and has a wider range to accommodate the other output choices. Therefore, the outputs won't match up exactly and users may have to modify their setup when applying the X -Series in a PSA application.

Log Video (RF Envelope, Ref=Mixer Level)

Selects the analog output to be the log of the video signal. In this mode, the pre-detector data is output to the Analog Out connector with a Log scaling. The output is referenced to the current level at the mixer, does not depend on display settings like Reference Level or dB per division, and it is not influenced by the selected detector or any digital flatness corrections or trace post-processing (like Trace Averaging), but does change with input attenuation.

The output is designed so that full scale $(1 \mathrm{~V})$ corresponds to -10 dBm at the mixer. The full range ($0-1$

Input/Output

V) covers 192.66 dB ; thus, 0 V corresponds to -202.66 dBm at the mixer.

Key Path	Input/Output, Output Config, Analog Out
Example	OUTP:ANAL LOGV
Dependencies	Because the Log Video output uses one of the two IF processing channels, only one detector is available while Screen Video is selected. All active traces will change to use the same detector as the selected trace when Log Video is activated. Log Video output is not available while any EMI Detector is selected (Quasi Peak, RMS Average or EMI Average), because these detectors use both IF processing channels. Consequently, if the user chooses an EMI Detector, there will be no Log Video output. The output holds at its last value during an alignment, during a marker count, and during retrace (after a sweep and before the next sweep starts). This function depends on optional capability. The key will be blanked and the command will generate an "Option not available" error unless you have Option YAV licensed in your instrument.
Couplings	Log Video output changes while in FFT Sweeps, so for measurements that use exclusively FFT Sweeps, or if the user manually chooses FFT Sweeps, the Log Video output will look different than it does in swept mode.
Readback Text	Log Video
Initial S/W Revision	A.04.00

Linear Video (RF Envelope, Ref=Ref Level)

Selects the analog output to be the envelope signal on a linear (voltage) scale. In this mode, the pre-detector data is output to the Analog Out connector with a Linear scaling. The output is based on the current Reference Level, and is not influenced by the selected detector or any digital flatness corrections or trace post-processing (like Trace Averaging).

The scaling is set so that 1 V output occurs with an instantaneous video level equal to the reference level, and 0 V occurs at the bottom of the graticule. This scaling gives you the ability to control the gain without having another setup control for the key. But it requires you to control the look of the display (the reference level) in order to control the analog output.

This mode is ideal for looking at Amplitude Modulated signals, as the linear envelope effectively demodulates the signal.

Key Path	Input/Output, Output Config, Analog Out
Example	OUTP:ANAL LINV

Dependencies	Because the Linear Video output uses one of the two IF processing channels, only one detector is available while Linear Video is selected. All active traces will change to use the same detector as the selected trace when Log Video is activated. Linear Video output is not available while any EMI Detector is selected (Quasi Peak, RMS Average or EMI Average), because these detectors use both IF processing channels. Consequently, if the user chooses an EMI Detector, there will be no Linear Video output. The output holds at its last value during an alignment and during a marker count and during retrace (after a sweep and before the next sweep starts). This function depends on optional capability; the key will be blanked and the command will generate an "Option not available" error unless you have Option YAV licensed in your instrument.
Couplings	Linear Video output changes while in FFT Sweeps, so for measurements that use exclusively FFT Sweeps, or if the user manually chooses FFT Sweeps, the Linear Video output will look different than it does in swept mode.
Readback Text	Linear Video
Initial S/W Revision	A.04.00

Demod Audio

Selects the analog output to be the demodulation of the video signal.
When Demod Audio is selected, the demodulated audio signal appears at this output whenever the Analog Demod application is demodulating a signal or when Analog Demod Tune and Listen is operating in the Swept SA measurement.

When Analog Out is in the Auto state, this output is auto-selected when in the Analog Demod mode or when Analog Demod Tune and Listen is operating in the Swept SA measurement.

If any other Analog Output is manually selected when in the Analog Demod mode or when Analog Demod Tune and Listen is operating in the Swept SA measurement, a condition warning message appears.

Key Path	Input/Output, Output Config, Analog Out
Example	OUTP:ANAL DAUD
Dependencies	This key only appears if the Analog Demod application (N9063A), the N6141A or W6141A application, or Option EMC is installed and licensed, otherwise the key will be blanked and the command will generate an "Option not available" error.
	The output holds at its last value during an alignment and during a marker count. It is not held between sweeps, in order for Tune and Listen to work properly. When Demod Audio is the selected Analog Output:
	• all active traces are forced to use the same detector.

Input/Output

Readback Text	Demod Audio
Initial S/W Revision	Prior to A.02.00 (this was the default functionality, and there was no selection)
Modified at S/W Revision	A.04.00

I/Q Cal Out

The Baseband I/Q "Cal Out" port can be turned on with either a 1 kHz or a 250 kHz square wave. This can be turned on independent of the input selection. A Preset will reset this to Off.

Key Path	Input/Output, Output Config	
Remote Command	: OUTPut : IQ: OUTPut IQ1\|IQ250	OFF : OUTPut : IQ: OUTPut?
Example	OUTP:IQ:OUTP IQ1	
Couplings	An I/Q Cable Calibration or an I/Q Probe Calibration will change the state of the Cal Out port as needed by the calibration routine. When the calibration is finished the I/Q Cal Out is restored to the pre-calibration state.	
Preset	Off	
State Saved	Saved in instrument state.	
Range	1 kHz Square Wave\|250 kHz Square Wave	Off
Readback Text	1 kHz\|250 kHz	Off
Initial S/W Revision	Prior to A.02.00	
Saved State	Saved in instrument state	

1 kHz Square Wave

Turns on the 1 kHz square wave signal at the Cal Out port. This choice is only available with option BBA.

Key Path	Input/Output, Output Config, I/Q Cal Out
Readback	I/Q 1kHz
Initial S/W Revision	Prior to A.02.00

250 kHz Square Wave

Turns on the 250 kHz square wave signal at the Cal Out port. This choice is only available with option BBA.

Key Path	Input/Output, Output Config, I/Q Cal Out
Readback	I/Q 250kHz
Initial S/W Revision	Prior to A.02.00

Off

Turns off the signal at the Cal Out port. This choice is only available with option BBA.

Key Path	Input/Output, Output Config, I/Q Cal Out
Readback	Off
Initial S/W Revision	Prior to A.02.00

Digital Out

Opens a menu that allows you to select options for configuring the digital output(s) of the analyzer.

Key Path	Input/Output, Output Config
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

Digital Bus (Narrowband)

This menu allows you to configure the LVDS connector located on the rear panel of the instrument. It is a unidirectional link of real time data at a $90 \mathrm{MSa} / \mathrm{s}$ rate. The ADC is sampling a 22.5 MHz IF.

The data that appears on this port is raw, uncorrected ADC samples, unless you have option RTL. With option RTL, you get fully corrected I/Q data.
This connector will only be active when the Narrowband IF Path is currently in use.

Key Path	Input/Output, Output Config, Digital Out
Initial S/W Revision	A.04.00

Bus Out On/Off

When Bus Out is on, all acquisitions are streamed to the output port including acquisitions for internal purposes such as Alignment; internal processing and routing of acquisitions continues as usual and is unaffected by the state of Bus Out.

When Bus Out is off, no signal appears on the LVDS port.

Key Path	Input/Output, Output Config, Digital Out, Digital Bus		
Scope	Mode Global		
Remote Command	:OUTPut : DBUS[1] [:STATe] ON \|OFF	1	0 : OUTPut : DBUS[1] [: STATe]?
Example	OUTP:DBUS ON		
Preset	This is unaffected by a Preset but is set to Off on a "Restore Input/Output Defaults" or "Restore System Defaults -> All"		
State Saved	Saved in Input/Output State		

Input/Output

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

Aux IF Out

This menu controls the signals that appear on the SMA output on the rear panel labeled "AUX IF OUT":

Key Path	Input/Output, Output Config		
Remote Command	:OUTPut : AUX SIF \|AIF	LOGVideo	OFF :OUTPut : AUX?
Preset	This is unaffected by a Preset but is set to OFF on a "Restore Input/Output Defaults" or "Restore System Defaults->All"		
State Saved	Saved in Input/Output state		
Readback line	1-of-N selection [variable]		
Backwards Compatibility Notes	In the PSA, the IF output has functionality equivalent to the "Second IF" function in the X-Series' Aux IF Out menu. In the X-Series, it is necessary to switch the Aux IF Out to "Second IF" to get this functionaluity, whereas in PSA it is always on, since there are no other choices. Hence a command to switch this function to "Second IF" will have to be added by customers migrating from PSA who use the IF Outputin PSA.		
Initial S/W Revision	A.04.00		

Second IF

In this mode the $2^{\text {nd }}$ IF output is routed to the rear panel connector. The annotation on the key shows the current $2^{\text {nd }}$ IF frequency in use in the analyzer.

The frequency of the $2^{\text {nd }}$ IF depends on the current IF signal path as shown in the table below:

IF Path Selected	Frequency of "Second IF" Output
10 MHz	322.5 MHz
25 MHz	322.5 MHz
40 MHz	250 MHz
140 MHz	300 MHz

The signal quality, such as signal to noise ratio and phase noise, are excellent in this mode.

Key Path	Input/Output, Output Config, Aux IF Out
Example	OUTP:AUX SIF causes the aux output type to be Second IF

Readback Text	Second IF
Initial S/W Revision	A.04.00

Arbitrary IF

In this mode the $2^{\text {nd }}$ IF output is mixed with a local oscillator and mixer to produce an arbitrary IF output between 10 MHz and 75 MHz with 500 kHz resolution. The phase noise in this mode will not be as good as in Second IF mode.

The IF output frequency is adjustable, through an active function which appears on the Arbitrary IF selection key, from 10 MHz to 75 MHz with 500 kHz resolution.

The bandwidth of this IF output varies with band and center frequency, but is about 40 MHz at the -3 dB width. When the output is centered at lower freqeuncies in its range, signal frequencies at the bottom of the bandwidth will "fold". For example, with a 40 MHz bandwidth (20 MHz half-bandwidth), and a 15 MHz IF center, a signal -20 MHz relative to the spectrum analyzer center frequency will have a relative response of about -3 dB with a frequency 20 MHz below the 15 MHz IF center. This -5 MHz frequency will fold to become a +5 MHz signal at the IF output. Therefore, lower IF output frequencies are only useful with known band-limited signals.

Key Path	Input/Output, Output Config, Aux IF Out
Example	OUTP:AUX AIF causes the aux output type to be the Arbitrary IF
Readback Text	Arbitrary IF
Initial S/W Revision	A.04.00

Key Path	Input/Output, Output Config, Aux IF Out
Scope	Mode Global
Remote Command	:OUTPut : AUX: AIF <value> : OUTPut : AUX: AIF?
Example	:OUTP:AUX:AIF 50 MHZ
Preset	This is unaffected by a Preset but is set to 70 MHz on a "Restore Input/Output Defaults" or "Restore System Defaults->All"
State Saved	Saved in Input/Output State
Min	10 MHz
Max	75 MHz
Initial S/W Revision	A.04.00
Default Unit	Hz

Input/Output

Fast Log Video

In this mode the $2^{\text {nd }}$ IF output is passed through a log amp and the log envelope of the IF signal is sent to the rear panel. The open circuit output level varies by about 25 mV per dB , with a top-of-screen signal producing about 1.6 Volts. The output impedance is nominally 50 ohms.

This mode is intended to meet the same needs as Option E4440A-H7L Fast Rise Time Video Output on the Agilent E4440A PSA Series, allowing you to characterize pulses with fast rise times using standard measurement suites on modern digital scopes.

Key Path	Input/Output, Output Config, Aux IF Out
Example	OUTP:AUX LOGVideo causes the aux output type to be Fast Log Video
Dependencies	The output is off during an alignment but not during a marker count, and is not blanked during retrace (after a sweep and before the next sweep starts).
Readback Text	Fast Log Video
Initial S/W Revision	A.04.00

Off

In this mode nothing comes out of the "AUX IF OUT" connector on the rear panel. The connector appears as an open-circuit (that is, it is not terminated in any way).

Key Path	Input/Output, Output Config, Aux IF Out
Example	OUTP:AUX OFF causes the aux output type to be off
Readback Text	Off
Initial S/W Revision	A.04.00

I/Q Guided Calibration

Calibrating the Baseband I/Q ports requires several steps and manual connections. The Guided Calibration will interactively step a user through the required steps, displaying diagrams to help with the connections. The steps will vary depending on the setup.

In the Guided Calibration windows, the date and time of the last calibration are displayed. If any of the items listed are displayed in yellow, this indicates that the calibration for that item is inconsistent with the latest calibration, and you should complete the entire calibration process before you exit the calibration.

I/Q Isolation Calibration

The I/Q Isolation Calibration must be run before calibrating any port with either the I/Q Cable Calibration or I/Q Probe Calibration. This calibration is performed with nothing connected to any of the front panel I/Q ports. This is the first step in both the I/Q Cable Calibration and the I/Q Probe Calibration.

Next

Perform the I/Q Isolation calibration.

Key Path	Input/Output, I/Q, I/Q Cable Calibration
Remote Command	:CALibration: IQ: ISOLation
Example	CAL:IQ:ISOL
Notes	All front panel I/Q ports must not be connected to anything.
Notes	All cables and probes should be disconnected from the I/Q ports before issuing the SCPI command.
State Saved	No.
Initial S/W Revision	Prior to A.02.00

Exit

Exits the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I/Q Cable Calibration
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

I/Q Isolation Calibration Time (Remote Command Only)

Returns the last date and time that the I/Q Isolation Calibration was performed. This is a remote query command only.

Remote Command	:CALibration: IQ: ISOLation:TIME?
Example	:CAL:IQ:ISOL:TIME?
Notes	This returns 6 integer values: year, month, day, hour, minute, second. When no calibration has been performed, all values will be 0.
Initial S/W Revision	A.02.00

I/Q Cable Calibrate...

The I/Q cable calibration creates correction data for each of the front panel I/Q ports. This calibration data is used whenever no probe specific calibration data is available. It is important that all ports are calibrated using the same short BNC cable so that the data is comparable from port to port.
The guided calibration (front panel only) will show connection diagrams and guide the user through the

Input/Output

isolation calibration and calibrating each port. The calibration data for each port is stored separately, so as soon as a port is calibrated that data is saved and will be used. If a user presses "Exit" to exit the calibration process, the data for the ports already completed will still be used. It is recommended that a calibration be completed once started, or if exited, that it be properly done before the next use of the I/Q ports. The "Next" button will perform the calibration for the current port and then proceed to the next step in the calibration procedure. The "Back" button will return to the prior port in the procedure. Both softkeys and dialog buttons are supplied for ease of use. The dialog buttons are for mouse use and the softkeys for front panel use.

The calibration can also be done via SCPI, but no connection diagrams will be shown. The user will have to make the correct connections before issuing each port calibration command. Again, it is recommended that all ports be calibrated at the same time.

The instrument state remains as it was prior to entering the calibration procedure except while a port is actually being calibrated. Once a port is calibrated it returns to the prior state. A port calibration is in process only from the time the "Next" button is pressed until the next screen is shown. For SCPI, this corresponds to the time from issuing the CAL:IQ:FLAT:I $|\mathrm{IB}| \mathrm{Q} \mid \mathrm{QB}$ command until the operation is complete.

For example, if the prior instrument state is Cal Out $=$ Off, Input $=I+j Q$, and Differential $=$ Off, then up until the time the "Next" button is pressed the I Input and Q Input LEDs are on and the Cal Out, I-bar Input and Q-bar Input LEDs are off. Once the "Next" button is pressed for the I port calibration, only the Cal Out and I Input LEDs will be on and the others will be off. When the screen progresses to the next step ("Next" button again enabled), the prior state is restored and only the I Input and Q Input LEDs are on (Cal Out is off again).

The last calibration date and time for each port will be displayed. Any calibrations that are more than a day older than the most recent calibration will be displayed with the color amber.

Key Path	Input/Output, I/Q
Initial S/W Revision	Prior to A.02.00

I Port

The I port calibration is performed with the front panel's I port connected via a short BNC cable to the Cal Out port. The guided calibration will show a diagram of the required connections.

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Initial S/W Revision	Prior to A.02.00

Next

Perform the I port calibration.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Remote Command	:CALibration: IQ: FLATness: I

Example	CAL:IQ:FLAT:I
Notes	The recommended procedure is to use the same BNC cable to calibrate all I/Q ports. All I/Q ports should be calibrated sequentially during the procedure. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
Notes	The I port must be connected to the Cal Out port before issuing the SCPI command.
State Saved	No.
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

I-bar Port

The I-bar port calibration is performed with the front panel's I-bar port connected via a short BNC cable to the Cal Out port. The guided calibration will show a diagram of the required connections.

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, I/Q Cable Calibration
Notes	Using the Back button will not restore the calibration data to a prior state. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. The Back button allows the user to go back to a prior step to redo that calibration step.
Initial S/W Revision	Prior to A.02.00

Next

Perform the I-bar port calibration.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Remote Command	:CALibration: IQ: FLATness : IBAR

Input/Output

Example	CAL:IQ:FLAT:IBAR
Notes	The recommended procedure is to use the same BNC cable to calibrate all I/Q ports. All I/Q ports should be calibrated sequentially during the procedure. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
Notes	The I-bar port must be connected to the Cal Out port before issuing the SCPI command.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

Q Port

The Q port calibration is performed with the front panel's Q port connected via a short BNC cable to the Cal Out port. The guided calibration will show a diagram of the required connections.

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Back button will not restore the calibration data to a prior state. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. The Back button allows the user to go back to a prior step to redo that calibration step.
Initial S/W Revision	Prior to A.02.00

Next

Perform the Q port calibration.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Remote Command	:CALibration:IQ: FLATness:Q

Example	CAL:IQ:FLAT:Q
Notes	The recommended procedure is to use the same BNC cable to calibrate all I/Q ports. All I/Q ports should be calibrated sequentially during the procedure. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
Notes	The Q port must be connected to the Cal Out port before issuing the SCPI command.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

Q-bar Port

The Q-bar port calibration is performed with the front panel's Q-bar port connected via a short BNC cable to the Cal Out port. The guided calibration will show a diagram of the required connections.

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Back button will not restore the calibration data to a prior state. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. The Back button allows the user to go back to a prior step to redo that calibration step.
Initial S/W Revision	Prior to A.02.00

Next

Perform the Q-bar port calibration.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Remote Command	:CALibration: IQ: FLATness: QBAR

Input/Output

Example	CAL:IQ:FLAT:QBAR
Notes	The recommended procedure is to use the same BNC cable to calibrate all I/Q ports. All I/Q ports should be calibrated sequentially during the procedure. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
Notes	The Q-bar port must be connected to the Cal Out port before issuing the SCPI command.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I/Q Cable Calibrate...
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

I/Q Cable Calibration Time (Remote Command Only)

Returns the last date and time that the I/Q Cable Calibration was performed for a specific port. This is a remote query command only.

| Remote Command | :CALibration: IQ: FLATness : I\|IBAR|Q|QBAR: TIME? |
| :--- | :--- |
| Example | :CAL:IQ:FLAT:I:TIME? |
| Notes | This returns 6 integer values: year, month, day, hour, minute, second. When no
 calibration has been performed, all values will be 0. |
| Initial S/W Revision | A. 02.00 |

I/Q Probe Calibration

The I/Q probe calibration creates correction data for one of the front panel I/Q channels. When the probe has EEPROM identification, the data is unique to that specific probe. When the probe does not have EEPROM identification, the data will be used for all probes of the same type. The data is also unique to the channel, so calibration data for the I channel will not be used for the Q channel and vice versa.

The guided calibration (front panel only) will show connection diagrams and guide the user through the I/Q Isolation Calibration and through calibrating each port. The calibration data for each port is stored separately, so as soon as a port is calibrated that data is saved and will be used. If a user presses "Exit" to exit the calibration process, the data for the port already completed will still be used. It is recommended
that a calibration be completed once started, or if exited, that it be properly done before the next use of the probe. The "Next" button will perform the calibration for the current port and then proceed to the next step in the calibration procedure. The "Back" button will return to the prior port in the procedure. Both softkeys and dialog buttons are supplied for ease of use. The dialog buttons are for mouse use and the softkeys for front panel use.

The calibration can also be done via SCPI, but no connection diagrams will be shown. The user will have to make the correct connections before issuing each port calibration command. Again, it is recommended that all ports be calibrated at the same time.
For Active probes or when Differential is Off, only the main port is calibrated, otherwise both the main and complementary ports are calibrated.

The instrument state remains as it was prior to entering the calibration procedure except while a port is actually being calibrated. Once a port is calibrated it returns to the prior state. A port calibration is in process only from the time the "Next" button is pressed until the next screen is shown. For SCPI, this corresponds to the time from issuing the CAL:IQ:PROB:I $|\mathrm{IB}| \mathrm{Q} \mid \mathrm{QB}$ command until the operation is complete.

For example, if the prior instrument state is Cal Out = Off, Input $=\mathrm{I}+\mathrm{jQ}$, and Differential $=$ Off, then up until the time the "Next" button is pressed the I Input and Q Input LEDs are on and the Cal Out, I-bar Input and Q-bar Input LEDs are off. Once the "Next" button is pressed for the I port calibration, only the Cal Out and I Input LEDs will be on and the others will be off. When the screen progresses to the next step ("Next" button again enabled), the prior state is restored and only the I Input and Q Input LEDs are on (Cal Out is off again).

The last calibration date and time for each relevant port will be displayed. For passive probes with Differential On, any calibration that is more than a day older than the most recent calibration will be displayed with the color amber.

I Port

The I port calibration is performed with the probe body attached to the front panel's I port and the probe tip connected via an adapter to the Cal Out port. The guided calibration will show a diagram of the required connections.

Show Adapter

Show a connection diagram and instructions for the probe and adapter. See "Show Adapter Screen" on page 630.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Notes	Either a passive or an active probe adapter diagram will be shown, depending on the type of probe attached.
Initial S/W Revision	Prior to A.02.00

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Initial S/W Revision	Prior to A.02.00

Input/Output

Next

Perform the I port calibration.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Remote Command	:CALibration: IQ:PROBe: I
Example	CAL:IQ:PROB:I
Notes	The I port must be connected to the Cal Out port before issuing the SCPI command. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

I-bar Port

The I-bar port calibration is performed with the probe body attached to the front panel's I-bar port and the probe tip connected via an adapter to the Cal Out port. The I-bar probe calibration is only available for passive probes with Differential On. The guided calibration will show a diagram of the required connections.

Show Adapter

Show a connection diagram and instructions for the probe and adapter. See "Show Adapter Screen" on page 630.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Notes	Either a passive or an active probe adapter diagram will be shown, depending on the type of probe attached.
Initial S/W Revision	Prior to A.02.00

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Notes	Using the Back button will not restore the calibration data to a prior state. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. The Back button allows the user to go back to a prior step to redo that calibration step.
Initial S/W Revision	Prior to A.02.00

Next

Perform the I-bar port calibration.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Remote Command	:CALibration: IQ: PROBe: IBar
Example	CAL:IQ:PROB:IB
Notes	The I-bar port must be connected to the Cal Out port before issuing the SCPI command. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, I Setup, I Probe, Calibrate
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

Q Port

The Q port calibration is performed with the probe body attached to the front panel's Q port and the probe tip connected via an adapter to the Cal Out port. The guided calibration will show a diagram of the required connections.

Input/Output

Show Adapter

Show a connection diagram and instructions for the probe and adapter. See "Show Adapter Screen" on page 630.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Notes	Either a passive or an active probe adapter diagram will be shown, depending on the type of probe attached.
Initial S/W Revision	Prior to A.02.00

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, IIQ, Q Setup, Q Probe, Calibrate
Initial S/W Revision	Prior to A.02.00

Next

Perform the Q port calibration.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Remote Command	:CALibration: IQ:PROBe:Q
Example	CAL:IQ:PROB:Q
Notes	The Q port must be connected to the Cal Out port before issuing the SCPI command. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration data.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

Q-bar Port

The Q-bar port calibration is performed with the probe body attached to the front panel's Q-bar port and the probe tip connected via an adapter to the Cal Out port. The Q-bar probe calibration is only available for passive probes with Differential On. The guided calibration will show a diagram of the required connections.

Show Adapter

Show a connection diagram and instructions for the probe and adapter. See "Show Adapter Screen" on page 630.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Notes	Either a passive or an active probe adapter diagram will be shown, depending on the type of probe attached.
Initial S/W Revision	Prior to A.02.00

Back

Return to the prior step in the calibration procedure.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Notes	Using the Back button will not restore the calibration data to a prior state. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. The Back button allows the user to go back to a prior step to redo that calibration step.
Initial S/W Revision	Prior to A.02.00

Next

Perform the Q-bar port calibration.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Remote Command	:CALibration: IQ: PROBe: QBar
Example	CAL:IQ:PROB:QB
Notes	The Q-bar port must be connected to the Cal Out port before issuing the SCPI command. The calibration data is saved as soon as the port is calibrated and will survive power cycles. It is not reset by any preset or restore data commands.
State Saved	No
Initial S/W Revision	Prior to A.02.00

Exit

Exit the calibration procedure. All ports calibrated before pressing Exit will use the newly acquired calibration

Input/Output

data.

Key Path	Input/Output, I/Q, Q Setup, Q Probe, Calibrate
Notes	Using the Exit button will not restore the calibration data to the state prior to entering the guided calibration. Once a port is calibrated the data is stored immediately and the only way to change it is to redo the calibration step. When the calibration may be left in an inconsistent state, a confirmation dialog will be displayed (see "Exit Confirmation" on page 630).
Initial S/W Revision	Prior to A.02.00

Show Adapter Screen

When one of the Probe Calibration Show Adapter buttons is pressed, a diagram of the probe with its adapter will be shown. Depending on the type of probe attached, either the Passive Probe Adapter or the Active Probe Adapter diagram will be shown.

I/Q Probe Calibration Time (Remote Command Only)

Return the last date and time that the I/Q Probe Calibration was performed for a specific port. This is a remote query command only.

| Remote Command | :CALibration:IQ:PROBe:I\|IBAR|Q|QBAR:TIME? |
| :--- | :--- |
| Example | :CAL:IQ:PROB:I:TIME? |
| Notes | This returns 6 integer values: year, month, day, hour, minute, second. When no
 calibration has been performed, all values will be 0. The value is specific to
 both the port and probe, so the value will change as probes are connected or
 disconnected. |
| Initial S/W Revision | A. 02.00 |

Exit Confirmation

When Exit is pressed during one of the calibration routines, the calibration may be in an inconsistent state with some of the ports having newly measured calibration data and others with old data. If this is the case, a dialog box will appear to confirm that the user really wants to exit. A "Yes" answer will exit the calibration procedure, leaving potentially inconsistent calibration data in place. A "No" answer will return to the calibration procedure.

Marker

See "Marker Control Mode" on page 631.
See "Setting the Marker X Axis Value" on page 632.
See "Setting the Marker X Position in Trace Points" on page 632.
See "Setting the Marker Y Axis Value" on page 634.
The Marker key accesses the Marker menu. A marker can be placed on a trace to allow the value of the trace at the marker point to be determined precisely. The functions in this menu include a 1-of-N selection of the control mode Normal, Delta, Fixed, or Off for the selected marker. If the selected marker is Off, pressing Marker sets it to Normal and places it at the center of the screen on the trace determined by the Marker Trace rules.

Markers may also be used in pairs to read the difference (or delta) between two data points. They can be used in Marker Functions to do advanced data processing, or to specify operating points in functions like Signal Track and N dB Points.

The command in the table below selects the marker and sets the marker control mode as described under Normal, Delta, Fixed and Off, below. All interactions and dependencies detailed under the key description are enforced when the remote command is sent.

Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MODE POSition \mid DELTa\|FIXed \mid OFF :CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MODE?											
Preset	OFF (all markers)											
State Saved	The marker control mode is saved in instrument state											
Backwards Compatibility SCPI	:CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12:MODE SPAN	BAND These parameters are aliased to POSition if sent. A query does not reflect them.
Initial S/W Revision	Prior to A.02.00											

Marker Control Mode

There are four control modes for markers:
Normal (POSition) - A marker that can be moved to any point on the X Axis by specifying its X Axis value, and who's absolute Y Axis value is then the value of the trace point at that X Axis value.

Delta (DELTa) - A marker that can be moved to any point on the X Axis by specifying its X Axis offset from a reference marker, and whose absolute Y Axis value is then the value of the trace point at that X Axis value.

Fixed (FIXed) - A marker whose X Axis and Y Axis values may be directly or indirectly specified by you, but whose Y Axis value remains fixed, once specified, and does not follow the trace. Fixed markers are useful as reference markers for Delta markers, as operands in a Peak Search operation, and as

Marker

arbitrary reference points settable by you. These markers are represented on the display by an " X " rather then a diamond.

Off (OFF) - A marker which is not in use.
In the Swept SA measurement, the Preset control mode is Off for all markers.

Setting the Marker X Axis Value

The command below sets the marker X Axis value in the current marker X Axis Scale unit. In each case the marker that is addressed becomes the selected marker. It has no effect (other than to cause the marker to become selected) if the control mode is Off, but it is the SCPI equivalent of entering an X value if the control mode is Normal, Delta, or Fixed.

| Remote Command | :CALCulate:MARKer[1]\|2|3|4|5|6|7|8|9|10|11|12:X <freq> :CALCulate:MARKer[1]\|2|3|4|5|6|7|8|9|10|11|12:X? |
| :---: | :---: |
| Notes | If no suffix is sent it will use the fundamental units for the current marker X Axis Scale. If a suffix is sent that does not match the current marker X Axis Scale unit, an invalid suffix message will be generated.
 If the specified marker is Fixed and a Marker Function is on, a message is generated. If the key is pressed, an advisory message is generated. If the equivalent SCPI command is sent, this same message is generated as part of a "-221, Settings conflict" warning.
 The query returns the marker's absolute X Axis value if the control mode is Normal or Fixed. It returns the offset from the marker's reference marker if the control mode is Delta. The query is returned in the fundamental units for the current marker X Axis scale: Hz for Frequency and Inverse Time, seconds for Period and Time. If the marker is Off the response is not a number. |
| Preset | After a preset, if X is queried with no value sent first, the center of screen value will be returned. This will depend on the frequency range of the instrument. 13.255 GHz is correct for the 26 GHz instruments only (Option 526). |
| Min | $-\infty$ (minus infinity) |
| Max | $+\infty$ (plus infinity). Unlike legacy analyzers, where the markers were forced to be on screen, X-Series marker values are not limited and do not clip |
| Backwards Compatibility SCPI | :CALCulate:MARKer[1]\|2|3|4:X:CENTer |
| Initial S/W Revision | Prior to A.02.00 |
| Default Unit | determined by X Axis Scale |

Setting the Marker X Position in Trace Points

The command below sets the marker X position in trace points. It has no effect if the marker control mode is Off. But it is the SCPI equivalent of entering a value if the control mode is Normal or Delta or Fixed - except the setting is in trace points rather than X Axis Scale units.

NOTE
The entered value in Trace Points is immediately translated into the current X Axis Scale units for setting the value of the marker. The marker's value in X Axis Scale Units, NOT trace points, will be preserved if a change is made to the X Axis scale settings. Thus, if you use this command to place a marker on bucket 500, which happens at that time to correspond to 13 GHz , and then you change the Start Frequency so that bucket 500 is no longer 13 GHz , the marker will stay at 13 GHz , NOT at bucket 500! This is important to realize as it differs from the behavior of past Agilent analyzers.

| Remote Command | ```:CALCulate:MARKer[1]\|2|3|4|5|6|7|8|9|10|11|12:X:POSitio n <real> :CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:X:POSitio n?``` |
| :---: | :---: |
| Notes | If the specified marker is Fixed and a Marker Function is on, a message is generated. If the key is pressed, an advisory message is generated. If the equivalent SCPI command is sent, this same message is generated as part of a "-221, Settings conflict" warning.
 The query returns the marker's absolute X Axis value in trace points if the control mode is Normal or Fixed. It returns the offset from the marker's reference marker in trace points if the control mode is Delta. The value is returned as a real number, not an integer, corresponding to the translation from X Axis Scale units to trace points |
| Preset | After a preset, if X is queried with no value sent first, the center of screen value will be returned. So if per default, the number of Trace points is 1001, the center value will be 500 . |
| Min | 0 |
| Max | Number of trace points - 1 |
| Backwards Compatibility SCPI | :CALCulate:MARKer[1]\|2|3|4:X:POSition:CENTer |
| Backwards Compatibility SCPI | The legacy command, :CALCulate:MARKer[n]:X:POSition:CENTer <param>
 was used to control the center point between the Delta and Reference marker in trace points (buckets) in Span Pair mode. In the new system, this is equivalent to simply setting the marker position in trace points. So this command is aliased to the command
 :CALCulate:MARKer[n]:X:POSition <param> |
| Initial S/W Revision | Prior to A. 02.00 |

Marker

Default Unit	unitless

Setting the Marker Y Axis Value

The command below selects the marker and sets the marker Y Axis value; the default unit is the current Y Axis unit. It has no effect (other than selecting the marker) unless the marker control mode is Fixed.

Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y$ <real> :CALCulate:MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y ?$										
Example	CALC:MARK2:MODE POS turns on marker 2 as a normal marker. CALC:MARK2:X 20 GHZ moves marker 2 to 20 GHz if X Axis Scale is Frequency. If X Axis Scale is Time, an Invalid Suffix error is generated.										
Notes	If no suffix is sent it will use the current Y Axis unit. If a suffix is sent that does not have units of absolute amplitude, an invalid suffix error will be generated. If a marker function is on for the specified marker, a Settings Conflict message is generated.										
The command :CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12:Y? returns the	
marker Y-axis result, if the control mode is Normal, Fixed or Delta. If the											
marker is Off the response is 9.91e37 ("not a number").		$	$	Trace value at center of screen. There is no way to predict what this will be							
:---	:---										
after a preset.											

Querying the Marker Z Axis Value

The command below queries the marker Z Axis value in the Spectrogram View only. The Z Axis value of a marker represents the time value of the marker (see "Representation of Time" under the Spectrogram View description). In each case the marker that is addressed becomes the selected marker.

Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z ?$
Notes	The query returns the marker's absolute Z Axis value if the control mode is Normal or Fixed. It returns the offset from the marker's reference marker if the control mode is Delta. For Spectrogram, the Z Axis value represents the amount of time transpired since the start of the recording of traces.
Preset	$9.91 \mathrm{E}+37$
Min	-Infinity
Max	+Infinity

Setting or Querying the Marker Z Position

The command below sets the Marker Z position in the Spectrogram View only. Setting the Z Position sets which of the 300 traces in the Spectrogram the selected marker will appear on. In each case the marker that is addressed becomes the selected marker. It has no effect (other than to cause the marker to become selected) if the control mode is Off, but it is the SCPI equivalent of making a Marker Z entry if the control mode is Normal, Delta, or Fixed.

Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z:$ POSitio n <integer> $:$ CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z:$ POSitio n?
Notes	The command sets or queries the Z Axis position. In the Spectrogram View, this value correlates to be one of the 300 stored traces. Each Z Axis position represents a different stored trace.
Preset	0
Min	0
Max	Number of traces stored is limited to 300.
Default Unit	unitless

Select Marker

Specifies the selected marker. The term "selected marker" is used throughout this document to specify which marker will be affected by the functions.

Key Path	Marker
Notes	The selected marker is remembered even when not in the Marker menu and is used if a Search is done or a Band Function is turned on or for Signal Track or Continuous Peak.
Preset	Marker 1
State Saved	The number of the selected marker is saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Normal

Sets the control mode for the selected marker to Normal and turns on the active function for setting its value. If the selected marker was Off, it is placed at the center of the screen on the trace specified by the marker's Trace attribute.

A Normal mode (POSition type) marker can be moved to any point on the X Axis by specifying its X Axis value. Its absolute Y Axis value is then the value of the trace point at that X Axis value.

Key Path	Marker

Marker

Example	:CALC:MARK:MODE POS sets Marker 1 to Normal.
Notes	See the description under the " Marker" key.
Couplings	• The marker addressed by this command becomes the selected marker on the front panel.
State Saved	The marker control mode (Normal, Delta, Fixed, Off) and X Axis value are saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Delta

Sets the control mode for the selected marker to Delta and turns on the active function for setting its delta value. If the selected marker was Off, it is placed at the center of the screen on the trace specified by the marker's Trace attribute.

In Delta mode the marker result shows the relative result between the selected (Delta) marker and its reference marker. A delta marker can be moved to any point on the X Axis by specifying its X Axis offset from a reference marker. Its absolute Y Axis value is then the value of the trace point at that X Axis value.

Key Path	Marker
Example	:CALC:MARK:MODE DELT sets marker 1 to Delta.
Notes	See the description under the " Marker" key.
State Saved	The marker control mode (Normal, Delta, Fixed, Off) and X Axis value are saved in instrument state
Initial S/W Revision	Prior to A.02.00

Fixed

See "Fixed Marker X Axis Value" on page 637.
See "Fixed Marker Y Axis Value" on page 637.
See "Fixed Marker Z Axis Value" on page 637
Sets the control mode for the selected marker to Fixed. A fixed marker is fixed in the sense that it stays where you place it. It can be directly moved in both X and Y. It can be moved with a Peak Search. It can also be indirectly moved by re-zeroing the delta if it is a relative marker. If it is moved, it again becomes fixed at the X Axis point it moved to and it has a Y-axis result that it took on when it moved there. If a Normal or Delta marker is changed to Fixed it becomes fixed at the X Axis point it was at, and with the Y-axis result it had when it was set to Fixed.

In Fixed mode the marker result shows:

- If no Marker Function is on, the absolute X Axis and Y axis value of the marker
- If a Marker Function is on, the X Axis value and the Y-axis function result the marker had when it became fixed.

Fixed Marker X Axis Value

Key Path	Marker, Fixed
Example	:CALC:MARK:MODE FIX sets Marker 1 to Fixed.
Notes	See the description under the " Marker" key, above.
Dependencies	You cannot directly set the X or Y value of a Fixed marker which has a marker function turned on. If an attempt is made to actually adjust it while a Marker Function is on, a warning message is generated. You cannot directly set the Y value of a Fixed marker while Normalize is turned on. If an attempt is made to do so while Normalize is on, a warning message is generated.
State Saved	The marker control mode (Normal, Delta, Fixed, Off) and X and Y Axis values are saved in instrument state
Initial S/W Revision	Prior to A.02.00

Fixed Marker Y Axis Value

Key Path	Marker, Fixed
Example	:CALC:MARK:MODE FIX sets Marker 1 to Fixed.
Notes	See the description under the Marker key.
Dependencies	You cannot directly set the X or Y value of a Fixed marker which has a marker function turned on. If an attempt is made to actually adjust it while a Marker Function is on, a warning message is generated.
State Saved	The marker control mode (Normal, Delta, Fixed, Off) and X and Y Axis values are saved in instrument state
Initial S/W Revision	Prior to A.02.00
Default Unit	depends on the current selected Y axis unit

Fixed Marker Z Axis Value

The Marker Z position determines which of the 301 traces ($0-300$) the selected marker is on. It cannot be set above the maximum trace in the Spectrogram window and, unlike the Marker X position, will not move off screen in the Spectrogram Window if the storage size is smaller than the number of traces that can be viewed.

If Spectrogram is on, the marker result block has a third line displaying the time value of Marker Z. If the marker is a delta marker, the delta time value is displayed. Although the Z Marker position can be moved to trace 0 , this is not recommended, as the current trace value is constantly being updated by new acquisitions and therefore the Z time value for trace 0 is not completely registered until the trace is completed.

Marker

Marker Z position is only available in the Spectrogram View

Key Path	Marker, Fixed
Example	:CALC:MARK2:MODE FIX sets Marker 2 to Fixed. :CALC:MARK2:Z:POS 150 puts Marker 2 on Trace 150
Dependencies	\bullet Only appears in the Spectrogram view, otherwise blanked
State Saved	The marker control mode (Normal, Delta, Fixed, Off) and X, Y and Z Axis values are saved in instrument state
Initial S/W Revision	A.07.01

Off

Turns off the selected marker.
In addition, Off removes the marker annunciation from the display, turns off any active function and any marker function, and resets the following properties to their default value:

X Axis scale: Auto
Band/Interval Span: 0
Auto Trace: On
Off does not affect which marker is selected.

Key Path	Marker
Example	:CALC:MARK:MODE OFF sets Marker 1 to Off.
Notes	See the description under the " Marker" key.
State Saved	The marker control mode (Normal, Delta, Fixed, Off) is saved in instrument state
Initial S/W Revision	Prior to A.02.00

Properties

Opens a menu used to set certain properties of the selected marker.

Key Path	Marker
Initial S/W Revision	Prior to A.02.00

Select Marker

Duplicate of the Select Marker key under Marker. Selecting a marker here causes the same marker to be selected under Marker. (That is, there is only one "selected marker".)

Relative To

Selects the marker that the selected marker will be relative to (its reference marker).
Every marker has another marker to which it is relative. This marker is referred to as the "reference marker" for that marker. This attribute is set by the Marker, Properties, Relative To key. The marker must be a Delta marker to make this attribute relevant. If it is a Delta marker, the reference marker determines how the marker is controlled and how its value is displayed. A marker cannot be relative to itself.

Key Path	Marker, Properties																					
Remote Command	```:CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12:REFerence <integer> :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:REFerence ?```
Example	CALC:MARK1:REF 2 sets the marker 1 reference marker to 2 and turns marker 1 on as a delta marker.																					
Notes	A marker cannot be relative to itself so that choice is grayed out. If the grayed out key is pressed, an advisory message is generated.																					
Notes	This command causes the marker specified with the subopcode to become selected. Range (for SCPI command): 1 to 12 . If the range is exceeded the value is clipped.																					
Couplings	The act of specifying the selected marker's reference marker makes the selected marker a Delta marker. If the reference marker is off it is turned on in Fixed mode at the delta marker location.																					
Preset	The preset default "Relative To" marker (reference marker) is the next higher numbered marker (current marker +1). For example, if marker 2 is selected, then it's default reference marker is marker 3 . The exception is marker 12, which has a default reference of marker 1. Set to the defaults by using Restore Mode Defaults. This is not reset by Marker Off, All Markers Off, or Preset.																					
State Saved	Saved in instrument state. Not affected by Marker Off and hence not affected by Preset or power cycle.																					
Min	1																					
Max	12																					
Status Bits/OPC dependencies	none Default (selected when Restore Mode Defaults is pressed): next higher numbered marker or 1 if marker 12.																					
Initial S/W Revision	Prior to A.02.00																					

X Axis Scale (formerly Readout)

Accesses a menu that enables you to affect how the X Axis information for the selected marker is

Marker

displayed in the marker area (top-right of display) and the active function area of the display, and how the marker is controlled. The available settings for the X Axis Scale are Frequency, Period, Time, and Inverse Time.

See "More Information" on page 640.

Key Path	Marker, Properties																																																	
Remote Command	```:CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12:X:READout FREQuency	TIME	ITIMe	PERiod :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:X:READout ? :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:X:READout :AUTO ON	OFF	1	0 :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:X:READout :AUT0?```
Example	CALC:MARK3:X:READ TIME sets the marker 3 X Axis Scale to Time.																																																	
Notes	This command causes the specified marker to become selected.																																																	
Preset	AUTO Marker Preset (selected when a marker is turned Off): Auto (see below). In most measurements the Auto settings results in Frequency being the preset readout.																																																	
State Saved	Saved in instrument state																																																	
Initial S/W Revision	Prior to A.02.00																																																	

More Information

The X Axis Scale of a marker is the scale of its X Axis value. This affects the units displayed in the Marker Result block and used to specify the marker's X Axis location. The X Axis Scale is specified using the Marker, Properties, X Axis Scale key.

All markers in swept spans have both a time and frequency value. Which of these is used for the result display, and for positioning the marker, depends on the \mathbf{X} Axis Scale setting. The \mathbf{X} Axis Scale setting can be Frequency or Time, as well as the reciprocal of either (Period or Inverse Time). There is also an Auto setting - when in Auto, a marker's X Axis Scale changes whenever the domain of the trace, upon which it set, changes. All choices for \mathbf{X} Axis Scale are allowed. Note that this behavior differs from the behavior in previous instruments: previously the instrument remembered a different \mathbf{X} Axis Scale (formerly called Readout) for each domain, and the choices of \mathbf{X} Axis Scale were restricted. These restrictions were based on the current domain of the instrument.

Auto

When in Auto, the X-Axis Scale is Frequency if the Marker Trace is a frequency domain trace, Time if the Marker Trace is a time domain trace. When in Auto, if the marker changes traces, or the domain of the trace the marker is on changes, the auto result is re-evaluated. If the X Axis Scale is chosen manually,
that Scale is used regardless of the domain of the trace.

Key Path	Marker, Properties, X Axis Scale
Example	CALC:MARK2:X:READ:AUTO ON sets the marker 2 X-axis scaling to automatically select the most appropriate units.
Initial S/W Revision	Prior to A.02.00

Frequency

Sets the marker X Axis scale to Frequency, displaying the absolute frequency of a normal marker or the frequency of the delta marker relative to the reference marker. Frequency is the auto setting for frequency domain traces.
If Frequency is selected for a time domain trace, all of the points in the trace will show the same value. Attempting to use the knob or step keys to adjust the X Axis value of the marker or entering an X Axis value from the numeric keypad or remotely will have no effect but will generate no error.

Key Path	Marker, Properties, \mathbf{x} Axis Scale
Example	CALC:MARK2:X:READ FREQ sets the marker 2 X Axis scale to Frequency.
Notes	1-of-N readback is Frequency
State Saved	The X Axis Scale setting is saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Period

Sets the marker X Axis scale to Period, displaying the reciprocal of the frequency of the marker, or the reciprocal of the frequency separation of the two markers in a delta-marker mode. The units are those of time (sec, msec, etc). If the markers are at the same frequency in a delta marker mode, the result will be the reciprocal of 0 , which is infinitely large. The display will show "---" and a SCPI query will return infinity.

If Period is selected for a time domain trace, all of the points in the trace will show the same value. Attempting to use the knob or step keys to adjust the X Axis value of the marker or entering an X Axis value from the numeric keypad or remotely will have no effect but will generate no error.

Key Path	Marker, Properties, X Axis Scale
Example	CALC:MARK2:X:READ PER sets the marker 2 X Axis scale to Period.
Notes	1-of-N readback is Period
State Saved	The X Axis Scale setting is saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Time

Sets the marker X Axis scale to Time, displaying the time interval between a normal marker and the start of a sweep or the time of the delta marker relative to the reference marker. Time is the auto setting for

Marker

time domain traces. In a delta-marker mode it is the (sweep) time interval between the two markers.

Key Path	Marker, Properties, \mathbf{X} Axis Scale
Example	CALC:MARK2:X:READ TIME sets the marker 2 X Axis Scale to Time..
Notes	1-of-N readback is Time
Couplings	Frequency domain traces taken in FFT mode have no valid time data. Therefore when Time is selected for markers on such traces, the X Axis value is taken as the appropriate percentage of the displayed sweep time, which is a calculated estimate.
State Saved	The X Axis Scale setting is saved in instrument state
Initial S/W Revision	Prior to A.02.00

Inverse Time

Sets the marker X Axis scale to Inverse Time, displaying the reciprocal time. It is useful in a delta mode to show the reciprocal of (sweep) time between two markers. This function is only meaningful when on a time domain trace and in the Delta control mode. If the markers are at the same X Axis value, the time between them is 0 , so the reciprocal of sweep time is infinitely large. The display will show "---" and a SCPI query will return infinity.

Key Path	Marker, Properties, X Axis Scale
Example	:CALC:MARK2:X:READ ITIM sets the marker 2 X Axis scale to Inverse Time.
Notes	1-of-N readback is Inverse Time
Couplings	Frequency domain traces taken in FFT mode have no valid time data. Therefore when Inverse Time is selected for markers on such traces, the X Axis value is undefined, shows as "---" and returns not a number to a query.
State Saved	The X Axis Scale setting is saved in instrument state
Initial S/W Revision	Prior to A.02.00

Marker Trace

Selects the trace that you want your marker to be placed on. A marker is associated with one and only one trace. This trace is used to determine the placement, result, and X Axis Scale of the marker. All markers have an associated trace, even Fixed markers; it is from that trace that they determine their attributes and behaviors, and it is to that trace that they go when they become Normal or Delta markers.

See "Auto Init On" on page 643.
See "Auto Init Rules Flowchart" on page 643.
See "Auto Init OFF" on page 644.

Key Path	Marker, Properties

\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Remote Command } & \begin{array}{l}: \text { CALCulate: MARKer }[1]|2| 3|4| 5|6| 7|8| 9|10| 11 \mid 12: \text { TRACe } \\
1|2| 3|4| 5 \mid 6 \\
: \text { CALCulate: MARKer }[1]|2| 3|4| 5|6| 7|8| 9|10| 11 \mid 12: \text { TRACe? }\end{array} \\
\hline \text { Example } & \text { CALC:MARK1:TRAC } 2 \text { places marker } 1 \text { on trace } 2 .\end{array}
$$ \right\rvert\, \begin{array}{l}A marker may be placed on a blanked and/or inactive trace, even though the

trace is not visible and/or updating.

An application may register a trace name to be displayed on the key instead of

a trace number.\end{array}\right]\)| The state of Marker Trace is not affected by the Auto Couple key. |
| :--- |
| If a Marker Trace is chosen manually, Auto Init goes to Off for that marker. |
| Sending the remote command causes the addressed marker to become |
| selected. |

Auto Init On

When Auto Init is true, the marker's trace attribute is re-determined automatically by the analyzer whenever the marker turns on (Normal, Delta or Fixed) from an Off state. (The trace attribute is also determined for all markers that are on, whenever Auto Init is turned on).

When the marker moves between traces the marker's X position in trace points is retained as it moves. For moving between active traces this generally means the x-axis value of the marker will not change. But for moving to or from an inactive trace, the x-axis value will take on that of the new trace at the bucket the marker was on the old trace (and is still on, on the new trace, since the bucket doesn't change).

Note this is true even if the marker is off screen. Thus, a marker that is at the center of the screen on the old trace stays at the center of the screen on the new trace. A marker that is off screen one whole screen to the left on the old trace remains off screen one whole screen to the left on the new trace - even if this means it will be at negative time!
Marker Trace is set to 1, and Auto Init is set to On, on a Preset or All Markers Off.

Auto Init Rules Flowchart

The following flowchart depicts the Auto Init rules:

Marker

This flowchart makes it clear that putting all lower-numbered traces in View is the simplest way to specify which trace you want the markers to go to when they turn on. For example, if you want all Markers to go to trace 2 when they turn on, put trace 1 in View.

Auto Init OFF

This command associates the marker with the specified trace and turns Marker Trace, Auto Init OFF for that marker. If the marker is not Off it moves the marker from the trace it was on to the new trace. If the marker is Off it stays off but is now associated with the specified trace.

The query returns the number of the trace on which the marker is currently placed, even if that marker is in Auto mode.

Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ TRACe:AUT 0 OFF \mid ON $\|0\| 1$ $:$ CALCulate: $:$ MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ TRACe :AUT $0 ?$
Notes	Turning Marker Trace Auto Init off has no effect on the trace on which the marker is currently placed. The response to the query will be 0 if OFF, 1 if ON.

Couplings	The state of Auto Init is not affected by the Auto Couple key. Auto Init is set to True on a Preset or All Markers Off. If Auto Init is set to On for a marker and that marker is on, that marker's Marker Trace is immediately set according to the above flowchart. Sending the remote command causes the addressed marker to become selected.
Preset	ON
Initial S/W Revision	Prior to A.02.00

Lines

When on, displays a vertical line of graticule height and a horizontal line of graticule width, intersecting at the indicator point of the marker (that is, the center of the X or the bottom tip of the diamond. The lines are blue in color.

If the marker is off screen the lines should be extended from the marker so that they go thru the screen area if possible. This is really useful for off screen Fixed markers as it lets you see their amplitude even though they are off the X Axis.

Key Path	Marker, Properties
Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ LINes [:ST ATe] OFF $10 \mathrm{~N}\|0\| 1$:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ LINes [:ST ATe]?
Example	:CALC:MARK2:LIN:ON turns Lines on for marker 2.
Couplings	Sending the remote command causes the addressed marker to become selected.
Preset	OFF
State Saved	Saved in State
Initial S/W Revision	Prior to A.02.00

Marker Z

The Marker Z position determines which of the 301 traces ($0-300$) the selected marker is on. It cannot be set above the maximum trace in the Spectrogram window and, unlike the Marker X position, will not move off screen in the Spectrogram Window if the storage size is smaller than the number of traces that can be viewed.

If Spectrogram is on, the marker result block has a third line displaying the time value of Marker Z . If the marker is a delta marker, the delta time value is displayed. Although the Z Marker position can be moved to trace 0 , this is not recommended, as the current trace value is constantly being updated by new acquisitions and therefore the Z time value for trace 0 is not completely registered until the trace is

Marker

completed.

Key Path	Marker, Fixed
Example	:CALC:MARK3:Z:POS 100 puts Marker 3 on Trace 100
Dependencies	\bullet Only appears in the Spectrogram view, otherwise blanked
State Saved	The X, Y and Z Axis values are saved in instrument state
Initial S/W Revision	A. 07.01

Marker Table

When set to On the display is split into a measurement window and a marker data display window. For each marker which is on, information is displayed in the data display window, which includes the marker number, control mode, trace number, X axis scale, X axis value, and the Y -axis result. Additional information is shown for markers which have marker functions turned on.

Turning the Marker Table on turns the Peak Table off and vice versa.

Key Path	Marker
Remote Command	:CALCulate:MARKer :TABLe[:STATe] OFF\|ON $0 \mid 1$:CALCulate:MARKer :TABLe [:STATe]?
Example	CALC:MARK:TABL ON turns on the marker table.
Preset	OFF
State Saved	Whether the marker table is on is saved in instrument state
Initial S/W Revision	Prior to A.02.00

Marker Count

Accesses the marker count menu.

Key Path	Marker
Readback line	[On] if count on for the selected marker, [Off] if it is off.
Initial S/W Revision	Prior to A.02.00

Counter

Turns the marker frequency counter on and off. The selected marker is counted, and if the selected marker is a delta marker and its reference marker is not fixed, the reference marker is counted as well.

See "Understanding the Marker Counter" on page 648.
See "Query Count Value" on page 647.

Key Path	Marker, Marker Count

| Remote Command | ```:CALCulate:MARKer[1]\|2|3|4|5|6|7|8|9|10|11|12:FCOunt[:S TATe] OFF|ON|0|1 :CALCulate:MARKer[1]|2|3|4|5|6|7|8|9|10|11|12:FCOunt[:S TATe]?``` |
| :---: | :---: |
| Example | CALC:MARK2:FCO ON selects marker 2, turns it on, and turns on the counter
 CALC:MARK2:FCO:X? returns the counted frequency. |
| Notes | Fixed markers are not counted, but a Fixed marker will have a count stored in it if it is selected or is the reference marker for the selected marker. The count already in the marker is stored when the marker becomes fixed and if there is none or the marker moves (for example, Pk Search) it is counted and stored after the next sweep.
 If a Fixed marker has a count stored in it, that count will be displayed when the marker is selected, and used as the reference count when that marker is a reference marker.
 If a Fixed marker has a count stored in it, that count will be deleted if the marker X is adjusted.
 If a Fixed marker has a count stored in it, and a Search function is performed using the Fixed marker, while the counter is on, the count stored in the marker will be updated.
 If a Fixed marker has a count stored in it, and is a reference marker, and the reference is moved to a valid trace point by re-zeroing the delta (by pressing Delta again or sending the DELTa SCPI command), while the counter is on, the count stored in the marker will be updated. |
| Notes | This command causes the specified marker to become selected. |
| Dependencies | Marker Count is unavailable (grayed out and Off) if the Gate function is on. |
| Couplings | If the selected marker is Off when the counter is turned on, the selected marker is set to Normal and placed at center of screen on the trace determined by the Marker Trace rules.
 If a marker which is OFF is selected while the counter is on, the counter remains on, but since the marker is off, the count is undefined. In this case the analyzer will return not a number to a SCPI count query.
 The counter is turned OFF when the selected marker is turned OFF. |
| Preset | OFF |
| State Saved | The state of the counter (on/off) is saved in instrument state. In the case of Fixed markers, the count stored in the marker is saved in instrument state. |
| Initial S/W Revision | Prior to A.02.00 |

Query Count Value

Queries the frequency count. The query returns the absolute count unless the specified marker is in Delta mode, then it returns the relative count. If the marker is off, or the marker is on but the counter is off, the analyzer will return not a number to a SCPI count query. A marker with no stored count, or a non-Fixed

Marker

marker on a stored trace, will also return not a number to a SCPI count query. Note this result may simply mean that the first sweep after the counter turned on has not yet completed.

Remote Command	$:$ CALCulate :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FCOunt : X?
Notes	This query does NOT cause the specified marker to become selected.
Initial S/W Revision	Prior to A.02.00

Understanding the Marker Counter

See "Counting Off-screen Markers" on page 648.
See "Delta Marker" on page 648.
See "Fixed Markers" on page 649.
See "More Information on "Counter"" on page 649.
Using the internal counter we can count the frequency of a marker, but we cannot count while we are actually sweeping. So, once we are done with a sweep, we move to the selected marker frequency and count that frequency. Then, if the marker is a Delta marker, the count is also taken for its reference marker. The count is actually performed by moving the LO to the frequency (or frequencies in the case of a delta marker) we wish to count. The count is executed on a marker by marker basis and no further count is taken until after the next sweep (even if the marker moves before another sweep has completed).

The Marker Count is taken by tuning the instrument to the frequency of the marker and counting the IF, with the instrument not sweeping. The count is adjusted for display by adding or subtracting it (as appropriate) from the LO frequency, so that you see a count that represents the signal frequency. This is true even if External Mixing is on. Since all this happens between sweeps, you never see the instrument retuning to do the counts.

If you wish to see the entered frequency of a counted marker it will appear in the active function area when that marker is selected (for Fixed markers, you have to press the Marker, Fixed key to select Fixed markers and then press it a second time to view or adjust the x or y marker values).

Counting Off-screen Markers

If the selected marker is off the X -axis the instrument can still be tuned to the marker (unless it is outside the range of the instrument), so the count can still be displayed. This means you can see a count for an off-screen marker even though there may be no valid Y-value for the marker. If the marker frequency is outside the range of the instrument, the display will show three dashes in the count block (---), and not a number is returned to a SCPI count query.

Delta Marker

When a Delta Marker is selected while Marker Count is on:

1. If the reference marker is not a fixed marker, the display shows the difference between the count of the selected marker and the count of the reference marker
2. If the reference marker is a fixed marker and there is a count stored in the marker (because Marker Count was on when the marker became a fixed marker), the display shows the difference between the
count at the marker and the count stored in the reference marker.
Marker Count works in zero span as well as in Swept SA. The instrument tunes to the frequency of the selected marker, which, for active zero span traces, is simply the center frequency of the analyzer.

Fixed Markers

Fixed markers have a count stored in them that is generally kept fixed and not updated. If a fixed marker is selected, or used as a reference, the signal at the marker frequency is not counted; rather the stored count is seen or used as the reference. The count is stored, if Count is on, when the marker becomes fixed or when, while fixed, the marker is moved by re-zeroing the reference (if it is the reference marker) or via a peak search (since both of these, by definition, use valid trace data). The count stored in a Fixed marker is lost if the counter is turned off, if the marker is moved to an inactive trace, or if the marker is moved by adjusting its x-value.

More Information on "Counter"

When the counter is on, the count (or the delta count) for the selected marker is displayed.
The invalid data indicator $\left({ }^{*}\right)$ will turn on until the completion of the first count.
Marker Count frequency readings are corrected using the Freq Offset function (in some previous analyzers, they were not). Note however that Marker Delta readings are not corrected, as any offset would be applied to both.

In zero span on active traces the counter continues to function, counting any signal near the center frequency of the analyzer.

NOTE | No signal farther from the marker frequency than the Res BW will be seen by the |
| :--- |
| counter. |

The above command turns on or off the frequency counter. If the specified marker number in the command is not the selected marker, it becomes the selected marker. If the specified marker number is not on, FCOunt ON sets it to Normal and places it at center of screen on the trace determined by the Marker Trace rules. Once the marker count is on, it is on for any selected marker, not just for the one used in the command. A 1 is returned to the state query only if marker count is on and the specified number is the selected marker. The invalid data indicator $\left(^{*}\right)$ will turn on until the completion of the first count but this does not keep a value from being returned.

Gate Time

Controls the length of time during which the frequency counter measures the signal frequency. Longer gate times allow for greater averaging of signals whose frequency is "noisy", though the measurement takes longer. If the gate time is an integer multiple of the length of a power-line cycle (20 ms for 50 Hz power, 16.67 ms for 60 Hz power), the counter rejects incidental modulation at the power line rate. The shortest gate time that rejects both 50 and 60 Hz modulation is 100 ms , which is the value chosen in Auto, or on Preset or when Auto Couple is pressed.

The start time of the Gate Time of the counter must be controlled by the same trigger parameters as controls the sweep. Thus, if the Trigger is not in Free Run, the counter gate must not start until after the

Marker

trigger is received and delayed.

Key Path	Marker Function, Marker Count																																																
Remote Command	```:CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11		12:FCOunt:GA Tetime <time> :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11		12:FCOunt:GA Tetime? :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:FCOunt:GA Tetime:AUTO OFF	ON	0	1 :CALCulate:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12:FCOunt:GA Tetime:AUTO?```
Example	:CALC:MARK2:FCO:GAT 1e-2 sets the gate time for Marker 2 to $10 \wedge(-2) \mathrm{s}$ $=10 \mathrm{~ms}$.																																																
Notes	When Auto Couple is pressed, Gate Time is set to 100 ms .																																																
Notes	This command causes the specified marker to become selected.																																																
Preset	$100 \mathrm{~ms}$ ON																																																
State Saved	Saved in instrument state.																																																
Min	1 us																																																
Max	500 ms																																																
Initial S/W Revision	Prior to A.02.00																																																

Couple Markers

When this function is true, moving any marker causes an equal X Axis movement of every other marker which is not Fixed or Off. By "equal X Axis movement" we mean that we preserve the difference between each marker's X Axis value (in the fundamental x-axis units of the trace that marker is on) and the X Axis value of the marker being moved (in the same fundamental x -axis units).

Note that Fixed markers do not couple. They stay where they were while all the other markers move. Of course, if a Fixed marker is being moved, all the non-fixed markers do move with it.

This may result in markers going off screen.

Key Path	Marker		
Remote Command	:CALCulate:MARKer :COUPle[:STATe] OFF\|ON	0	1 :CALCulate:MARKer :COUPle[:STATe]?
Example	:CALC:MARK:COUP ON sets Couple Markers on.		
Preset	Off, presets on Mode Preset and All Markers Off		
State Saved	Saved in instrument state		

Initial S/W Revision	Prior to A.02.00

All Markers Off

Turns off all markers. See Marker, "Off " on page 638.

Key Path	Marker
Remote Command	:CALCulate:MARKer:AOFF
Example	CALC:MARK:AOFF turns off all markers.
Couplings	sets the selected marker to 1.
Preset	n/a.
Initial S/W Revision	Prior to A.02.00

Marker

Marker Function

The Marker Function key opens up a menu of softkeys that allow you to control the Marker Functions of the instrument. Marker Functions perform post-processing operations on marker data. Band Functions are Marker Functions that allow you to define a band of frequencies around the marker. The band defines the region of data used for the numerical calculations. These marker functions also allow you to perform mathematical calculations on trace and marker data and report the results of these calculations in place of the normal marker result.

NOTE	Unlike regular markers, marker function markers are not placed directly on the trace. They are placed at a location which is relative to the result of the function calculation.

See "More Information" on page 653.
See "Fixed marker functions" on page 654.
See "Interval Markers" on page 654.

Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion NOISe \mid BPOWer \mid BDENSity $\mid 0 F F$:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion?
Notes	Sending this command selects the subopcoded marker The marker function result is queried in the same fashion as the Marker Result, as outlined in the Marker section, with the CALC:MARK:Y? command.
Dependencies	Fixed markers: It is not possible to change the Band Function for a Fixed marker; so all of the Band Function keys are grayed out for a Fixed marker. If a marker function was already on when the marker became Fixed then the selected Band Function is shown but cannot be changed. Therefore, you cannot directly set the X or Y value of a Fixed marker which has a marker function turned on. To turn off the function, turn off the marker.
Preset	OFF
State Saved	The band function for each marker is saved in Instrument State
Initial S/W Revision	Prior to A.02.00

More Information

The units to be used for displaying Marker Function results in Delta mode vary depending on what is the reference marker and what it is referenced to.

Marker Functions are different from Measurements, which automatically perform complex sequences of setup, data acquisition, and display operations in order to measure specified signal characteristics. Marker Functions are specified for each individual marker and may be turned on individually for each

Marker Function

marker.
The Marker Fctn menu controls which marker functions are turned on and allows you to adjust setup parameters for each function. The Marker Functions are Marker Noise, Band/Interval Power, and Band/Interval Density, only one of which can be on for a given marker.

If the selected marker is off, pressing Marker Fctn sets it to Normal and places it at the center of the display on the trace determined by the Marker Trace rules. However, if the selected marker was Off, Marker Function Off had to be the selected function, and it remains so even after the marker is thus turned on, although you may then change it.

Fixed marker functions

In the case of a fixed marker, it is not possible to turn on or change a band function. This is because a Fixed marker holds the value it had when it became fixed; the trace it was on may keep on changing, so the function value, which depends on trace data, could not be calculated on an ongoing basis.

It is possible to have a Marker Function on for a Fixed marker, in the case where a function was already on when the marker became Fixed. In this case the function value will be retained in the marker. It is also possible to have a Marker Function on for a Fixed marker in the case when the marker was off and was turned on as Fixed because Delta was pressed to create a reference marker - in which case the marker function, marker function width, Y Axis value and marker function result that the Delta marker had when Delta was pressed are copied into the Fixed marker. If Delta is pressed again, causing the fixed reference marker to move to the delta marker's position, the marker function, marker function width, Y Axis value and marker function result that the Delta marker had when Delta was pressed are again copied into the fixed reference marker.

If a Marker Function is on for a Fixed marker, the marker's reported value is derived by the function. Therefore you cannot directly set the X or Y value of a Fixed marker which has a marker function turned on. Indirect setting as detailed above or when a Peak Search is performed is allowed, as the Fixed marker is always placed on a trace and can derive its function value from the trace at the moment when it is placed.

Interval Markers

What is an interval marker? The band power marker computes the total power within a span in a nonzero span. The results computation must include the RBW. The interval power marker measures the average power across some time interval in zero span.

Interval Density is defined to be Interval Power divided by Bn . Bn is the noise bandwidth of the RBW filter, as noted and used within the Band Power computation.

Select Marker

See "Select Marker" on page 654.

Marker Noise

Turns on the Marker Noise function for the selected marker, making it a noise marker. If the selected marker is off, it is turned on in Normal mode and located at the center of the screen.

When Marker Noise is selected while in the Marker Function Off state, the Band Span or Interval Span is initialized to 5% of the screen width.

When Marker Noise is on, the marker's Y Axis Result is the average noise level, normalized to a 1 Hz noise power bandwidth, in the band specified under the Band Adjust key.

See "More Information" on page 655.
See "Off-trace Markers" on page 655.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Key Path } & \text { Marker Function } \\
\hline \text { Example } & \begin{array}{l}\text { CALC:MARK:FUNC NOIS turns on marker } 1 \text { as a noise marker. } \\
\text { CALC:MARK:FUNC? returns the current marker function for the marker } \\
\text { specified. In this case it returns the string: NOIS. } \\
\text { CALC:MARK:Y? returns the y-axis value of the Marker Noise function for } \\
\text { marker 1 (if Marker Noise is ON for marker 1). Note that the delta value when } \\
\text { the Y axis unit is Watt is the square of the delta value when the Y axis unit is } \\
\text { Volt. For example, when the percent ratio with Y axis unit in Volt is 0.2, the } \\
\text { percent ratio with Y axis unit in Watt will be } 0.2^{2}=0.04 . \text { When you read the } \\
\text { value out remotely you have to know whether your Y Axis Unit is log (dB), } \\
\text { linear (V or A), or power (W). }\end{array}
$$

\hline Notes \& See the description under the ""Marker Function" on page 653" key.\end{array}\right\}\)| Dependencies | Fixed markers: It is not possible to change the Band Function for a Fixed
 marker; so all of the Band Function keys are grayed out for a Fixed marker. |
| :--- | :--- |
| Couplings | Average detector and Power Averaging auto selected when Marker Noise on
 If the selected (specified) marker is off, selecting Marker Noise via front panel
 or SCPI will turn the marker on. |
| Initial S/W Revision | Prior to A.02.00 |

More Information

To guarantee accurate data for noise-like signals, a correction for equivalent noise bandwidth is made by the analyzer. The Marker Noise function accuracy is best when the detector is set to Average or Sample, because neither of these detectors will peak-bias the noise. The trade off between sweep time and variance of the result is best when Average Type is set to Power Averaging. Therefore, Auto coupling chooses the Average detector and Power Averaging when Marker Noise is on. Though the Marker Noise function works with all settings of detector and Average Type, using the positive or negative peak detector gives less accurate measurement results.

Off-trace Markers

If a Normal or Delta noise marker is so near to the left or right edge of the trace that some of the band is off the trace, then it uses only that subset of the Band Width that is on-trace. If the marker itself is off-trace, its value becomes undefined.

Neither band/interval power nor band/interval density markers are defined if any part of the band is off-trace (unless they are Fixed with a stored function value in them), except that when the edges of the bandwidth are trivially off-screen, due to mathematical limitations in the analyzer or in the controlling computer, the result will still be considered valid.

Marker Function

Band/Interval Power

Turns on the Band/Interval Power function for the selected marker. If the selected marker is off it is turned on in Normal marker and located at the center of the screen.

When Band/Interval Power is selected while in the Marker Function Off state, the Band Span or Interval Span is initialized to 5% of the screen width.

If the detector mode for the detector on the marker's trace is set to Auto, the average detector is selected. If the Average type is set to Auto, Power Averaging is selected. Other choices for the detector or Average type will usually cause measurement inaccuracy.

Key Path	Marker Function			
Example	CALC:MARK:FUNC BPOW turns on marker 1 as a band power marker. CALC:MARK2:FUNC? returns the current setting of marker function for marker 2. In this case it returns the string: BPOW. CALC:MARK:Y? returns the y-axis value of the Band Power function for marker 1. Note ethat the delta value when the Y axis unit is Watt is the square of the delta value when the Y axis unit is Volt. For example, when the percent ratio with Y axis unit in Volt is 0.2, the percent ratio with Y axis unit in Watt will be $0.2^{2}=0.04$. When you read the value out remotely you have to know whether your Y Axis Unit is log (dB), linear (V or A), or power (W).			
Notes	See the description under the ""Marker Function" on page 653" key, above.			
Dependencies	Fixed markers: It is not possible to change the Band Function for a Fixed marker; so all of the Band Function keys are grayed out for a Fixed marker.			
Couplings	If the detector mode for the detector on the marker's trace is set to Auto, the average detector is selected. If the Average type is set to Auto, Power Averaging is selected.			
If the selected (specified) marker is off, selecting Band Power via front panel				
or SCPI will turn the marker on.		$	$	Prior to A.02.00
:---				
Initial S/W Revision				

Band/Interval Density

Turns on the Band/Interval Density function for the selected marker. If the selected marker is off it is turned on in Normal marker mode and located at the center of the screen.

When Band/Interval Density is selected while in the Marker Function Off state, the Band Span or Interval Span is initialized to 5% of the screen width.

See "More Information" on page 657.
See "What is band/interval density? " on page 657

Key Path	Marker Function

Example	CALC:MARK:FUNC BDEN turns on marker 1 as a band density marker. CALC:MARK:FUNC? returns the current setting of band function for the marker specified. In this case it returns the string: BDEN. CALC:MARK:Y? returns the y-axis value of the Band Density function for marker 1. Note that the delta value when the Y axis unit is Watt is the square of the delta value when the Y axis unit is Volt. For example, when the percent ratio with Y axis unit in Volt is 0.2, the percent ratio with Y axis unit in Watt will be $0.2^{2}=0.04$. When you read the value out remotely you have to know whether your Y Axis Unit is log (dB), linear (V or A), or power (W).
Notes	The zero-width case is treated as one bucket wide although it shows a width of 0. When the trace the marker is on crosses domains, the width crosses domains as well, to remain the same percentage of the trace
Notes	See the description under the ""'Marker Function" on page 653" key, above.
Dependencies	Fixed markers: It is not possible to change the Band Function for a Fixed marker; so all of the Band Function keys are grayed out for a Fixed marker.
Couplings	If the detector mode for the detector on the marker's trace is set to Auto, the average detector is selected. If the Average type is set to Auto, Power Averaging is selected. If the selected (specified) marker is off, selecting Band Density via front panel or SCPI will turn the marker on.
State Saved	n/a.
Prior to A.02.00 S/W Revision	

More Information

It may seem like the band density marker function is exactly like a function of a noise marker with variable width. But they are somewhat different. The Noise markers assume that the signal to be measured is noise-like. Based on this assumption, we can actually make reasonable measurements under very nonideal conditions: any detector may be used, any averaging type, any VBW. In contrast, the Band Power and Band Density markers make no assumption about the statistics of the signal.

If the detector mode for the detector on the marker's trace is set to Auto, the average detector is selected. If the Average type is set to Auto, Power Averaging is selected. Other choices for the detector or Average type will usually cause measurement inaccuracy.

What is band/interval density?

On frequency domain traces, the average density across a band is the total band power divided by the bandwidth over which it is measured.

On time domain traces, interval density is the average power in the interval divided by the noise bandwidth of the RBW of the trace.

Marker Function

Marker Function Off

Turns off band functions for the selected marker.

Key Path	Marker Function
Example	:CALC:MARK:FUNC OFF turns off marker functions for marker 1
Notes	See the description under the "Marker" on page 631 key.
Dependencies	Fixed markers: It is not possible to change the Band Function for a Fixed marker; so all of the Band Function keys are grayed out for a Fixed marker, including Off
Couplings	Turning off the marker function has no effect on the band span nor does it turn the marker off.
Initial S/W Revision	Prior to A.02.00

Band Adjust

Opens a menu that lets you set the width or left or right edges of the band.
It is legal to change the width of the band even if there is no marker function on. Generally this can only happen by sending the SCPI command since access to the menu is restricted if no marker function is on.

Key Path	Marker Function
Dependencies	If the marker is Fixed, Band Adjust is grayed out. If the marker function is Off, Band Adjust is grayed out.
Couplings	If any of the Band Adjust functions are the active function, the wings and arms of the selected marker display in green; otherwise they display in white.
Initial S/W Revision	Prior to A.02.00

Band/Interval Span

Sets the width of the span for the selected marker.
It is legal to change the width of the band even if there is no marker function on. Generally this can only happen by sending the SCPI command since access to the menu is restricted if no marker function is on.

In the table below, sweep_width $=\max (1$, sweep_points-1) and sweep_points is the number of sweep points, set in the Sweep menu.

Key Path	Marker Function, Band Adjust
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:
	BAND:SPAN <freq>
	:CALCulate: MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:
	BAND:SPAN?

Example	:CALC:MARK12:FUNC:BAND:SPAN 20 MHz sets the band span of marker 12 to 20 MHz :CALC:MARK:FUNC:BAND:SPAN? queries the band span of Marker 1		
Notes	Units are those of the trace's domain, Hz for frequency domain, s for time domain.		
Notes	Sending this command selects the subopcoded marker The unit of the parameter must match the current domain of the trace the selected marker is on, or an invalid suffix error will be generated. If no unit is sent the fundamental unit for the trace domain will be used (Hz for freq domain traces, s for time domain traces). Note that all the values provided in this table are only valid for frequency domain traces. If the current domain of the trace is time domain, values and unit will be different. In frequency domain, the Preset value is dependant on the frequency range of the instrument. The default value 1.3245 GHz is appropriate only if the instrument is a 26.5 GHz instrument (Option 526). In a 26.5 GHz Instrument, the default span is 26.49 GHz, so 5\% of the span corresponds to 1.3245 GHz.		
Couplings	Changing the Band/Interval Span necessarily changes the Band/Interval Left and Band/Interval Right values Band/Interval Span is set to 0 when the marker is turned off		
Initial S/W Revision	Band/Interval Span is set to 5\% of span when any marker function is turned on if and only if it is zero at that time		
Preset	If 0, set to 5\% of span, when a marker function is turned on		
Man	Saved in Instrument State		
Backwards Compatibility SCPI	Infinity. Unlike legacy analyzers, where the markers were forced to be on screen, X-Series marker values are not limited and do not clip		
CALCulate:MARKer[1]\|2	3	4:X:SPAN	
Prior to A.02.00			

Band/Interval Left

Sets the left edge frequency or time for the band of the selected marker. The right edge is unaffected.
It is legal to change the width of the band even if there is no marker function on. Generally this can only happen by sending the SCPI command since access to the menu is restricted if no marker function is on.

In the table below, sweep_width $=\max (1$, sweep_points-1) and sweep_points is the number of sweep points, set in the Sweep menu.

Key Path	Marker Function, Band Adjust

Marker Function

Remote Command	:CALCulate : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion: BAND:LEFT <freq> :CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion: BAND:LEFT?
Example	:CALC:MARK12:FUNC:BAND:LEFT 20 GHz sets the left edge of the band span of marker 12 to 20 GHz :CALC:MARK:FUNC:BAND:LEFT? queries the band span of Marker 1
Notes	Units are those of the trace's domain, Hz for frequency domain, s for time domain. When the left edge is moved, the right edge stays anchored; thus, the marker's frequency will change.
Notes	Sending this command selects the subopcoded marker The unit of the parameter must match the current domain of the trace the
selected marker is on, or an invalid suffix error will be generated.If no unit is	
sent the fundamental unit for the trace domain will be used (Hz for freq	
domain traces, s for time domain traces).	
Note that all the values provided in this table are only valid for frequency	
domain traces. If the current domain of the trace is time domain, values and	
unit will be different. In frequency domain, the Preset value is dependant on	
the frequency range of the instrument. The default value 1.3245 GHz is	
appropriate only if the instrument is a 26.5 GHz instrument (Option 526). In a	
26.5 GHz Instrument, the default span is 26.49 GHz, so 5\% of the span	
corresponds to 1.3245 GHz.	

Band/Interval Right

Sets the right edge frequency or time for the band of the selected marker. The left edge is unaffected

In the table below, sweep_width = max(1,sweep_points-1) and sweep_points is the number of sweep points, set in the Sweep menu.

It is legal to change the width of the band even if there is no marker function on. Generally this can only happen by sending the SCPI command since access to the menu is restricted if no marker function is on.

Key Path	Marker Function, Band Adjust
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion: BAND:RIGHt <freq> :CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion: BAND:RIGHt?
Example	:CALC:MARK12:FUNC:BAND:RIGHt 20 GHz sets the right edge of the band span of marker 12 to 20 GHz :CALC:MARK:FUNC:BAND:RIGHt? queries the band span of Marker 1
Notes	Units are those of the trace's domain, Hz for frequency domain, s for time domain. When the right edge is moved, the left edge stays anchored; thus, the marker's frequency will change.
Notes	Sending this command selects the subopcoded marker The unit of the parameter must match the current domain of the trace the selected marker is on, or an invalid suffix error will be generated. If no unit is sent the fundamental unit for the trace domain will be used (Hz for freq domain traces, s for time domain traces). Note that all the values provided in this table are only valid for frequency domain traces. If the current domain of the trace is time domain, values and unit will be different. In frequency domain, the Preset value is dependant on the frequency range of the instrument. The default value 1.3245 GHz is appropriate only if the instrument is a 26.5 GHz instrument (Option 526). In a 26.5 GHz Instrument, the default span is 26.49 GHz, so 5\% of the span corresponds to 1.3245 GHz.
Couplings	Changing the Band/Interval Right necessarily changes the Band/Interval Span and Band/Interval Center values
Preset	Band/Interval Span is set to 5\% of span when any marker function is turned on if and only if it is zero at that time
Min	If 0, Band/Interval Span is set to 5\% of span, when a marker function is turned on, which affects Band/Interval Right
screen, X-Series marker values are not limited and do not clip	

Marker Function

| Backwards Compatibility SCPI | :CALCulate:MARKer[1]\|2|3|4:X:STOP
 (This legacy command was used to control the Delta marker in Delta
 Pair/Band Pair mode, and is aliased to the new command. For compatibility.
 Note that if you were using the old command for Band Power measurements it
 will work just fine.) |
| :--- | :--- |
| Initial S/W Revision | Prior to A.02.00 |

Measure at Marker

This key and all the keys in this menu only appear with the N6141A or W6141A application or Option EMC installed and licensed.

Key Path	Marker Function
Dependencies	The Measure at Marker menu is not available in Spectrogram.
Initial S/W Revision	A.02.00

Measure at Marker

When this key is pressed, the analyzer executes one Measure at Marker function and then returns. Measure at Marker goes to the frequency of the selected marker and takes a reading with each of the three detectors selected in the Detectors menu, using the dwell times specified there, then displays the readings in a window on the display, using the current Y-Axis Unit.

When the Measure at Marker is complete, the analyzer restores all settings to their pre-Measure-at-Marker values and normal sweeps resume.

Key Path	Marker Function, Measure at Marker
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion: MAMarker?
Example	:CALC:MARK2:FUNC:MAM? Performs a Measure at Marker function at Marker 2's current frequency and, when completed, returns the results of the measure at marker window in a query

Notes	This query command returns comma separated values for the 3 specified detectors and the frequency value of the marker. If a Detector is off or if no measurement has yet completed, -999.0 will be returned. This can happen, for example, if you are operating with too large a value of (span/sweep points) and the Measure at Marker function does not execute but instead puts up the advisory message, "Span per point too large, narrow span or increase RBW or number of points" (see below). The size of the return data array is fixed at 4. The elements are: 1. Detector 1 value (if off, -999.0 for backwards compatibility) 2. Detector 2 value (if off, -999.0 for backwards compatibility) 3. Detector 3 value (if off, -999.0 for backwards compatibility) 4. Frequency of Marker
If a sweep is in process when this function executes it aborts, and restarts after	
the function is complete.	
This command is not backwards compatible with the E7400 and PSA option	
239 so the Backwards Compatibility command is included.	

Measure at Marker presents its information in a separate window which normally appears in the upper right of the display but can be repositioned to the upper left.

Marker Function

The Measure at Marker box shows the detector name for the selected detectors and "Off" for those not selected. The names used are:

Name	Detector
Normal	Normal
Peak	Peak
Sample	Sample
Neg Peak	Negative Peak
RMS	Average detector with Power Average (RMS)
Log Avg	Average detector with Log-Pwr Average
VoltageAvg	Average detector with Voltage Average
Quasi Peak	Quasi Peak
EMI Avg	EMI Average
RMS Avg	RMS Average

The marker frequency is shown in the "Freq" field. The measured value is shown for all detectors except those that are "Off." For these, --- is displayed. The current Y-Axis unit is used, and the precision that is used for the detector value displays is exactly the same as for the Marker The precision used for the Frequency display is six significant digits.

Marker Function

The sequence of steps in the measurement is as follows:

- Any sweep in progress is aborted.
- If in Zero Span, the Center Frequency is used as the frequency at which to take the reading, since in Zero Span, all markers are by definition at the Center Frequency
- If not in Zero Span:
- If the selected marker is Off, it is first turned on in the center of the screen and a peak search performed.
- If the selected marker is on, but offscreen, it is first moved to the center of the screen and a peak search performed. .
- A frequency "zoom" function is performed to determine the frequency of the selected marker to the required precision. If you are operating with too large a value of (span/sweep points) then the Measure at Marker window will not display, but instead an advisory message, "Span per point too large, narrow span or increase RBW or number of points". This means you have chosen a combination of RBW, span and sweep points that makes each trace point much wider than the RBW, so that the trace point in which the signal appears is an inadequately precise measure of its frequency-for example, with a 30 MHz to 1000 MHz span, 601 trace points and 120 kHz RBW, each trace point is 13 times as wide as the RBW. In this case, a SCPI query of the results will yield -999 dBm for each detector.
- If the zoom is successful, the analyzer goes to zero span at this frequency
- Each detector is then read in successive single-point zero span sweeps, using a sweep time equal to the specified dwell time. The value displayed by Measure at Marker represents the maximum value output by the detector during the dwell timeAutocoupled bandwidth and average type settings are used for each detector unless the BW \& Avg Type key is set to As Set, in which case the current bandwidth and average type settings are used.
- Each result is then displayed in the measure at marker window as it becomes available.
- The analyzer returns to its pre-Measure at Marker span and settings after executing a Measure at Marker function, including Bandwidth, Avg Type, and EMC Std - regardless of the setting of BW \& Avg Type
- Finally, if the sweep had to be aborted, the aborted sweep is restarted.

While the function is executing, all the fields except Freq show --- for their values until the measurement is complete for that detector. As each detector is read, an informational message is displayed in the status line, for example,

Measuring with detector 1 (Peak) with RBW $=120 \mathrm{kHz}$
After the last detector, the status line is cleared.

Meas at Marker Window

This key opens a menu which controls the Measure at Marker window.

Key Path	Marker Function, Measure at Marker

Marker Function

Readback	In square brackets, the state of the window then the window position, separated by commas, as [On, Left]
Initial S/W Revision	A.02.00

Window

This key turns the Measure at Marker window on and off. It turns on automatically when Measure at Marker is initiated and turns off on a Preset. If the Window is turned on without a Measure at Marker result, --- is displayed for each result for which the detector is not "Off".

Key Path	Marker Function, Measure at Marker, Meas at Marker Window
Remote Command	:DISPlay:WINDow:MAMarker[:STATe] ON \mid OFF $\|1\| 0$ $:$ DISPlay:WINDow:MAMarker[:STATe]?
Example	:DISP:WIND:MAM ON
Couplings	The window turns on automatically when Measure at Marker is initiated and turns off on a Preset.
Preset	Off
State Saved	Saved in instrument state
Readback Text	On \mid Off
Initial S/W Revision	A.02.00

Position

This key controls the placement of the Measure at Marker window on the display.

Key Path	Marker Function, Measure at Marker, Meas at Marker Window
Remote Command	:DISPlay:WINDow:MAMarker:POSition LEFT\|RIGHt :DISPlay:WINDow:MAMarker:POSition?
Example	:DISP:WIND:MAM:POS RIGH
Preset	Right
State Saved	Saved in instrument state
Readback Text	Left\|Right
Initial S/W Revision	A.02.00

Detectors

This key opens up a menu that allows you to configure the detectors to be used for the Measure at Marker reading. Any of the analyzer's detectors can be used for each of the three detectors, or any of the three can be turned off. The dwell time for each detector is also settable.

When performing a Meas at Marker, the dwell time settings that you select will depend on the characteristics of the emission you are measuring. The default dwell time (200 ms) should work well for
typical EUT emissions, but sometimes you will encounter emissions for which the defaults are not optimal. This is especially the case for emissions that vary slowly over time or have a slow repetition rate. By lengthening the dwell times you can increase the likelihood of accurately measuring these low repetition rate signals.

When Measure at marker is activated, the receiver makes a zero span measurement for each of the (up to) three detectors selected, using the Dwell Time set for each detector. If the signal's repetition period is greater than 200 ms (the default setting), the dwell time should be increased to capture at least two and preferably more repetitions of the signal. Additionally, if you do not need or do not wish to use a detector to make a measurement, that specific detector may be turned off.

If the Measure at Marker window is being displayed, and one of the detectors is changed, any value being displayed for that detector changes to "---" until the next successful reading from that detector.

Key Path	Marker Function, Measure at Marker,							
Remote Command	:CALCulate:MAMarker : DETector[1] $\|2\| 3$ OFF\|NORMal	AVERage	POSitive	SAMPle	NEGative	QPEak	EAVer age\|RAVerage $:$ CALCulate:MAMarker : DETector[1]\|2	3?
Example	:CALC:MAM:DET2 QPE Sets the detector for measure at marker detector 2 to Quasi peak :CALC:MAM:DET OFF Sets the detector for measure at marker detector 1 to Off							
State Saved	Saved in instrument state							
Initial S/W Revision	A.02.00							

Key Path	Marker Function, Measure at Marker,	
Remote Command	:CALCulate:MAMarker :DETector[1] $\|2\| 3:$ DWELl <dwell time> :CALCulate:MAMarker :DETector[1]\|2	3: DWELl?
Example	:CALC:MAM:DET2:DWEL 500 ms Sets the detector for measure at marker detector 2 to dwell for 500 ms	
State Saved	Saved in instrument state	
Backwards Compatibility SCPI	[:SENSe]:EMI:MEASure:DETector:DWELl <dwell time> Sets all of the detectors dwell time to the specified amount	
Initial S/W Revision	A. 02.00	

Detector 1

This menu lets you select the detector to be used for Detector 1 , or turn Detector 1 off. This is a 1-of-N menu that shows the normal list of detectors, but with the "Auto" key replaced by "Off".

Key Path	Marker Function, Measure at Marker, Detectors

Marker Function

Remote Command	See "Detectors" on page 666.
Example	:CALC:MAM:DET QPE Sets the detector for measure at marker detector 1 to Quasi peak :CALC:MAM:DET OFF Sets the detector for measure at marker detector 1 to Off
Preset	Peak
State Saved	Saved in instrument state
Readback Text	Detector name
Initial S/W Revision	A.02.00

Detector 2

This menu lets you select the detector to be used for Detector 2, or turn Detector 2 off. This is a 1 -of-N menu that shows the normal list of detectors, but with the "Auto" key replaced by "Off".

Key Path	Marker Function, Measure at Marker, Detectors
Remote Command	See "Detectors" on page 666.
Example	:CALC:MAM:DET2 QPE Sets the detector for measure at marker detector 2 to Quasi peak :CALC:MAM:DET2 OFF Sets the detector for measure at marker detector 2 to Off
Preset	Quasi Peak
State Saved	Saved in instrument state
Readback Text	Detector name
Backwards Compatibility SCPI	[:SENSe]:EMI:MEASure:DETector:QPEak[:STATe] OFF\|ON $\|0\| 1 \mid$
If sent with On as a parameter, sets detector 2 to Quasi Peak	
If sent with Off as a parameter, sets detector 2 to Off	

Detector 3

This menu lets you select the detector to be used for Detector 3, or turn Detector 3 off. This is a 1 -of-N menu that shows the normal list of detectors, but with the "Auto" key replaced by "Off".

Key Path	Marker Function, Measure at Marker, Detectors
Remote Command	See "Detectors" on page 666.

Example	:CALC:MAM:DET3 QPE Sets the detector for measure at marker detector 1 to Quasi peak :CALC:MAM:DET3 OFF Sets the detector for measure at marker detector 1 to Off			
Preset	EMI Average			
State Saved	Saved in instrument state			
Readback Text	Detector name			
Backwards Compatibility SCPI	[:SENSe]:EMI:MEASure:DETector:AVERage[:STATe] OFF\|ON	0	1	 If sent with On as a parameter, sets detector 3 to EMI Average If sent with Off as a parameter, sets detector 3 to Off
Initial S/W Revision	A.02.00			

Detector 1 Dwell Time

This is the time specified by the user to dwell while taking the measurement for detector 1 . The minimum allowed dwell time is based on the current detector If "Off" is selected for detector 1, this key is grayed out and shows 200 ms .

Key Path	Marker Function, Measure at Marker, Detectors
Remote Command	See "Detectors" on page 666.
Example	:CALC:MAM:DET:DWEL 400 ms Sets the dwell time for detector 1 to 400 ms Preset State Saved Min Max Saved in instrument state Initial S/W Revision Default Unit Alms

Detector 2 Dwell Time

This is the time specified by the user to dwell while taking the measurement for detector 2. The minimum allowed dwell time is based on the current detector. If "Off" is selected for detector 2, this key is grayed out and shows 200 ms.

Key Path	Marker Function, Measure at Marker, Detectors
Remote Command	See "Detectors" on page 666.

Marker Function

Example	:CALC:MAM:DET2:DWEL 400 ms Sets the dwell time for detector 2 to 400 ms
Preset	200 ms
State Saved	Saved in instrument state
Min	1 ms
Max	60 s
Initial S/W Revision	A.02.00
Default Unit	s

Detector 3 Dwell Time

This is the time specified by the user to dwell while taking the measurement for detector 3. The minimum allowed dwell time is based on the current detector. If "Off" is selected for detector 3, this key is grayed out and shows 200 ms .

Key Path	Marker Function, Measure at Marker, Detectors
Remote Command	See "Detectors" on page 666.
Example	:CALC:MAM:DET3:DWEL 400 ms Sets the dwell time for detector 1 to 400 ms
Preset	200 ms
State Saved	Saved in instrument state
Min	1 ms
Max	60 s
Initial S/W Revision	A.02.00
Default Unit	s

BW \& Avg Type

This key controls the type of bandwidth and average type coupling used in Measure at Marker.
If set to "Autocoupled", then the RBW and Average Type are selected by the instrument during the Measure at Marker function, according to the normal Autocouple rules, regardless of whether RBW and Average Type are currently in Auto. If set to "As Set", then the current value for RBW and Average Type are used (which of course, could also be "Auto").

Here are the details of the two modes:
If BW \& Avg Type is set to Autocoupled, Measure at Marker behaves as follows:

1. The EMC Std changes to CISPR if any of the CISPR detectors (EMI Avg, RMS Avg, QPD) becomes selected; for all other detectors, the value of EMC Std that existed before Measure at Marker is used.
2. RBW autocouples throughout Measure at Marker, even if RBW is set to Manual. The autocouple
rules are based on whatever the instantaneous setting of EMC Std, Span, and Center Freq are.
If BW \& Avg Type is set to As Set, Measure at Marker behaves as follows:
3. The EMC Std never changes; so if it is set to None it stays at None throughout, even if one of the CISPR detectors is selected.
4. If RBW is set to Auto, then RBW autocouples throughout Measure at Marker. The autocouple rules are based on whatever the setting of EMC Std, Span, and Center Freq are.
5. If RBW is set to Manual, the RBW never changes at all throughout Measure at Marker, it stays at the value to which it was set before Measure at Marker began.

The analyzer returns to its pre-Measure at Marker span and settings after executing a Measure at Marker function, including Bandwidth, Avg Type, and EMC Std.

It is important to note that, when RBW is coupled to Frequency, as it is when EMC Std is anything but "None", for all EMI measurements, the frequency it is coupled to for Measure at Marker is the MARKER frequency, not the Center Frequency.

Key Path	Marker Function, Measure at Marker
Remote Command	:CALCulate:MAMarker:COUPling ON $\|0 F F\| 1 \mid 0$:CALCulate:MAMarker:COUPling?
Example	:CALC:MAM:COUP ON
Preset	Autocoupled
State Saved	Saved in instrument state
Readback Text	Autocoupled\|As Set
Initial S/W Revision	A.02.00

Center Presel On/Off

This key controls the automatic centering of the preselector for the Measure at Marker function.
When Center Presel is On, the first step in performing the Measure at Marker function is to perform a Presel Center. This is not performed if the microwave preselector is off, or the selected marker's frequency is below Band 1. If the function is not performed, no message is generated.

Key Path	Marker Function, Measure at Marker
Remote Command	:CALCulate:MAMarker :PCENter ON $\|0 F F\| 1 \mid 0$:CALCulate:MAMarker:PCENter?
Example	:CALC:MAM:PCEN ON
Dependencies	Blank in models that do not include a preselector, such as option 503. If the SCPI is sent in these instruments, it is accepted without error, and the query always returns 0.
Preset	On

Marker Function

| Backwards Compatibility SCPI | [:SENSe]:EMI:MEASure:PCENter[:STATe] OFF\|ON|0|1
 [:SENSe]:EMI:MEASure:PCENter[:STATe]? |
| :--- | :--- |
| Initial S/W Revision | A.02.00 |

Marker To

The Marker -> key accesses menu keys that can copy the current marker value into other instrument parameters (for example, Center Freq). The currently selected marker is made the active function on entry to this menu (if the currently selected marker is not on when you press this front panel key, it will be turned on at the center of the screen as a normal type marker and then made the active function).

The Marker -> (or Marker To) feature is used to quickly assign a marker's x- or y-axis value to another parameter. For example, if a marker's x-axis value is 500 MHz and y-axis value is -20 dBm , pressing Mkr -> CF would assign 500 MHz to Center Freq and pressing Mkr - >Ref LvI would assign -20 dBm to Ref Level.

Key Path	Front-panel key
Notes	All Marker To functions executed from the front panel use the selected marker's values, while all Marker To remote commands specify in the command which marker's value to use. Consistent with other remote marker commands, sending a Marker To remote command will never change which marker is selected.
Initial S/W Revision	Prior to A.02.00

Mkr->CF

Sets the center frequency of the analyzer to the frequency of the selected marker. The marker stays at this frequency, so it moves to the center of the display. In delta marker mode, this function sets the center frequency to the x -axis value of the delta marker. When the frequency scale is in log mode, the center frequency is not at the center of the display.
If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker ->
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] : CEN Ter
Example	CALC:MARK2:CENT sets the CF of the analyzer to the value of marker 2.
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will turn it on at the center of the screen as a normal type marker.
Dependencies	This function is not available (key is grayed out) when x-axis is the time domain
Couplings	All the usual couplings associated with setting Center Frequency apply (see the Frequency Section).
Initial S/W Revision	Prior to A.02.00

Marker To

Mkr->CF Step

Sets the center frequency (CF) step size of the analyzer to the marker frequency, or in a delta-marker mode, to the frequency difference between the delta and reference markers.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker ->
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] $:$ STE P
Example	CALC:MARK1:STEP sets the CF step to the value (or delta value) of marker 1.
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will turn it on at the center of the screen as a normal type marker.
Dependencies	This function is not available (key is grayed out) when x-axis is the time domain
Couplings	All the usual couplings associated with setting CF Step apply (see "FREQ Channel" on page 1283).
Initial S/W Revision	Prior to A.02.00

Mkr->Start

Changes the start frequency to the frequency of the selected marker. The marker stays at this frequency, so it moves to the left edge of the display. In delta marker mode, this function sets the start frequency to the x -axis value of the delta marker.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker ->
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] $:$ STA Rt
Example	CALC:MARK1:STAR sets the start frequency to the value (or delta value) of marker 1.
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will turn it on at the center of the screen as a normal type marker.
Dependencies	This function is not available (key is grayed out) when x-axis is the time domain
Couplings	All the usual couplings associated with setting Start Frequency apply (see "FREQ Channel" on page 1283).

Initial S/W Revision	Prior to A.02.00

Mkr->Stop

Changes the stop frequency to the frequency of the selected marker. The marker stays at this frequency, so it moves to the right edge of the display. In delta marker mode, this function sets the stop frequency to the x -axis value of the delta marker.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker ->
Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[$:SET] :ST0 P
Example	CALC:MARK3:STOP sets the stop frequency to the value (or delta value) of marker 3.
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will turn it on at the center of the screen as a normal type marker.
Dependencies	This function is not available (key is grayed out) when x-axis is the time domain
Couplings	All the usual couplings associated with setting Stop Frequency apply (see "FREQ Channel" on page 1283).
Initial S/W Revision	Prior to A.02.00

Mkr->Ref Lvl

Sets the reference level to the amplitude value of the selected marker, moving the marked point to the reference level (top line of the graticule). The marker's mode (Normal, Delta, Fixed) doesn't matter in this case. For example, given a delta marker, if the delta marker is the selected marker, its amplitude is applied to the reference level. If the reference marker is selected, its amplitude is applied to the reference level.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker, and its amplitude applied to the reference level.

Key Path	Marker ->
Remote Command	$:$ CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] :RLE Vel
Example	CALC:MARK2:RLEV sets the reference level of the analyzer to the amplitude of marker 2.

Marker To

Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will turn it on at the center of the screen as a normal type marker.
Couplings	All the usual couplings associated with setting Reference Level apply.
Initial S/W Revision	Prior to A.02.00

Mkr -> Zoom Center

Only appears in the Trace Zoom View of the Swept SA measurement.
Moves the zoom region so that it is centered at the selected marker in the top window. The Zoom Span is not changed, except as necessary to keep the entire Zoom Region between the top window Start and Stop frequencies. The center frequency of the lower window changes to reflect the new zoom center frequency.

If the marker frequency is entirely outside the current analyzer (top window) Start and Stop frequencies, a Mkr->CF function is first performed. (Note that if this Mkr->CF causes the Zoom Region to be outside the new Start and Stop frequencies, the Zoom Region is re-initialized to the new analyzer Center Freq with a span of 10% of the analyzer Span). After the Mkr->CF is performed, the Mkr->Zoom Centeris performed.

Key Path	Marker ->
Remote Command	$:$ CALCulate $:$ MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] :TZ0 om:CENTer
Example	CALC:MARK2:TZO:CENT sets the Zoom CF to the value of marker 2.
Dependencies	Only appears in the Trace Zoom View of the Swept SA measurement. If the SCPI command is sent in other Views, gives an error.
Initial S/W Revision	A.07.01
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will first turn it on at the center of the screen as a normal type marker. Then the Mkr->Zoom Center fundtion is performed.

Mkr -> Zone Center

Moves the zone so that it is centered at the selected marker in the top window. The zone span is not changed. The center frequency of the lower window changes to reflect the new zone center frequency. The lower window will not be updated until it is made active.

Key Path	Marker ->
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET $]:$ ZSP an:CENTer

Example	:CALC:MARK2:ZSP:CENT sets the Zone CF to the value of marker 2.
Notes	Sending this command selects the subopcoded marker If specified marker is off, this command will first turn it on at the center of the screen as a normal type marker. Then the Mkr->Zone Center fundtion is performed.
Dependencies	Only appears in the Zone Span View of the Swept SA measurement. If the SCPI command is sent in other Views, gives an error.
In addition, this function is not available when the bottom window is in Zero	
Span.	

MkrD->Span

Sets the start and stop frequencies to the values of the delta markers. That is, it moves the lower of the two marker frequencies to the start frequency and the higher of the two marker frequencies to the stop frequency. The marker mode is unchanged and the two markers (delta and reference) end up on opposite edges of the display.

Key Path	Marker ->										
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] : DEL Ta:SPAN										
Example	CALC:MARK2:DELT:SPAN sets the start and stop frequencies to the values of marker 2 and its reference marker.										
Notes	Sending this command selects the subopcoded marker										
Dependencies	This function is only available when the selected marker is a delta marker. Otherwise the key is grayed out. In addition, this function is not available when x-axis is the time domain										
Couplings	All the usual couplings associated with setting Span apply (see ""'Span X-Scale" on page 1393").										
Backwards Compatibility SCPI	:CALCulate:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12[:SET]:SPAN
Initial S/W Revision	Prior to A.02.00										

MkrD->CF

Sets the center frequency to the frequency difference between the selected marker and its reference marker. The marker is then changed to a Normal marker and placed at the center of span.

Key Path	Marker ->
Remote Command	:CALCulate:MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12[:$ SET] : DEL Ta:CENTer

Marker To

Example	CALC:MARK2:CENT sets the CF of the analyzer to the value of marker 2.
Notes	Sending this command selects the subopcoded marker
Dependencies	This function is only available when the selected marker is a delta marker. Otherwise the key is grayed out. In addition, this function is not available when x-axis is the time domain
Initial S/W Revision	Prior to A.02.00

Meas

The information in this section is common to all measurements. For key and remote command information for a specific measurement, refer to the section that describes the measurement of interest.

Measurements available under the Meas key are specific to the current Mode.
When viewing Help for measurements, note the following:

NOTE	Operation for some keys differs between measurements. The information displayed in Help pertains to the current measurement. To see how a key operates in a different measurement, exit Help (press the Cancel Esc key), select the measurement, then reenter Help (press the Help key) and press that key.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Remote Measurement Functions

This section contains the following topics:
"Measurement Group of Commands" on page 680
"Current Measurement Query (Remote Command Only)" on page 683
"Limit Test Current Results (Remote Command Only)" on page 684
"Data Query (Remote Command Only)" on page 684
"Calculate/Compress Trace Data Query (Remote Command Only)" on page 684
"Calculate Peaks of Trace Data (Remote Command Only)" on page 689
"Format Data: Numeric Data (Remote Command Only)" on page 691
"Format Data: Byte Order (Remote Command Only)" on page 693

Initial S/W Revision	Prior to A.02.00

Measurement Group of Commands

Measure Commands:

:MEASure:<measurement>[n]?

This is a fast single-command way to make a measurement using the factory default instrument settings. These are the settings and units that conform to the Mode Setup settings (e.g. radio standard) that you have currently selected.

- Stops the current measurement (if any) and sets up the instrument for the specified measurement using the factory defaults
- Initiates the data acquisition for the measurement
- Blocks other SCPI communication, waiting until the measurement is complete before returning results.
- If the function does averaging, it is turned on and the number of averages is set to 10 .
- After the data is valid it returns the scalar results, or the trace data, for the specified measurement. The type of data returned may be defined by an [n] value that is sent with the command.

The scalar measurement results will be returned if the optional [n] value is not included, or is set to 1 . If the [n] value is set to a value other than 1 , the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available.

ASCII is the default format for the data output. (Older versions of Spectrum Analysis and Phase Noise mode measurements only use ASCII.) The binary data formats should be used for handling large blocks of data since they are smaller and faster than the ASCII format. Refer to the FORMat:DATA command for more information.

If you need to change some of the measurement parameters from the factory default settings you can set up the measurement with the CONFigure command. Use the commands in the SENSe:<measurement> and CALCulate:<measurement> subsystems to change the settings. Then you can use the READ? command to initiate the measurement and query the results.

If you need to repeatedly make a given measurement with settings other than the factory defaults, you can use the commands in the SENSe:<measurement> and CALCulate:<measurement> subsystems to set up the measurement. Then use the READ? command to initiate the measurement and query results.
Measurement settings persist if you initiate a different measurement and then return to a previous one. Use READ:<measurement>? if you want to use those persistent settings. If you want to go back to the default settings, use MEASure:<measurement>?.

Configure Commands:

Meas

Measure Commands:

:CONFigure:<measurement>

This command stops the current measurement (if any) and sets up the instrument for the specified measurement using the factory default instrument settings. It does not initiate the taking of measurement data unless INIT:CONTinuous is ON. If you change any measurement settings after using the CONFigure command, the READ command can be used to initiate a measurement without changing the settings back to their defaults.

In the Swept SA measurement in Spectrum Analyzer mode the CONFigure command also turns the averaging function on and sets the number of averages to 10 for all measurements.
:CONFigure:NDEFault<measurement> stops the current measurement and changes to the specified measurement. It does not change the settings to the defaults. It does not initiate the taking of measurement data unless INIT:CONTinuous is ON.

The CONFigure? query returns the current measurement name.
The CONFigure:CATalog? query returns a quoted string of all measurement names in the current mode. For example, "SAN, CHP, OBW, ACP, PST, TXP, SPUR, SEM, LIST".

Fetch Commands:

:FETCh:<measurement>[n]?

This command puts selected data from the most recent measurement into the output buffer. Use FETCh if you have already made a good measurement and you want to return several types of data (different [n] values, for example, both scalars and trace data) from a single measurement. FETCh saves you the time of re-making the measurement. You can only FETCh results from the measurement that is currently active, it will not change to a different measurement. An error message is reported if a measurement other than the current one is specified.

If you need to get new measurement data, use the READ command, which is equivalent to an INITiate followed by a FETCh.

The scalar measurement results will be returned if the optional [n] value is not included, or is set to 1 . If the [n] value is set to a value other than 1 , the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used for handling large blocks of data since they are smaller and transfer faster then the ASCII format. (FORMat:DATA)

FETCh may be used to return results other than those specified with the original READ or MEASure command that you sent.

INITiate Commands:

Measure Commands:

:INITiate:<measurement>

This command is not available for measurements in all the instrument modes:

- Initiates a trigger cycle for the specified measurement, but does not output any data. You must then use the FETCh<meas> command to return data. If a measurement other than the current one is specified, the instrument will switch to that measurement and then initiate it.
- For example, suppose you have previously initiated the ACP measurement, but now you are running the channel power measurement. If you send INIT:ACP? it will change from channel power to ACP and will initiate an ACP measurement.
- Does not change any of the measurement settings. For example, if you have previously started the ACP measurement and you send INIT:ACP? it will initiate a new ACP measurement using the same instrument settings as the last time ACP was run.
- If your selected measurement is currently active (in the idle state) it triggers the measurement, assuming the trigger conditions are met. Then it completes one trigger cycle. Depending upon the measurement and the number of averages, there may be multiple data acquisitions, with multiple trigger events, for one full trigger cycle. It also holds off additional commands on GPIB until the acquisition is complete.

READ Commands:

:READ:<measurement>[n]?

- Does not preset the measurement to the factory default settings. For example, if you have previously initiated the ACP measurement and you send READ:ACP? it will initiate a new measurement using the same instrument settings.
- Initiates the measurement and puts valid data into the output buffer. If a measurement other than the current one is specified, the instrument will switch to that measurement before it initiates the measurement and returns results.

For example, suppose you have previously initiated the ACP measurement, but now you are running the channel power measurement. Then you send READ:ACP? It will change from channel power back to ACP and, using the previous ACP settings, will initiate the measurement and return results.

- Blocks other SCPI communication, waiting until the measurement is complete before returning the results

If the optional [n] value is not included, or is set to 1 , the scalar measurement results will be returned. If the [n] value is set to a value other than 1 , the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used when handling large blocks of data since they are smaller and faster then the ASCII format.
(FORMat:DATA)

Initial S/W Revision	Prior to A.02.00

Current Measurement Query (Remote Command Only)

This command returns the name of the measurement that is currently running.

Remote Command	:CONFigure?

Meas

Example	CONF?
Initial S/W Revision	Prior to A.02.00

Limit Test Current Results (Remote Command Only)

Queries the status of the current measurement limit testing. It returns a 0 if the measured results pass when compared with the current limits. It returns a 1 if the measured results fail any limit tests.

Remote Command	:CALCulate:CLIMits:FAIL?
Example	CALC:CLIM:FAIL? queries the current measurement to see if it fails the defined limits. Returns a 0 or $1: 0$ it passes, 1 it fails.
Initial S/W Revision	Prior to A.02.00

Data Query (Remote Command Only)

Returns the designated measurement data for the currently selected measurement and subopcode.
n = any valid subopcode for the current measurement. See the measurement command results table for your current measurement, for information about what data is returned for the subopcodes.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands and can return real or ASCII data. (See the format command descriptions under Input/Output in the Analyzer Setup section.)

Remote Command	$:$ CALCulate: DATA[n]?
Notes	The return trace depends on the measurement. In CALCulate: $<$ meas $>:$ DATA[n], n is any valid subopcode for the current measurement. It returns the same data as the FETCh: $<$ measurement $>?$ query where $<$ measurement $>$ is the current measurement.
Initial S/W Revision	Prior to A.02.00

Calculate/Compress Trace Data Query (Remote Command Only)

Returns compressed data for the currently selected measurement and sub-opcode [n].
$\mathrm{n}=$ any valid sub-opcode for that measurement. See the MEASure:<measurement>? command description of your specific measurement for information on the data that can be returned.

The data is returned in the current Y Axis Unit of the analyzer. The command is used with a sub-opcode $<\mathrm{n}>$ (default=1) to specify the trace. With trace queries, it is best if the analyzer is not sweeping during the query. Therefore, it is generally advisable to be in Single Sweep, or Update=Off.

This command is used to compress or decimate a long trace to extract and return only the desired data. A typical example would be to acquire N frames of GSM data and return the mean power of the first burst
in each frame. The command can also be used to identify the best curve fit for the data.

| Remote Command | ```:CALCulate:DATA<n>:COMPress? BLOCk\|CFIT|MAXimum|MINimum|MEAN|DMEan|RMS|RMSCubed|SAMP le|SDEViation|PPHase [,<soffset>[,<length>[,<roffset>[,<rlimit>]]]]``` |
| :---: | :---: |
| Example | To query the mean power of a set of GSM bursts:
 Supply a signal that is a set of GSM bursts.
 Select the IQ Waveform measurement (in IQ Analyzer Mode).
 Set the sweep time to acquire at least one burst.
 Set the triggers such that acquisition happens at a known position relative to a burst.
 Then query the mean burst levels using, CALC:DATA2:COMP? MEAN,24e-6,526e-6 (These parameter values correspond to GSM signals, where $526 \mathrm{e}-6$ is the length of the burst in the slot and you just want 1 burst.) |
| Notes | The command supports 5 parameters. Note that the last 4 (<soffset>,<length>,<roffset>,<rlimit>) are optional. But these optional parameters must be entered in the specified order. For example, if you want to specify <length>, then you must also specify <soffset>. See details below for a definition of each of these parameters.
 This command uses the data in the format specified by FORMat:DATA, returning either binary or ASCII data. |
| Initial S/W Revision | Prior to A.02.00 |

- BLOCk or block data - returns all the data points from the region of the trace data that you specify. For example, it could be used to return the data points of an input signal over several timeslots, excluding the portions of the trace data that you do not want. (This is x, y pairs for trace data and I,Q pairs for complex data.)
- CFIT or curve fit - applies curve fitting routines to the data. <soffset> and <length> are required to define the data that you want. <roffset> is an optional parameter for the desired order of the curve equation. The query will return the following values: the x -offset (in seconds) and the curve coefficients ((order +1) values).

MIN, MAX, MEAN, DME, RMS, RMSC, SAMP, SDEV and PPH return one data value for each specified region (or <length>) of trace data, for as many regions as possible until you run out of trace data (using <roffset> to specify regions). Or they return the number of regions you specify (using <rlimit>) ignoring any data beyond that.

- MINimum - returns the minimum data point (x, y pair) for the specified region(s) of trace data. For I/Q trace data, the minimum magnitude of the I/Q pairs is returned.
- MAXimum - returns the maximum data point (x,y pair) for the specified region(s) of trace data. For I/Q trace data, the maximum magnitude of the I/Q pairs is returned.

Meas

(in $\mathrm{dB} / \mathrm{dBm}$) for the specified region(s) of trace data. For I/Q trace data, the mean of the magnitudes of the I/Q pairs is returned. See the following equations.

If the original trace data is in dB , this function returns the arithmetic mean of those log values, not log of the mean power which is a more useful value. The mean of the log is the better measurement technique when measuring CW signals in the presence of noise. The mean of the power, expressed in dB , is useful in power measurements such as Channel Power. To achieve the mean of the power, use the RMS option.

Equation 1

Mean Value of Data Points for Specified Region(s)

$$
\operatorname{MEAN}=\frac{1}{\mathrm{n}} \sum_{\mathrm{Xi} \in \text { region(s) }} \mathrm{Xi}^{2}
$$

where Xi is a data point value, and n is the number of data points in the specified region(s).

Equation 2

Mean Value of I/Q Data Pairs for Specified Region(s)

$$
\mathrm{MEAN}=\frac{1}{\mathrm{n}} \sum_{\mathrm{Xi} \in \operatorname{region}(\mathrm{~s})}|\mathrm{Xi}|
$$

vsd27-2
where $|\mathrm{Xi}|$ is the magnitude of an I/Q pair, and n is the number of I / Q pairs in the specified region(s).

- DMEan - returns a single value that is the mean power (in $\mathrm{dB} / \mathrm{dBm}$) of the data point values for the specified region(s) of trace data. See the following equation:

Equation 3

DMEan Value of Data Points for Specified Region(s)
$\mathrm{DME}=10 \times \log _{10}\left(\frac{1}{n} \sum_{X i \in \operatorname{region}(\mathrm{~s})} 10^{\frac{\mathrm{xi}}{10}}\right)$

- RMS - returns a single value that is the average power on a root-mean-squared voltage scale (arithmetic rms) of the data point values for the specified region(s) of trace data. See the following equation.
NOTE
For I/Q trace data, the rms of the magnitudes of the I/Q pairs is returned. See the following equation.
This function is very useful for I/Q trace data. However, if the original trace data is in dB , this function returns the rms of the log values which is not usually needed.

Equation 4
 RMS Value of Data Points for Specified Region(s)

$\mathrm{RMS}=\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{Xi} \in \operatorname{region(s)}} \mathrm{Xi}^{2}}$
where Xi is a data point value, and n is the number of data points in the specified region(s).

Equation 5

RMS Value of I/Q Data Pairs for Specified Region(s)
$\mathrm{RMS}=\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{Xi} \in \operatorname{region(s)}} \mathrm{Xi} \mathrm{Xi}^{*}}$
where Xi is the complex value representation of an I / Q pair, $\mathrm{Xi*}$ its conjugate complex number, and n is the number of I/Q pairs in the specified region(s).

Once you have the rms value for a region of trace data (linear or I/Q), you may want to calculate the mean power. You must convert this rms value (peak volts) to power in dBm:
$10 \mathrm{x} \log \left[10 \mathrm{x}\left(\mathrm{rms}\right.\right.$ value) $\left.{ }^{2}\right]$

- SAMPle - returns the first data value (x,y pair) for the specified region(s) of trace data. For I/Q trace data, the first I/Q pair is returned.
- SDEViation - returns a single value that is the arithmetic standard deviation for the data point values for the specified region(s) of trace data. See the following equation.

For I/Q trace data, the standard deviation of the magnitudes of the I/Q pairs is returned. See the following equation.

Equation 6
 Standard Deviation of Data Point Values for Specified Region(s)

SDEV $=\sqrt{\frac{1}{n} \sum_{X i \in \operatorname{region}(\mathrm{~s})}(\mathrm{Xi}-\overline{\mathrm{X}})^{2}}$
where Xi is a data point value, X is the arithmetic mean of the data point values for the specified region(s), and n is the number of data points in the specified region(s).
$\operatorname{SDEV}=\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{Xi} \in \operatorname{region}(\mathrm{s})}(|\mathrm{Xi}|-\overline{\mathrm{X}})^{2}}$
where $|\mathrm{Xi}|$ is the magnitude of an I / Q pair, X is the mean of the magnitudes for the specified region(s), and n is the number of data points in the specified region(s).

Meas

- PPHase - returns the x, y pairs of both rms power (dBm) and arithmetic mean phase (radian) for every specified region and frequency offset (Hz). The number of pairs is defined by the specified number of regions. This parameter can be used for I/Q vector ($\mathrm{n}=0$) in Waveform (time domain) measurement and all parameters are specified by data point in PPHase.

The rms power of the specified region may be expressed as:

$$
\text { Power = } 10 \times \log [10 \times(\text { RMS I/Q value })]+10 .
$$

The RMS I/Q value (peak volts) is:
$\sqrt{\frac{1}{n} \sum_{\mathrm{Xi} \in \text { region }} \mathrm{Xi} \mathrm{Xi}^{*}}$
vsd27-9
where Xi is the complex value representation of an I/Q pair, $\mathrm{Xi}{ }^{*}$ its conjugate complex number, and n is the number of I/Q pairs in the specified region.

The arithmetic mean phase of the specified region may be expressed as:

$\frac{1}{n} \sum_{\mathrm{Yi} \in \text { region }}$

vsd27-10
where Yi is the unwrapped phase of I/Q pair with applying frequency correction and n is the number of I/Q pairs in the specified region.

The frequency correction is made by the frequency offset calculated by the arithmetic mean of every specified region's frequency offset. Each frequency offset is calculated by the least square method against the unwrapped phase of I/Q pair.

Sample Trace Data - Constant Envelope

(See below for explanation of variables.)

Sample Trace Data - Not Constant Envelope

(See below for explanation of variables.)

<soffset> - start offset is an optional real number. (It is in seconds for time-domain traces, and is a dimensionless index 0 to Npoints - 1, for frequency-domain traces). It specifies the amount of data at the beginning of the trace that will be ignored before the decimation process starts. It is the time or frequency change from the start of the trace to the point where you want to start using the data. The default value is zero.
<length> - is an optional real number. (It is in seconds for time-domain traces, and is a dimensionless index 0 to Npoints - 1, for frequency-domain traces). It defines how much data will be compressed into one value. This parameter has a default value equal to the current trace length.
<roffset> - repeat offset is an optional real number. (It is in seconds for time-domain traces, and is a dimensionless index 0 to Npoints - 1, for frequency-domain traces). It defines the beginning of the next field of trace elements to be compressed. This is relative to the beginning of the previous field. This parameter has a default value equal to the <length> variable. Note that this parameter is used for a completely different purpose when curve fitting (see CFIT above).
<rlimit> - repeat limit is an optional integer. It specifies the number of data items that you want returned. It will ignore any additional items beyond that number. You can use the Start offset and the Repeat limit to pick out exactly what part of the data you want to use. The default value is all the data.

Calculate Peaks of Trace Data (Remote Command Only)

Returns a list of all the peaks for the currently selected measurement and sub-opcode [n]. The peaks must meet the requirements of the peak threshold and excursion values.
$\mathrm{n}=$ any valid sub-opcode for the current measurement. See the MEASure:<measurement> command description of your specific measurement for information on the data that can be returned.

The command can only be used with specific sub-opcodes with measurement results that are trace data. Both real and complex traces can be searched, but complex traces are converted to magnitude in dBm . In many measurements the sub-opcode $n=0$, is the raw trace data which cannot be searched for peaks. And Sub-opcode $\mathrm{n}=1$, is often calculated results values which also cannot be searched for peaks.

This command uses the data setting specified by the FORMat:BORDer and FORMat:DATA commands and can return real or ASCII data. If the format is set to INT,32, it returns REAL,32 data.

The command has four types of parameters:

- Threshold (in dBm)
- Excursion (in dB)

Meas

- Sorting order (amplitude, frequency, time)
- Optional in some measurements: Display line use (all, > display line, < display line)

| Remote Command | For Swept SA measurement:
 :CALCulate: DATA[1]\|2|3|4|5|6:PEAKs?
 <threshold>, <excursion>[,AMPLitude\|FREQuency|TIME[,ALL|
 GTDLine\|LTDLine]]
 For most other measurements:
 :CALCulate: DATA[1]\|2|3|4|5|6:PEAKs?
 <threshold>,<excursion>[,AMPLitude\|FREQuency|TIME] |
| :---: | :---: |
| Example | Example for Swept SA measurement in Spectrum Analyzer Mode:
 CALC:DATA4:PEAK? - 40,10,FREQ,GTDL This will identify the peaks of trace 4 that are above -40 dBm , with excursions of at least 10 dB . The peaks are returned in order of increasing frequency, starting with the lowest frequency. Only the peaks that are above the display line are returned.
 Query Results 1 :
 With FORMat:DATA REAL,32 selected, it returns a list of floating-point numbers. The first value in the list is the number of peak points that are in the following list. A peak point consists of two values: a peak amplitude followed by its corresponding frequency (or time).
 If no peaks are found the peak list will consist of only the number of peaks, (0). |

Meas

\(\left.$$
\begin{array}{|l|l|}\hline \text { Notes } & \begin{array}{l}\text { <n> - is the trace that will be used } \\
\text { <threshold> - is the level below which trace data peaks are ignored. Note that } \\
\text { the threshold value is required and is always used as a peak criterion. To } \\
\text { effectively disable the threshold criterion for this command, provide a } \\
\text { substantially low threshold value such as -200 dBm. Also note that the } \\
\text { threshold value used in this command is independent of and has no effect on } \\
\text { the threshold value stored under the Peak Criteria menu. } \\
\text { <excursion> - is the minimum amplitude variation (rise and fall) required for a } \\
\text { signal to be identified as peak. Note that the excursion value is required and is } \\
\text { always used as a peak criterion. To effectively disable the excursion criterion } \\
\text { for this command, provide the minimum value of 0.0 dB. Also note that the } \\
\text { excursion value used in this command is independent of and has no effect on } \\
\text { the excursion value stored under the Peak Criteria menu. } \\
\text { Values must be provided for threshold and excursion. The sorting and display } \\
\text { line parameters are optional (defaults are AMPLitude and ALL). } \\
\text { Note that there is always a Y-axis value for the display line, regardless of } \\
\text { whether the display line state is on or off. It is the current Y-axis value of the } \\
\text { display line which is used by this command to determine whether a peak } \\
\text { should be reportedSorting order: }\end{array}
$$

AMPLitude - lists the peaks in order of descending amplitude, with the

highest peak first (default if optional parameter not sent)\end{array}\right\}\)	FREQuency - lists the peaks in order of occurrence, left to right across the
x-axis.	
TIME - lists the peaks in order of occurrence, left to right across the x-axis.	
Peaks vs. Display Line:	
ALL - lists all of the peaks found (default if optional parameter not sent).	
GTDLine (greater than display line) - lists all of the peaks found above the	
display line.	
LTDLine (less than display line) - lists all of the peaks found below the	
display line.	

Format Data: Numeric Data (Remote Command Only)

This command specifies the format of the trace data input and output. It specifies the formats used for trace data during data transfer across any remote port. It affects only the data format for setting and querying trace data for the :TRACe[:DATA], TRACe[:DATA]?, :CALCulate:DATA[n]? and FETCh:SANalyzer[n]? commands and queries.

| Remote Command | :FORMat[:TRACe][:DATA] ASCii\|INTeger, 32|REAL, 32 |REAL, 64 |
| :--- | :--- |
| :FORMat[:TRACe][:DATA]? | |

Meas

Notes	The query response is: ASCii: ASC,8 REAL,32: REAL,32
	REAL,64: REAL,64 INTeger,32: INT,32 When the numeric data format is REAL or ASCii, data is output in the current Y Axis unit. When the data format is INTeger, data is output in units of m dBm (.001 dBm). Note that the INT,32 format is only applicable to the command, TRACe:DATA. This preserves backwards compatibility for the Swept SA measurement. For all other commands/queries which honor FORMat:DATA, if INT,32 is sent the analyzer will behave as though it were set to REAL,32.
	The INT,32 format returns binary 32-bit integer values in internal units (m dBm), in a definite length block.
Dependencies	Sending a data format spec with an invalid number (for example, INT,48) generates no error. The analyzer simply uses the default (8 for ASCii, 32 for INTeger, 32 for REAL). Sending data to the analyzer which does not conform to the current FORMat specified, results in an error. Sending ASCII data when a definite block is expected generates message -161 "Invalid Block Data" and sending a definite block when ASCII data is expected generates message -121 "Invalid Character in Number".
Initial S/W Revision	ASCii

The specs for each output type follow:
ASCii - Amplitude values are in ASCII, in the current Y Axis Unit, one ASCII character per digit, values separated by commas, each value in the form:

SX.YYYYYEsZZ

Where:
S = sign (+ or -)
$\mathrm{X}=$ one digit to left of decimal point
$Y=5$ digits to right of decimal point
$\mathrm{E}=\mathrm{E}$, exponent header
$\mathrm{s}=$ sign of exponent $(+$ or -)
$\mathrm{ZZ}=$ two digit exponent
REAL,32 - Binary 32-bit real values in the current Y Axis Unit, in a definite length block.
REAL,64 - Binary 64-bit real values in the current Y Axis Unit, in a definite length block.

Format Data: Byte Order (Remote Command Only)

This command selects the binary data byte order for data transfer and other queries. It controls whether binary data is transferred in normal or swapped mode. This command affects only the byte order for setting and querying trace data for the :TRACe[:DATA], TRACe[:DATA]? , :CALCulate:DATA[n]? and FETCh:SANalyzer[n]? commands and queries.

By definition any command that says it uses FORMat:DATA uses any format supported by FORMat:DATA.

The NORMal order is a byte sequence that begins with the most significant byte (MSB) first, and ends with the least significant byte (LSB) last in the sequence: $1|2| 3 \mid 4$. SWAPped order is when the byte sequence begins with the LSB first, and ends with the MSB last in the sequence: $4|3| 2 \mid 1$.

Remote Command	:FORMat:BORDer NORMal\|SWAPped :FORMat:BORDer?
Preset	NORMal
Initial S/W Revision	Prior to A.02.00

Meas

Meas Setup

The Meas Setup key opens a menu of softkeys that allow you to control the most important parameters for the current measurement.

NOTE	In the Meas Setup menu you may configure Averaging, by setting the Average Number and the Average Type.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Average/Hold Number

Sets the terminal count number N for Average, Max Hold and Min Hold trace types. This number is an integral part of how the average trace is calculated. Basically, increasing N results in a smoother average trace.

See "More Information" on page 695.
See "AVER:CLE command" on page 696.

Key Path	Meas Setup
Remote Command	[:SENSe] :AVERage : COUNt <integer> [:SENSe] : AVERage : COUNt?
Couplings	Restarting any of these functions (Average, Max Hold or Min Hold) restarts all of them, as there is only one count.
Preset	100
State Saved	Saved in instrument state
Min	1
Max	10000
Status Bits/OPC dependencies	See "Sweep/Control" on page 797for a discussion of the Sweeping, Measuring, Settling and OPC bits, and the Hi Sweep line. All are affected when a sequence is reset.
Initial S/W Revision	Prior to A.02.00

More Information

When in Single, the sweep stops when N is reached. You can add more sweeps by increasing the Average/Hold Number. For example, if you want to add one more Average, or one more trace to Max Hold or Min Hold, simply increment this number by one, which you can do by pressing the Up key while

Meas Setup

Average/Hold Number is the active function.
In Cont (continuous), averaging and holding continues even after N is reached. Therefore, using doing trace holding in Cont, the value of N is irrelevant. But for averaging, each new sweep is exponentially averaged in with a weighting equal to N .

For details of how the average trace is calculated and how this depends on the Average/Hold Number, see "Average Type" on page 696. For details on how the various control functions in the instrument start and restart averaging, see "Sweep/Control" on page 797 .

The Average/Hold Number is not affected by Auto Couple.

AVER:CLE command

The AVER:CLE command (below) resets the average/hold count and does an INIT:IMM, which begins another set of sweeps when trigger conditions are satisfied. It only does this if an active trace is in Average or Hold type.

Remote Command	[:SENSe]:AVERage:CLEar
Example	AVER:COUN 100 AVER:CLE sets the current count (k and K) to 1 and restarts the averaging process.
Notes	When the instrument receives this command it performs an INIT:IMM, if and only if there is an active trace in Max Hold, Min Hold, or Average type.
Initial S/W Revision	Prior to A.02.00
Default Unit	Enter

Average Type

Lets you control the way averaging is done by choosing one of the following averaging scales: log-power (video), power (RMS), or voltage averaging. Also lets you choose Auto Average Type (default).

When performing Trace Averaging, , the equation that is used to calculate the averaged trace depends on the average type. See the descriptions for the keys which select each Average Type ("Log-Pwr Avg (Video)" on page 698, "Pwr Avg (RMS)" on page 699, or "Voltage Avg" on page 699) for details on these equations.

See "More Information" on page 697.

Key Path	Meas Setup		
Remote Command	[:SENSe]:AVERage:TYPE:AUTO OFF\|ON	0	1 [:SENSe]:AVERage:TYPE:AUTO?
Preset	ON		
State Saved	Saved in Instrument State		

Readback line	1-of-N selection as Log-Pwr (Video) for Log-Pwr (Video) Avg (RMS) for Power Avg Voltage for Voltage Initial S/W Revision Prior to A.02.00

| Remote Command | [:SENSe] :AVERage:TYPE RMS \|LOG|SCALar
 [:SENSe]:AVERage:TYPE? |
| :--- | :--- |
| Notes | Parameters map to avg types as:
 RMS = Pwr (RMS) Avg
 LOG = Log-Pwr (Video) Avg
 SCALar = Voltage Avg |
| Preset | LOG |
| Backwards Compatibility SCPI | [:SENSe]:AVERage:TYPE LINear sets Scalar averaging
 [:SENSe]:AVERage:TYPE VOLTage sets Scalar averaging |
| | [:SENSe]:AVERage:TYPE VIDeo sets Log-Power averaging |
| [:SENSe]:AVERage:TYPE LPOWer sets Log-Power averaging | |

More Information

When you select log-power averaging, the measurement results are the average of the signal level in logarithmic units (decibels). When you select power average (RMS), all measured results are converted into power units before averaging and filtering operations, and converted back to decibels for displaying. Remember: there can be significant differences between the average of the log of power and the log of the average power.

These are the averaging processes within a spectrum analyzer and all of them are affected by this setting:
Trace averaging (see"Trace/Detector" on page 787) averages signal amplitudes on a trace-to-trace basis. The average type applies to all traces in Trace Average (it is not set on a trace-by-trace basis).

Average detector (see"Trace/Detector" on page 787) averages signal amplitudes during the time or frequency interval represented by a particular measurement point.

Noise Marker (see "Marker Function" on page 653) averages signal amplitudes across measurement points to reduce variations for noisy signals.

VBW filtering (see"BW" on page 545) adds video filtering which is a form of averaging of the video signal.

When Auto is selected, the analyzer chooses the type of averaging (see below). When one of the average types is selected manually, the analyzer uses that type regardless of other analyzer settings, and shows Man on the Average Type softkey.

Meas Setup

Auto

Chooses the optimum type of averaging for the current instrument measurement settings.

Key Path	Meas setup, Average Type
Example	AVER:TYPE:AUTO ON
Notes	See Average Type, above
Couplings	Here are the auto-select rules for Average Type: Auto selects Voltage Averaging if the Detector for any active trace is EMI Average or QPD or RMS Average; otherwise it selects Power (RMS) Averaging if a Marker Function (Marker Noise, Band/Intvl Power) is on, or Detector is set to Man and Average; otherwise if Amplitude, Scale Type is set to Lin it selects Voltage Averaging; otherwise, if the EMC Standard is set to CISPR, it selects Voltage; otherwise Auto selects Log-Power Average. Note that these rules are only applied to active traces. Traces which are not updating do not impact the auto-selection of Average Type.
State Saved	Saved in instrument state
Readback	The type auto-selected is displayed in the readback line on the Average Type key
Initial S/W Revision	Prior to A.02.00

Log-Pwr Avg (Video)

Selects the logarithmic (decibel) scale for all filtering and averaging processes. This scale is sometimes called "Video" because it is the most common display and analysis scale for the video signal within a spectrum analyzer. This scale is excellent for finding CW signals near noise, but its response to noise-like signals is 2.506 dB lower than the average power of those noise signals. This is compensated for in the Marker Noise function.

The equation for trace averaging on the log-pwr scale is shown below, where K is the number of averages accumulated. (In continuous sweep mode, once K has reached the Average/Hold Number, K stays at that value, providing a continuous running average.)

New avg $=((\mathrm{K}-1)$ Old avg + New data $) / \mathrm{K}$
Assumes all values in decibel scale.

Key Path	Meas setup, Average Type
Example	AVER:TYPE LOG
Notes	See ""'Average Type" on page 696"
Couplings	See """Auto" on page 698"
Readback	Log-Pwr (Video)
Initial S/W Revision	Prior to A.02.00

Pwr Avg (RMS)

In this average type, all filtering and averaging processes work on the power (the square of the magnitude) of the signal, instead of its log or envelope voltage. This scale is best for measuring the true time average power of complex signals. This scale is sometimes called RMS because the resulting voltage is proportional to the square root of the mean of the square of the voltage.

In the equation for averaging on this scale (below), K is the number of averages accumulated. (In continuous sweep mode, once K has reached the Average/Hold Number, K stays at that value, providing a running average.)

New avg $=10 \log \left((1 / \mathrm{K})\left((\mathrm{K}-1)\left(10^{\mathrm{Old} \text { avg } / 10}\right)+10^{\text {New data/10 }}\right)\right)$
Equation assumes all values are in the decibel scale.

Key Path	Meas setup, Average Type
Example	AVER:TYPE RMS
Notes	See "Average Type" on page 696
Couplings	See "Auto" on page 698
Readback	Pwr (RMS)
Initial S/W Revision	Prior to A.02.00

Voltage Avg

In this Average type, all filtering and averaging processes work on the voltage of the envelope of the signal. This scale is good for observing rise and fall behavior of AM or pulse-modulated signals such as radar and TDMA transmitters, but its response to noise-like signals is 1.049 dB lower than the average power of those noise signals. This is compensated for in the Marker Noise function.

In the equation for averaging on this scale (below), K is the number of averages accumulated. (In continuous sweep mode, once K has reached the Average/Hold Number, K stays at that value.)
New avg $=20 \log \left((1 / \mathrm{K})\left((\mathrm{K}-1)\left(10^{\mathrm{Old} \text { avg } / 20}\right)+10^{\text {New data/20 }}\right)\right)$
Equation assumes all values are in the decibel scale.

Key Path	Meas setup, Average Type
Example	AVER:TYPE SCAL
Notes	See "Average Type" on page 696
Couplings	See "Auto" on page 698
Readback	Pwr (RMS)
Initial S/W Revision	Prior to A.02.00

Limits

The limits softkey opens up a menu of softkeys to control the limits for the current measurement. Limits

Meas Setup

arrays can be entered by the user, sent over SCPI, or loaded from a file.

Key Path	Meas Setup
Dependencies	This key will only appear if you have the proper option installed in your instrument.
Preset	Limits are turned off by a Preset, but the Limits arrays (data) are only reset (deleted) by Restore Mode Defaults. They survive shutdown and restarting of the analyzer application, which means they will survive a power cycle.
Initial S/W Revision	A.02.00

Select Limit

Specifies the selected limit. The term "selected limit" is used throughout this document to specify which limit will be affected by the functions.

Key Path	Meas Setup, Limits
Notes	The selected limit is remembered even when not in the Limit Menu.
Preset	Limit 1, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Limit

Selects whether the limit and margin are displayed. If Test Limits is on, this also determines whether the test trace (see "Test Trace" on page 702) will be tested against the limit. If Limit On/Off is On, the following occurs:

- The limit line is displayed, in the same color as the limited trace, but paler. Portions of traces which fail the limits will be displayed in red.
- The margin line is displayed if Margin is on and the Margin Value is non-zero (see "Margin" on page 707). The margin line is displayed in the same color as the limit line, but paler still and dashed. Portions of traces which pass the limits but fail the margin will be displayed in amber.
- The trace is tested for the purpose of the "Trace Pass/Fail"indication in the graticule if, in addition to Limit On/Off being On, the trace is displayed and Test Limits (All Limits) is on (see "Test Limits" on page 712). If the trace is not tested, no report of the trace passing or failing is seen on the graticule. Note that the SCPI queries of Limit Pass/Fail are independent of these conditions; the test is always performed when queried over SCPI.

The PASS/FAIL box in the corner of the Meas Bar is only displayed if there is at least one "Trace Pass/Fail" indication displayed in the graticule.

Note that the red and amber coloring of traces which fail the limits and/or margins only applies to traces whose X-axis corresponds to the current analyzer X-axis. Traces which are not updating (in View, for example) will not change color if the analyzer X-axis settings (eg, start and stop frequency) do not match those of the trace, for example if they have been changed since the trace stopped updating. In this case, the Invalid Data indicator (*) will appear in the upper right hand corner.

When the limits are frequency limits but the trace is a zero-span trace, the limit trace is drawn at the limit amplitude of the center frequency. When the limits are time limits but the trace is a frequency domain trace, the limit trace is drawn according to the current time axis, with the left of the screen being 0 and the right being equal to sweep time.

Key Path	Meas Setup, Limits			
Remote Command	:CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DISPlay OFF $\|0 N\| 0 \mid 1$ $:$ CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DISPlay?			
Example	:CALC:LLIN2:DISP ON turns on the display for limit line 2.			
Dependencies	This command will generate an "Option not available" error message unless you have the proper option installed in your instrument.			
Couplings	Limit display ON selects the limit. Testing is done on all displayed limits if Test Limits (All Limits) is ON. Entering the limit menu from the GUI turns on the selected limit.			
Preset	OFF			
State Saved	Saved in instrument state.			
Backwards Compatibility SCPI	:CALCulate:LLINe[1]\|2:STATe OFF	ON	0	1
(In the past you had to send the DISP command as well as the STATe				
command in order to get a limit on and testing. Now, the DISP command is				
sufficient, but we accept the state command and do nothing with it)				

Properties

Accesses a menu which lets you set the properties of the selected limit.

Key Path	Meas Setup, Limits
Initial S/W Revision	A.02.00

Select Limit

Specifies the selected limit. The term "selected limit" is used throughout this document to specify which limit will be affected by the functions.

Key Path	Meas Setup, Limits, Properties
Notes	The selected limit is remembered even when not in the Limit Menu.
Preset	Limit 1, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Meas Setup

Test Trace

Selects the trace you want the limit to test. A limit is applied to one and only one trace; each trace can have both an upper and a lower limit. When executing Limit Test, the limit is applied only to the specified trace.

A trace can have multiple limit lines simultaneously; in that case, only one upper and one lower limit line will affect the color of the trace. Other limit lines will be displayed, and will affect the pass/fail status, but the trace will not turn red if it crosses a secondary limit line.

Key Path	Meas Setup, Limits, Properties				
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ TRACe $1\|2\| 3\|4\| 5 \mid 6$ $:$ CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ TRACe?				
Example	:CALC:LLIN3:TRAC 2 applies limit 3 to trace 2.				
Notes	When the trace display is off, the trace is not tested. The trace is tested only when the trace display is on and Test Limits (see "Test Limits" on page 712) is on.				
Couplings	This matters when testing a trace or limit line for failure, via $:$ CALC:LLIN3:FAIL? or :CALC:TRAC2:FAIL?				
Preset	Limits 1 and 2 preset to 1, Limits 3 and 4 preset to 2, Limits 5 and 6 preset to 3 Not affected by Mode Preset, preset by Restore Mode Defaults.				
State Saved	Saved in instrument state.				
Min	1				
Max	6				
Readback	Trace 1\|2	3	4	5	6
Initial S/W Revision	A.02.00				

Type

Selects whether the limit you are editing is an upper or lower limit. An upper limit fails if the trace exceeds the limit. A lower limit fails if the trace falls below the limit.

Key Path	Meas Setup, Limits, Properties
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ TYPE UPPer \|LOWer :CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ TYPE?
Example	:CALC:LLIN2:TYPE LOW sets limit line 2 to act as a lower limit.
Couplings	If a margin has already been set for this limit line, and this key is used to change the limit type, then the margin value will reverse sign.
Preset	Upper for Line 1, 3, and 5; Lower for Line 2, 4, 6. Not affected by Mode Preset, preset by Restore Mode Defaults.

State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Interpolation

Accesses a menu which lets you set the frequency and amplitude interpolation of the selected limit.

Key Path	Meas Setup, Limits, Properties	
Readback	[Lin\|Log Frequency, Lin	Log Amplitude]
Initial S/W Revision	A. 02.00	

Frequency Interpolation

This key is grayed out if Time is the selected X Axis Units. Sets the interpolation between frequency points, allowing you to determine how limit trace values are computed between points in a limit table. The available interpolation modes are linear and logarithmic. If frequency interpolation is logarithmic (Log), frequency values between limit points are computed by first taking the logarithm of both the table values and the intermediate value. A linear interpolation is then performed in this logarithmic frequency space. An exactly analogous manipulation is done for logarithmic amplitude interpolation.

Note that the native representation of amplitude is in dB .
For linear amplitude interpolation and linear frequency interpolation, the interpolation is computed as:

$$
y=20 \log \left(\frac{10^{\frac{y_{i+1}}{20}}-10^{\frac{y_{i}}{20}}}{f_{i+1}-f_{i}}\left(f-f_{i}\right)+10^{\frac{y_{i}}{20}}\right)
$$

For linear amplitude interpolation and log frequency interpolation, the interpolation is computed as:

$$
y=20 \log \left(\frac{10^{\frac{y_{i+1}}{20}}-10^{\frac{y_{i}}{20}}}{\log f_{i+1}-\log f_{i}}\left(\log f-\log f_{i}\right)+10^{\frac{y_{i}}{20}}\right)
$$

For log amplitude interpolation and linear frequency interpolation, the interpolation is computed as:

$$
y=\frac{y_{i+1}-y_{i}}{f_{i+1}-f_{i}}\left(f-f_{i}\right)+y_{i}
$$

For log amplitude interpolation and log frequency interpolation, the interpolation is computed as:

$$
y=\frac{y_{i+1}-y_{i}}{\log f_{i+1}-\log f_{i}}\left(\log f-\log f_{i}\right)+y_{i}
$$

NOTE

Interpolation modes determine how limit values are computed between points in the limit table. The appearance of a limit trace is also affected by the amplitude scale, which may be

Meas Setup

linear or logarithmic.

Key Path	Meas Setup, Limits, Properties, Interpolation
Remote Command	:CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ CONTrol: INTerpolate:TYPE LOGarithmic\|LINear :CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ CONTrol: INTerpolate:TYPE?
Example	:CALC:LLIN:CONT:INT:TYPE LIN sets limit line 1 frequency interpolation to linear.
Preset	Linear, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Amplitude Interpolation

Sets the interpolation to linear or logarithmic for the specified limiting points set, allowing you to determine how limit trace values are computed between points in a limit table. See Frequency Interpolation for the equations used to calculate limit values between points.

Key Path	Meas Setup, Limits, Properties, Interpolation
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ AMPLitude: INTerpolate: TYP E LOGarithmic\|LINear :CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ AMPLitude : INTerpolate: TYP E?
Example	:CALC:LLIN:AMPL:INT:TYPE LIN sets limit line 1 amplitude interpolation to linear.
Preset	Logarithmic, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Fixed / Relative

Opens a menu which will allow you to specify that the selected limit is relative to either Center Frequency or Reference level.

Key Path	Meas Setup, Limits, Properties		
Readback	Fixed\|Rel to CF	Rel to RL	Rel to CF + RL (square brackets)
Initial S/W Revision	A.02.00		

Relative to CF

Chooses whether the limit line frequency points are coupled to the instrument center frequency, and whether the frequency points are expressed as an offset from the instrument center frequency. If the limit lines are specified with time, this has no effect. The limit table must in this case support negative frequencies.

For example, assume you have a frequency limit line, and the analyzer center frequency is at 1 GHz . If Relative to CF is "Off", entering a limit line segment with a frequency coordinate of 300 MHz displays the limit line segment at 300 MHz , and the limit line segment will not change frequency if the center frequency changes. If Relative to CF is "On", entering a limit line segment with a frequency coordinate of 300 MHz displays the limit line segment at $\mathrm{CF}+300 \mathrm{MHz}$, or 1.3 GHz . Furthermore, if the center frequency changes to 2 GHz , the limit line segment will be displayed at $\mathrm{CF}+300 \mathrm{MHz}$, or 2.3 GHz .

It is possible to change this setting after a limit line has been entered. When changing from On to Off or vice-versa, the frequency values in the limit line table change so that the limit line remains in the same position for the current frequency settings of the analyzer.

Pressing this button makes Center Frequency the active function.

Key Path	Meas Setup, Limits, Properties, Fixed/Relative					
Remote Command	:CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ FREQuency : CMODe: RELative ON \mid OFF $\|1\| 0$ $:$ CALCulate $:$ LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ FREQuency : CMODe: RELative?					
Example	:CALC:LLIN:FREQ:CMOD:REL ON makes limit line 1 relative to the center frequency.					
Notes	If the Trace Domain is changed to Time (:CALCulate:LLINe:CONTrol:DOMain TIME), the command : $:$ CALCulate:LLINe[1]\|2	3	4	5	6:FREQuency:CMODe:RELative ON	OFF $\|1\| 0$ will have no effect.
Couplings	Pressing this button makes Center Frequency the active function.					
Preset	Off, not affected by Mode Preset, preset by Restore Mode Defaults.					
State Saved	Saved in instrument state.					
Initial S/W Revision	A.02.00					

Relative to RL

Chooses whether the limit line amplitude points are coupled to the instrument reference level, and whether the amplitude points are expressed as an offset from the instrument reference level.

For example, assume you have a limit line, and the reference level at -10 dBm . If Relative to RL is "Off", entering a limit line segment with an amplitude coordinate of -20 dB displays the limit line segment at -20 dBm , and the limit line segment will not change amplitude if the reference level amplitude changes. If Relative to RL is "On", entering a limit line segment with an amplitude coordinate of -20 dB displays the limit line segment at $\mathrm{RL}-20 \mathrm{~dB}$, or -30 dBm . Furthermore, if the reference level amplitude changes to -30 dBm , the limit line segment will be displayed at RL -20 dB , or -50 dBm .

It is possible to change this setting after a limit line has been entered. When changing from On to Off or vice-versa, the amplitude values in the limit line table change so that the limit line remains in the same position for the current reference level settings of the analyzer.

Key Path	Meas Setup, Limits, Properties, Fixed/Relative		
Remote Command	:CALCulate: LLINe[1]\| $2\|3\| 4\|5\| 6:$ AMPLitude: CMODe: RELative		
	ON\|OFF	1	0
	:CALCulate: LLINe[1]\| $2\|3\| 4\|5\| 6:$ AMPLitude: CMODe: RELative?		

Meas Setup

Example	:CALC:LLIN:AMPL:CMOD:REL ON makes limit line 1 relative to the reference level amplitude.
Couplings	Pressing this button makes Reference level the active function.
Preset	Off, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A. 02.00

Description

Provides a description of up to 60 characters by which the operator can easily identify the limit. Will be stored in the exported file. Can be displayed in the active function area by selecting as the active function, if desired to be in a screen dump.

Key Path	Meas Setup, Limits, Properties
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DESCription "Description" :CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DESCription?
Example	:CALC:LLIN:DESC "European Emissions"
Preset	"", (null String), not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Readback	As much of the description will fit on one line of the key, followed by "..." if some of the description will not fit on one line of the key.
Initial S/W Revision	A.02.00

Comment

Sets an ASCII comment field which will be stored in an exported file. Can be displayed in the active function area by selecting as the active function, if desired to be in a screen dump. The Limits .csv file supports this field.

Key Path	Meas Setup, Limits, Properties
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ COMMent "text" $:$ CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ COMMent?
Example	:CALC:LLIN1:COMM "this is a comment"
Preset	""" (null String), not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Readback	As much of the description will fit on one line of the key, followed by "..." if some of the description will not fit on one line of the key.
Initial S/W Revision	A.02.00

Margin

Selects a margin for this limit, which will cause a trace to Fail Margin when the trace is between the limit line and the margin line. Portions of the traces which pass the limit but fail the margin will be displayed in an amber color.

A margin is always specified in dB relative to a limit - an upper limit will always have a negative margin, and a lower limit will always have a positive margin. If a value is entered with the incorrect sign, the system will automatically take the negative of the entered value.
If the limit type is switched from lower to upper while margin is present, the margin will reverse sign.
When the Margin is selected, it may be turned off by pressing the Margin key until Off is underlined. This may also be done by performing a preset. Margin is the default active function whenever the margin is on, and it is not the active function whenever the margin is off.

The margin lines are displayed in the same color as limit lines, but paler. . If the limited trace is blanked then the limit line and the margin line will be blanked as well.

Key Path	Meas Setup, Limits																			
Remote Command	:CALCulate:LLINe[1]\|2	3	4	5	6:MARGin <rel_ampl> :CALCulate:LLINe[1]\|2	3	4	5	6:MARGin? :CALCulate:LLINe[1]\|2	3	4	5	6:MARGin:STATe OFF	ON	0	1 :CALCulate:LLINe[1]\|2	3	4	5	6:MARGin:STATe?
Example	:CALC:LLIN1:MARG -2dB sets limit line 1's margin to -2 dB (Limit Line 1 is by default an upper limit). :CALC:LLIN2:MARG 1dB sets limit line 2's margin to 1 dB (Limit Line 2 is by default a lower limit). :CALC:LLIN2:MARG:STAT OFF !turns off the margin for limit line 2 and removes any tests associated with that margin line.																			
Notes	The queries "Limit Line Fail?" (:CALCulate:LLINe[1]\|2	3	4	5	6:FAIL?) and "Trace Fail?" (:CALCulate:TRACe[1]	2	3	4	5	6:FAIL?) will return 1 if the margin fails.										
Couplings	This will affect :CALC:LLIN3:FAIL or :CALC:TRAC2:FAIL?																			
Preset	not affected by Mode Preset, set to 0 dB for all Limits by Restore Mode Defaults.																			
State Saved	Saved in instrument state.																			
Min	-40 dB (Upper); 0 dB (Lower)																			
Max	0 dB (Upper); 40 dB (Lower);																			
Initial S/W Revision	A.02.00																			
Default Unit	dB																			

Meas Setup

Edit

Opens the Table Editor for the selected limit line.
When entering the menu, the editor window (with the limit table) turns on, the selected Limit is turned On and the amplitude scale is set to Log. The display of the trace to which the selected limit applies is turned on (thus, traces in Blank are set to View and traces in Background are set to On). Turning on the Limit means it's display will be on, and it's testing mode will be on as well; you should turn off any other limits that are on if they interfere with the editing of the selected limit.

NOTE
The table editor will only operate properly if the analyzer is sweeping, because its updates are tied to the sweep system. Thus, you should not try to use the editor in single sweep, and it will be sluggish during compute-intensive operations like narrow-span FFT sweeps.

When exiting the edit menu (by using the Return key or by pressing an instrument front panel key), the editor window turns off, however the Limit is still on and displayed, and the amplitude scale remains Log.

Limits are turned off by a Preset, but the Limits arrays (data) are only reset (deleted) by Restore Mode Defaults. They survive shutdown and restarting of the analyzer application, which means they will survive a power cycle.

Key Path	Meas Setup, Limits				
Couplings	A remote user can enter or access limit line data via :CALCulate:LLINe[1]\|2	3	4	5	6:DATA
Initial S/W Revision	A.02.00				

Navigate

Lets you move through the table to edit the desired point

Key Path	Meas Setup, Limits, Edit
Notes	There is no value readback on the key
Initial S/W Revision	A.02.00

Frequency

Lets you edit the frequency of the current row.

Key Path	Meas Setup, Limits, Edit
Notes	There is no value readback on the key
Initial S/W Revision	A.02.00

Amplitude

Lets you edit the Amplitude of the current row.

Key Path	Meas Setup, Limits, Edit
Notes	There is no value readback on the key
Min	-1000 dBm
Max	1000 dBm
Initial S/W Revision	A. 02.00

Insert Point Below

Pressing this key inserts a point below the current point. The new point is a copy of the current point. And becomes the current point The new point is not yet entered into the underlying table, and the data in the row is displayed in LightGray.

Key Path	Meas Setup, Limits, Edit
Initial S/W Revision	A.02.00

Delete Point

This is an immediate action key. It will immediately delete the currently-selected point, whether or not that point is being edited, and select Navigate. The point following the currently-selected point (or the point preceding if there is none) will be selected.

Key Path	Meas Setup, Limits, Edit
Initial S/W Revision	A.02.00

Copy from Limit

Copies an existing limit into the current limit, including all secondary parameters (Description, Associated Trace, Type, Margin, Interpolation, Relative to CF/RL).

Key Path	Meas Setup, Limits, Edit				
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ COPY LLINE1\|LLINE2	LLINE3	LLINE4	LLINE5	LLINE6
Example	:CALC:LLINE2:COPY LLINE1 copies the data from line 1 into line 2.				
Notes	Auto return to the Edit menu.				
Initial S/W Revision	A.02.00				

Build from Trace

Builds a limit using an existing trace. This command will overwrite all data in the limit. Since a straight copy would typically have hundreds or thousands of segments, the data will be approximated to better represent a limit line; small excursions whose width is less than 10 trace buckets will sometimes not be

Meas Setup

captured. Secondary parameters which are not associated with traces (Description, Associated Trace, Type, Margin, Interpolation, Relative to CF/RL) will be unchanged.

When taking a trace in order to build a limit, it will often work well to take the trace with a resolution bandwidth wider than the expected measurement, a video bandwidth lower than the expected measurement, and with the detector set to Max Hold or Min Hold.

Note that an upper limit will be built above the trace, while a lower limit will be built below the trace. If the trace is constant, the limit should pass after being built.

Key Path	Meas Setup, Limits, Edit				
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ BUILd TRACE1\|TRACE2	TRACE3	TRACE4	TRACE5	TRACE6
Example	:CALC:LLIN2:BUIL TRACE1 builds limit line 2 based on the data in trace 1. This will overwrite the data in the table editor.				
Notes	Auto return to Edit menu.				
Initial S/W Revision	A.02.00				

Offset

Enters a menu which allows you to offset the limit trace by a specified frequency, time, or amplitude. The offsets will be immediately applied to the limit trace for display and failure calculation; the offset can also be applied to the points in the limit line.

Key Path	Meas Setup, Limits, Edit
Initial S/W Revision	A.02.00

X Offset

Offsets the limit trace by some specified frequency (for Frequency-based limit lines) or a time (for time-based limit lines).

Key Path	Meas Setup, Limits, Edit, Offset
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ OFFSet : X <value> $:$ CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ OFFSet : X? <value> $=<$ freq> if Limit X-Axis Unit is Frequency, <value> = <time> if Limit X-Axis Unit is Time
Example	:CALC:LLIN:OFFS:X -50MHZ sets the X axis offset to -50 MHz. :CALC:LLIN:OFFS:UPD will apply the X axis offset to all points in the limit line, then reset the X axis offset to zero.
Preset	0 Hz if Limit X-Axis Unit is Frequency 0 S if Limit X-Axis Unit is Time
State Saved	Saved in instrument state, survives Preset

Min	-500 GHz
Max	500 GHz
Initial S/W Revision	A.02.00
Default Unit	Determined by X axis scale.

Y Offset

Offsets all segments in the limit line by some specified amplitude.

Key Path	Meas Setup, Limits, Edit, Offset
Remote Command	:CALCulate:LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ OFFSet: Y <rel ampl> :CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6: 0 F F S e t: Y ?$
Example	:CALC:LLIN:OFFS:Y-3 dB sets the Y axis offset to -3 dB. :CALC:LLIN:OFFSet:UPD will apply the Y axis offset to all points in the limit line, then reset the Y axis offset to zero.
Preset	0 dB
State Saved	Saved in instrument state.
Min	-Infinity
Max	+ Infinity
Initial S/W Revision	A.02.00
Default Unit	dB

Apply Offsets to Limit Table

Adds the X and Y offsets to each point in the limit table, then resets the X and Y offset values to zero. This has no effect on the position of the limit trace.

For example, if the X offset is -10 MHz and the Y offset is 1 dB , the values in the limit table will be updated as follows: 10 MHz will be subtracted from each X value, 1 dB will be added to each Y value. The offset values will then be reset to zero. The limit trace will not be moved and the limit table will be updated to accurately reflect the currently-displayed limit trace.

Key Path	Meas Setup, Limits, Edit, Offset
Remote Command	$:$ CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6: 0 F F S e t:$ UPDate
Example	:CALC:LLIN:OFFS:UPD sets updates the limit table to reflect the X and Y offsets, then resets the offsets to zero.
State Saved	No state
Initial S/W Revision	A.02.00

Scale X Axis

Matches the X Axis to the selected Limit, as well as possible.

Meas Setup

For frequency limits and a frequency-domain X-axis, sets the Start and Stop Frequency to contain the minimum and maximum Frequency of the selected Limit. The range between Start Frequency and Stop Frequency is 12.5% above the range between the minimum and maximum Frequency so that span exceeds this range by one graticule division on either side.

For time limits and a time-domain X -axis, sets the sweep time to match the maximum Time of the selected Limit.

If the domain of the selected limit does not match the domain of the X Axis, no action is taken. Standard clipping rules apply, if the value in the table is outside the allowable range for the X axis.

Key Path	Meas Setup, Limits, Edit
Initial S/W Revision	A.02.00

Delete Limit

Deletes the currently selected limit line. Pressing Delete Limit purges the data from the limit line tables.
Limit data - including secondary parameters such as description, margin value, etc. - will be cleared and returned to factory preset settings.

When this key is pressed a prompt is placed on the screen that says "Please press Enter or OK key to delete limit. Press ESC or Cancel to close this dialog." The deletion is only performed if you press OK or Enter; if so, after the deletion, the informational message "Limit deleted" appears in the MSG line.

Key Path	Meas Setup, Limits
Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DELete
Example	:CALC:LLIN2:DEL deletes all data for limit line 2.
Initial S/W Revision	A.02.00

Test Limits

Selects whether displayed traces are tested against displayed limits (i.e. those for which Limit On/Off is set to On).

For each displayed trace for which a Limit is turned on, a message will be displayed in the upper-left corner of the graticule to notify whether the trace passes or fails the limits.

If the trace is at or within the bounds of all applicable limits and margins, the text "Trace x Pass" will be displayed in green, where x is the trace number. A separate line is used for each reported trace.

If the trace is at or within the bounds of all applicable limits, but outside the bounds of some applicable margin, the text "Trace x Fail Margin" will be displayed in amber, where x is the trace number. A separate line is used for each reported trace.

If the trace is outside the bounds of some applicable limits, the text "Trace x Fail" will be displayed in red, where x is the trace number. A separate line is used for each reported trace.

If the trace has no enabled limits, or the trace itself is not displayed, no message is displayed for that trace.

The PASS/FAIL box in the corner of the Meas Bar is only displayed if there is at least one "Trace

Pass/Fail" indication displayed in the graticule.
If two amplitude values are entered for the same frequency, a single vertical line is the result. In this case, if an upper line is chosen, the lesser amplitude is tested. If a lower line is chosen, the greater amplitude is tested.

This command only affects the display, and has no impact on remote behavior. Limit queries over SCPI test the trace against the limit regardless of whether the trace or the limit is turned on (exception: the query :CALCulate:TRACe[1]|2|3|4|5|6:FAIL? tests only the limits that are turned on for that trace).

Key Path	Meas Setup, Limits
Remote Command	:CALCulate:LLINe:TEST OFF $\|0 N\| 0 \mid 1$:CALCulate: LLINe:TEST?
Example	:CALC:LLIN:TEST ON turns on testing, and displays the results in the upper left corner.
Preset	On, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

X-Axis Unit

Selects how the limit-line segments are defined. Pressing X Axis Unit selects whether the limit lines will be entered using frequency (Freq) or sweep time (Time) to define the segments. They can be specified as a table of limit-line segments of amplitude versus frequency, or of amplitude versus time.. When the X-Axis Unit is set to Time, a time value of zero corresponds to the start of the sweep, which is at the left edge of the graticule, and the column and softkey in the Limit Table Editor will read Time instead of Frequency

Switching the limit-line definition between Freq and Time will erase all of the current limit lines. When you do this from the front panel, a warning dialog will pop up letting you know that you are about to erase all the limit lines, and prompting you to hit "OK" if you are sure:

Changing the X Axis Unit will erase all your limit lines. Are you sure you want to do this? Press Enter or OK to proceed, or Cancel(Esc) to cancel.

Key Path	Meas Setup, Limits
Remote Command	:CALCulate:LLINe:CONTrol:DOMain FREQuency \|TIME :CALCulate:LLINe: CONTrol: DOMain?
Example	:CALC:LLIN:CONT:DOM FREQ deletes all currently existing limit lines, then sets all limit lines to be specified in terms of frequency.
Couplings	This affects all limit lines simultaneously, and resets all limit line data except the .wav file and email address stored in the Actions.
Preset	Freq, not affected by Mode Preset, preset by Restore Mode Defaults.
State Saved	Saved in instrument state.

Meas Setup

Initial S/W Revision	A. 02.00

Delete All Limits

Deletes all limit lines. Pressing Delete All Limits purges the data from all limit line tables.
All limit data will be cleared and returned to factory preset settings.
When this key is pressed a prompt is placed on the screen that says "Please press Enter or OK key to delete all limits. Press ESC or Cancel to close this dialog." The deletion is only performed if you press OK or Enter; if so, after the deletion, the informational message "All Limits deleted" appears in the MSG line.

Key Path	Meas Setup, Limits
Remote Command	:CALCulate: LLINe:ALL: DELete
Example	:CALC:LLIN:ALL:DEL deletes all data for all limit lines.
Initial S/W Revision	A.02.00

Limit Line Data (Remote Command Only, Backwards Compatibility)

Defines the limit line values, and destroys all existing data. Up to 200 points may be defined for each limit using the following parameters.
$<\mathrm{x}>$ Frequency or time values as specified by :Calculate:LLINe:CONTrol:DOMain. Units default to Hz (for frequency) and seconds (for time).

Range: -30 Gs to +30 Gs for time limits, -3 kHz to +350 GHz for frequency limits.
<ampl>Amplitude values units default to dBm. Up to two amplitude values can be provided for each x-axis value, by repeating $<x$-axis $>$ in the data list.

Range: -1000 dBm to +1000 dBm
<connect> connect values are either "0" or "1." A "1" means this point will be connected to the previously defined point to define the limit line. A "0" means that it is a point of discontinuity and is not connected to the preceding point. The connect value is ignored for the first point.

Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DATA $<x>,<a m p l>,<c o n n e c t>$:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DATA?
Example	:CALC:LLIN3:DATA 1E9,-20,0,2E9,-20,1,2E9,-10,1,3E9,-10,1 describes a stair-stepped limit line.
Preset	Limit line data is cleared by Restore Mode Defaults. However, it survives shutdown/restart of the analyzer application (including power cycle)
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Limit Line Fail? (Remote Command Only)

Tests a limit line against its associated trace. Returns a 0 if the trace is within the limit and margin, a 1 if the trace exceeds either the limit or the margin.

Note that this command only tests one limit line - other limit lines are not tested when executing this command. To see whether a trace passed all limits, use :CALCulate:TRACe:FAIL?.

Note this command performs the test regardless of whether the trace or the limit is turned on the display.

Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ FAIL?
Example	:CALC:LLIN:FAIL? returns a zero if limit line 1's associated trace has no failure, 1 if there is a margin or limit failure.
Initial S/W Revision	A.02.00

Limit State (Remote Command Only, SCPI standard compatibility)

Sets or queries whether the limit line is tested. This command is identical to :CALC:LLIN[1]|2|3|4|5|6:DISP.

Remote Command	:CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ STATe ON \mid OFF $\|0\| 1$ $:$ CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ STATe?
Example	:CALC:LIM:STAT ON turns on limit line 1
Couplings	This command is identical to :CALC:LLIN:DISP Testing is done on all displayed limits if "Test All Limits" is ON.
Preset	Off (all limits)
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Limit Line Control (Remote Command Only, SCPI standard compatibility)

Defines a list of limit line control (frequency or time) values for a given limit line. Up to 2000 points may be defined for each limit using the following parameters.
<x>Frequency or time values as specified by :Calculate:LLINe:CONTrol:DOMain. Units default to Hz (for frequency) and seconds (for time).

Range: -30 Gs to +30 Gs for time limits, -3 kHz to +1200 GHz for frequency limits.
Note that X values may be repeated if a vertical step in the limit line is desired.
The points query returns the number of points in the control. It should match the number of points in the amplitude, that is, the number of values for the CONTrol axis and for the corresponding UPPer and/or LOWer limit lines must be identical. If one array is larger than the other, the limit trace is built using only as much data as is contained in the smaller array.

Meas Setup

An empty array returns not a number (9.91e+37 to a data query), 0 to a POINts query.

Remote Command	CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6: C O N T r o l[:$ DATA] $<x\rangle,<x>, \ldots$ $:$ CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6: \operatorname{CONTrol[:DATA]?~}$
Example	:CALC:LIM:CONT 1GHz,2GHz,2GHz,3GHz describes the X values of a stair-stepped limit line.
Preset	Limit line data is cleared by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Remote Command	:CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ CONTrol:POINts?
Example	:CALC:LIM:CONT:POIN? returns the number of points in the limit line.
Preset	Limit line data is cleared by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Limit Line Upper / Lower (Remote Command Only, SCPI standard compatibility)

Defines a list of amplitude values for a given limit line. Changing the number of elements in the list spectrum will automatically turn the limit line off. Using the "UPP" syntax defines an upper limit line, using the "LOW" syntax defines a lower limit line. Note that a line may not be simultaneously both upper and lower; the type of the limit line will automatically be changed as appropriate. Up to 200 points may be defined for each limit using the following parameters.
<ampl>Amplitude values units default to dBm.
Range: - 200 dBm to +100 dBm
The points query returns the number of points in the amplitude list. It will not be possible to turn on the limit line unless the number of points in the control matches the number of points in the amplitude.
The points query returns the number of points in the amplitude list. It should match the number of points in the control, that is, the number of values for the CONTrol axis and for the corresponding UPPer and/or LOWer limit lines must be identical. If one array is larger than the other, the limit trace is built using only as much data as is contained in the smaller array.

An empty array returns the system error message "list is empty" to a data query, 0 to a POINts query.

Remote Command	$:$ CALCulate:LIMit[1] <ampl>, ... $:$ CALCulate : LIMit $[1]\|2\| 4\|5\| 6:$ UPPer[:DATA] <ampl>,
Example	:CALC:LIM:UPP -10, $-10,-20,-20$ describes the amplitude values of an upper limit line
Preset	Limit line data is cleared by Restore Mode Defaults.

State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Remote Command	$:$ CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ UPPer :POINts?
Example	:CALC:LIM:UPP:POIN? returns the number of points in the upper limit line.
Preset	Upper Limit line data/points is cleared by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Remote Command	CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ LOWer[:DATA] <ampl>, ... $:$ CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ LOWer[:DATA]?
Example	:CALC:LIM:LOW -10, $-10,-20,-20$ describes the amplitude values of an lower limit line
Preset	Limit line data is cleared by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Remote Command	:CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ LOWer :POINts?
Example	:CALC:LIM:UPP:POIN? returns the number of points in the lower limit line.
Preset	Limit line data/points is cleared by Restore Mode Defaults.
State Saved	Saved in instrument state.
Initial S/W Revision	A.02.00

Limit Fail? (Remote Command Only, SCPI standard Compatibility)

Tests a limit line against its associated trace. Returns a 0 if the trace is within the limit and margin, a 1 if the trace exceeds either the limit or the margin. This command is identical to ":CALC:LLIN:FAIL?"

Note that this command only tests one limit line - other limit lines are not tested when executing this command. To see whether a trace passed all limits, use :CALCulate:TRACe:FAIL?.

Note this command performs the test regardless of whether the trace or the limit is turned on the display.

Remote Command	:CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ FAIL?
Example	:CALC:LIM:FAIL? returns a zero if limit line 1's associated trace has no failure, 1 if there is a margin or limit failure.
Couplings	This command is identical to :CALC:LLIN:FAIL?
Initial S/W Revision	A.02.00

Meas Setup

Limit Clear (Remote Command Only, SCPI standard Compatibility)

Clears a limit line, and all associated data. This command is identical to ":CALC:LLIN:DEL"

Remote Command	$:$ CALCulate:LIMit[1] $\|2\| 3\|4\| 5 \mid 6:$ CLEar
Example	:CALC:LIM2:CLE deletes all data for limit line 2.
Couplings	This command is identical to :CALC:LLIN:DEL
Initial S/W Revision	A.02.00

Trace Fail? (Remote Command Only)

Tests a trace against all associated limit lines. Returns a 0 if the trace is within all limits and margins, a 1 if the trace exceed either the limit or the margin. If no limits apply to the selected trace, this will automatically return a 0 .

Only applies to limits that are turned on, if a Limit is off it will not be tested. If a Trace is not displaying it will still be tested, and if Test Limits (All Limits) is off the Trace will still be tested.

This command ignores limit lines that are assigned to other traces.

Remote Command	:CALCulate:TRACe[1] $\|2\| 3\|4\| 5 \mid 6:$ FAIL?
Example	:CALC:TRAC3:FAIL? returns a zero if there is no failure, 1 if the trace exceeds either the limit or the margin.
Initial S/W Revision	A. 02.00

Fixed / Relative Limit (Remote Command Only, Backwards Compatibility)

This command sets both Relative to CF and Relative to RL simultaneously for all limits. If queried, it returns whether Limit Line 1 is set Relative to CF, and ignores all other fixed/relative data.

Remote Command	:CALCulate:LLINe:CMODe FIXed\|RELative $:$ CALCulate:LLINe:CMODe?
Example	:CALC:LLIN:CMOD REL makes all limit lines relative to the center frequency and reference level.

| Notes | This command is only supported for Backwards Compatibility.
 PSA offers only the following softkey, which is generic to all limit lines:
 Limits Fixed / Rel.
 On the X-Series, this functionality is provided by a softkey which is specific
 to each limit line, and which provides a sub-menu with 2 softkeys (Relative to
 CF / Relative to RL).
 In order to be consistent with the implementation of the following new
 commands:
 :CALCulate:LLINe[1]\|2|3|4|5|6:FREQuency:CMODe:RELative ON|OFF|1|0
 :CALCulate:LLINe[1]\|2|3|4|5|6:FREQuency:CMODe:RELative?
 and |
| :--- | :--- |
| | :CALCulate:LLINe[1]\|2|3|4|5|6:AMPLitude:CMODe:RELative ON|OFF|1|0 |
| :CALCulate:LLINe[1]\|2|3|4|5|6:AMPLitude:CMODe:RELative? | |
| The :CALCulate:LLINe:CMODe? Query will returns 1 if Limit Line 1 is set | |
| Relative to CF, and returns 0 otherwise. | |

Merge Limit Line Data

Adds the points with the specified values to the current limit line, allowing you to merge limit line data. Up to two amplitude values are allowed for each X value. If more than 200 points are entered to be merged, the first 200 points are merged, then an error message 'too many DATA entries' is reported.

Remote Command	:CALCulate: LLINe[1] $\|2\| 3\|4\| 5 \mid 6:$ DATA:MERGe <x-axis>, <ampl>, <connected>
Example	:CALC:LLIN1:DATA:MERG 1000000000,--20,0,2000000000,-30,1 merges the 10GHz segment and the 20GHz segment into limit line 1. Note that the 20GHz segment will be connected to the next lower point, which may or may not be the 10GHz point.
Notes	This SCPI command is only supported for Backwards Compatibility. Although PSA had a limit of 200 points, it is acceptable to increase that limit.
Preset	Fixed
Initial S/W Revision	A.02.00

N dB Points

Turns N dB points on and off and allows you to set the N dB value. N dB uses the selected marker. If the selected marker is not on when N dB is turned on, the selected marker turns on, as a Normal marker, at center screen, and is used by N dB .

See "N dB Points Results Query" on page 720.

Meas Setup

See "More Information" on page 720.

Key Path	Meas Setup			
Remote Command	:CALCulate: BWIDth\|BANDwidth: NDB <rel_ampl> :CALCulate: BWIDth\|BANDwidth: NDB? :CALCulate: BWIDth\|BANDwidth[:STATe] OFF	ON	0	1 $:$:CALCulate: BWIDth\|BANDwidth[:STATe]?
Notes	If the selected marker is turned Off it turns off N dB Points. N DB Points is unaffected by Auto Couple			
Preset	Off, 3.01 dB OFF			
Preset	Off, 3.01 dB OFF			
State Saved	The on/off status and the offset value are both saved in instrument state.			
Min	-140 dB			
Max	-0.01 dB			
Initial S/W Revision	Prior to A.02.00			

N dB Points Results Query

Remote Command	:CALCulate:BWIDth\|BANDwidth: RESult?
Example	:CALC:MARK:AOFF set selected marker to 1
	:CALC:MARK:MAX put marker 1 on peak
	:CALC:BWID ON turn on N dB for the selected marker (1)
	:CALC:BWID:NDB-3.01 set the offset to -3.01 dB
	:CALC:BWID:RES? Query the result
Notes	-100 returned if invalid reading
Initial S/W Revision	Prior to A.02.00

More Information

A marker should be placed on the peak of interest before turning on N dB points. The N dB points function looks for the two points on the marker's trace closest to the marker's X Axis value that are N dB below the marker's amplitude, one above and the other below the marker's X Axis value. (That is, one point is to the right and one is to the left of the selected marker.) The selected $N \mathrm{~dB}$ value is called the offset. The function reports the frequency difference (for frequency domain traces) or time difference (for time domain traces) between those two points.

Each point is identified by a horizontal arrow pointing towards the marker, next to the trace. The arrows
used by the N dB Points function will be as shown in the figure below (where each square represents one pixel). They point in, horizontally, at the trace below a peak, on either side of its skirts. There is one pixel between the arrow and the trace

NdB Points can be used to measure the bandwidth of a signal; it is commonly used in conjunction with a tracking generator to measure filter bandwidths.

In one of the common use cases, the marker is placed on a peak, and the arrows are displayed N dB down the skirt from the marker on either side of the peak. The N dB value and the frequency difference between the two arrows is displayed around the arrow as shown in the figure above. Normally this displays on the right hand arrow, but if this would place any part of the text offscreen to the right then it displays on the left arrow.
If the analyzer is unable to find data that is N dB below the marker on either side of the marker, the arrows are displayed at the indicator point of the marker, no value (---) will be displayed as the result and -100 Hz returned remotely (see figure below):

Some sample N dB scenarios are shown below, to illustrate how the function works in various cases. In each case, the two-headed blue arrow represents N dB of amplitude.

Meas Setup

PhNoise Opt

Selects the LO (local oscillator) phase noise behavior for various desired operating conditions.

Remote Command	$[$:SENSe] :FREQuency:SYNThesis[:STATe] $1\|2\| 3$ $[: S E N S e]: F R E Q u e n c y: S Y N T h e s i s[: S T A T e] ? ~$
Example	FREQ:SYNT 2 selects optimization for best wide offset phase noise
Notes	Parameter: 1. optimizes phase noise for small frequency offsets from the carrier. 2. optimizes phase noise for wide frequency offsets from the carrier. 3. optimizes LO for tuning speed (In PXA, the local oscillator hardware provides for extra-low phase noise at the expense of some speed. In these models, the "fast tuning" option lets you go faster at the expense of some noise. In all other models, the fastest possible tuning is the same as the close-in phase noise setting; in those models, the settings for option 1 are used if option 3 is selected.)
Dependencies	Does not appear in all models. The key is blank in those models, but the SCPI command is accepted for compatibility (although no action is taken).
Preset	Because this function is in Auto after preset, and because Span after preset > $314.16 ~ k H z ~(s e e ~ A u t o ~ r u l e s, ~ n e x t ~ s e c t i o n) ~ t h e ~ s t a t e ~ o f ~ t h i s ~ f u n c t i o n ~ a f t e r ~ P r e s e t ~$
will be 2	

Meas Setup

Auto

Selects the LO (local oscillator) phase noise behavior to optimize dynamic range and speed for various instrument operating conditions.

The X-Series has two grades of LO; a high performance LO that gives the best phase noise performance; and a medium-performance LO that gives excellent performance.

In models with the high performance LO, Auto will choose:
Fast Tuning whenever Span $>44.44 \mathrm{MHz}$ or $\mathrm{RBW}>1.9 \mathrm{MHz}$ or if Source Mode is set to "Tracking"
otherwise, if center frequency is $<195 \mathrm{kHz}$ OR ALL of the following are true:
CF >= 1 MHz AND Span <= 1.3 MHz AND RBW <= 75 kHz
then Best Close in Phase Noise;
otherwise, Best Wide-offset Phase Noise
In models with the medium-performance LO, Auto will choose:
Fast Tuning whenever Span > 12.34 MHz or RBW $>250 \mathrm{kHz}$ or if Source Mode is set to "Tracking" otherwise, if center frequency is $<25 \mathrm{kHz}$ OR ALL of the following are true:

CF >= 1 MHz AND Span <= 141.4 kHz AND RBW <= 5 kHz

then Best Close in Phase Noise;

otherwise, Best Wide-offset Phase Noise
In units whose hardware does not provide for an extra-fast tuning option, the settings for Fast Tuning are the same as Best Close-in, so in those models you will see no difference between these settings.

These rules apply whether in swept spans, zero span, or FFT spans.

Key Path	Meas Setup, PhNoise Opt		
Remote Command	[:SENSe] : FREQuency : SYNThesis : AUTO[:STATe] OFF\|ON	0	1 [:SENSe] : FREQuency : SYNThesis : AUTO[:STATe]?
Example	FREQ:SYNT:AUTO ON		
Preset	ON		
State Saved	Saved in instrument state.		
Initial S/W Revision	Prior to A.02.00		

Best Close-in Phase Noise

The LO phase noise is optimized for smaller offsets from the carrier, at the expense of phase noise farther out.

The actual frequency offset within which noise is optimized is shown with in square brackets, as this can vary depending on the hardware set in use. For example, in some analyzers this annotation appears as
[offset $<20 \mathrm{kHz}$]

Key Path	Meas Setup, PhNoise Opt
Example	FREQ:SYNT 1
Couplings	The frequency below which the phase noise is optimized is model dependent: CXA: n / a EXA: $[0 f f s e t<20 \mathrm{kHz}]$ MXA: $[$ offset $<20 \mathrm{kHz}]$ PXA: [offset $<140 \mathrm{kHz}]$
Readback	Close-in. If manually selected the "Man" will be underlined.
Initial S/W Revision	Prior to A.02.00

Best Wide-offset Phase Noise

The LO phase noise is optimized for wider offsets from the carrier. Optimization is especially improved for offsets from 70 kHz to 300 kHz . Closer offsets are compromised and the throughput of measurements (especially remote measurements where the center frequency is changing rapidly), is reduced.
The actual frequency offset beyond which noise is optimized is shown with in square brackets, as this can vary depending on the hardware set in use. For example, in some analyzers this annotation appears as [offset >30 kHz]

Key Path	Meas Setup, PhNoise Opt
Example	FREQ:SYNT 2
Couplings	The frequency below which the phase noise is optimized is model dependent: CXA: n / a EXA: $[$ offset $>30 \mathrm{kHz}]$ MXA: $[$ offset $>30 \mathrm{kHz}]$ PXA: $[$ offset $>160 \mathrm{kHz}]$
Readback	Wide-offset. If manually selected the "Man" will be underlined.
Initial S/W Revision	Prior to A.02.00

Fast Tuning

In this mode, the LO behavior compromises phase noise at many offsets from the carrier in order to allow rapid measurement throughput when changing the center frequency or span. The term "fast tuning" refers to the time it takes to move the local oscillator to the start frequency and begin a sweep; this setting does not impact the actual sweep time in any way.

In this mode in PXA, the LO behavior compromises phase noise at offsets below 4 MHz in order to

Meas Setup

improve measurement throughput. The throughput is especially affected when moving the LO more than 2.5 MHz and up to 10 MHz from the stop frequency to the next start frequency.
(In models whose hardware does not provide for a fast tuning option, the settings for Best Close-in Phase Noise are used if Fast Tuning is selected. This gives the fastest possible tuning for that hardware set.)

Key Path	Meas Setup, PhNoise Opt
Example	FREQ:SYNT 3
State Saved	Saved in instrument state.
Readback	Fast Tuning. If manually selected the "Man" will be underlined.
Initial S/W Revision	Prior to A.02.00

ADC Dither

Accesses the menu to control the ADC Dither function. The dither function enhances linearity for low level signals at the expense of reduced clipping-to-noise ratio. The reduced clipping-to-noise ratio results in higher noise, because we work to ensure that the clipping level of the ADC relative to the front terminals remains unchanged with the introduction of dither, and this results in reduced ADC dynamic range. So making measurements with ADC dither gives you better amplitude linearity, but turning ADC dither off gives you a lower noise floor (better sensitivity).

With dither on, the third-order distortions are usually invisible for mixer levels below - 35 dBm . With dither off, these distortions can be visible, with typical power levels of -110 dBm referred to the mixer. Detection nonlinearity can reach 1 dB for dither off at mixer levels around -70 dBm and lower, while the specified nonlinearity is many times smaller with dither on.

When ADC Dither is on, the linearity of low-level signals is improved. The enhanced linearity is mostly improved scale fidelity. The linearity improvements of dither are most significant for RBWs of 3.9 kHz and less in swept mode, and FFT widths of 4 kHz and less in FFT mode.

The increased noise due to turning dither on is most significant in low band (0 to 3.6 GHz) with IF Gain set to Low, where it can be about 0.2 dB .

Key Path	Meas Setup	
Remote Command	[:SENSe] :ADC:DITHer [:STATe] OFF\|ON	HIGH [:SENSe] :ADC:DITHer [:STATe]?
Example	ADC:DITH:HIGH Sets the ADC dither setting to High ADC:DITH ON Sets the ADC dither setting to Medium In older instruments the "Medium" key was labeled "On" and the SCPI for this setting is NOT changing.	
Dependencies	In some models, the "High" parameter is not available. In some instruments, the HIGH parameter is honored and the HIGH state set, and returned to a query, but the Medium dither level is actually used.	

Preset	AUTO
Backwards Compatibility SCPI	The old command [:SENSe]:ADC:DITHer AUTO is aliased to
	[:SENSe]:ADC:DITHer:AUTO[:STATe] ON; because of this, the
	[:SENSe]:ADC:DITHer function cannot be a true Boolean, so the query,
	[:SENSe]:ADC:DITHer? returns OFF or ON (not 1 or 0 like a true Boolean)
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Auto

Sets the ADC dither to automatic. The analyzer then chooses the dither level according to which is most likely to be the best selection, based on other settings within the digital IF.

When in Auto, the analyzer sets the dither to Medium whenever the effective IF Gain is Low by this definition of IF Gain = Low:

- When Sweep Type = Swept, IF Gain = Low whenever Swept IF Gain is set to Low Gain, whether by autocoupling or manual selection.
- When Sweep Type = FFT, IF Gain = Low whenever FFT IF Gain is set to "Low Gain," which cannot happen by autocoupling.

Whenever the IF Gain is not low by this definition, Auto sets the dither to Off.

Key Path	Meas Setup, ADC Dither		
Remote Command	[:SENSe] : ADC:DITHer : AUTO[:STATe] OFF\|ON	0	1 [:SENSe] : ADC:DITHer :AUTO[:STATe]?
Example	ADC:DITH:AUTO ON		
Preset	ON		
State Saved	Saved in instrument state		
Readback	The "Auto" is underlined, and the readback value is whatever setting is auto-selected		
Initial S/W Revision	Prior to A.02.00		

High (Best Log Accy)

When ADC dither is set to High, the scale fidelity is especially good, most notably the relative scale fidelity. The tradeoff is that there is a modest loss of noise floor performance, up to about a decibel.

Key Path	Meas setup, ADC Dither
Example	ADC:DITH:HIGH
Readback	If manually selected, the readback is High, with the "Man" underlined
Initial S/W Revision	A.02.00

Meas Setup

Medium (Log Accy)

The Medium setting of ADC Dither (known as "On" in earlier versions of the instrument software) improves the linearity of low-level signals at the expense of some noise degradation.

Key Path	Meas setup, ADC Dither
Example	ADC:DITH:ON
Readback	If manually selected, the readback is Medium, with the "Man" underlined
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Off (Best Noise)

When ADC Dither is Off, the instrument noise floor is improved, because without the need to make room for the dither, you get a lower noise floor and better sensitivity.

Key Path	Meas setup, ADC Dither
Example	ADC:DITH:OFF
Readback	If manually selected, the readback is Off, with the "Man" underlined.
Initial S/W Revision	Prior to A.02.00

Swept IF Gain

To take full advantage of the RF dynamic range of the analyzer, there is an added switched IF amplifier with approximately 10 dB of gain. When you can turn it on without overloading the analyzer, the dynamic range is always better with it on than off. The Swept IF Gain key can be used to set the IF Gain function to Auto, or to High Gain (the extra 10 dB), or to Low Gain. These settings affect sensitivity and IF overloads.

This function is only active when in Swept sweeps. In FFT sweeps, the FFT IF Gain function is used instead.

Key Path	Meas Setup		
Remote Command	[:SENSe] : IF : GAIN : SWEPt [:STATe] OFF\|ON	0	1 [:SENSe] : IF:GAIN : SWEPt [: STATe] $?$
Example	IF:GAIN:SWEP ON		
Notes	where ON = high gain OFF = low gain		

Couplings	The 'auto' rules for Swept IF Gain depend on attenuation, preamp state, start and stop frequency and the setting of FFT IF Gain. Set the Swept IF Gain to High (On) when the total input attenuation is 0 dB, the preamp is off, the start frequency is 10 MHz or more, and the FFT IF Gain is autocoupled, or manually set to Autorange, or manually set to High. Also set the Swept IF Gain to High (On) when the total input attenuation is 2 dB or less, the preamp is on, the start frequency is 10 MHz or more, and the stop frequency is 3.6 GHz or less and the FFT IF Gain is autocoupled, or manually set to Autorange, or manually set to High. Under all other circumstances, set the Swept IF Gain to Low (Off). If the sweep type is Swept, the start frequency of the instrument is less than 10 MHz, and you put Swept IF Gain in Manual On, a warning condition is generated and remains in effect as long as this condition exists. The warning message is about a possible IF overload. As with most parameters with an AUTO state, AUTO COUPLE sets it to Auto, and setting any specific value (for example on or off) will set the AUTO state to false.
Preset	Auto after a Preset which yields Off unless the Preamp is on.
Auto and Off after Meas Preset.	

Auto

Activates the auto rules for Swept IF Gain

Key Path	Meas setup
Remote Command	[:SENSe]: IF:GAIN: SWEPt:AUTO[:STATe] OFF \mid ON $\|0\| 1$ [:SENSe]: IF:GAIN:SWEPt:AUTO[:STATe]?
Example	IF:GAIN:SWEP:AUTO ON
Preset	ON
Initial S/W Revision	Prior to A.02.00

Low Gain (Best for Large Signals)

Forces Swept IF Gain to be off.

Key Path	Meas setup, ADC Ranging
Example	IF:GAIN:SWEP OFF
State Saved	Saved in instrument state.
Readback	Low Gain

Meas Setup

Initial S/W Revision	Prior to A.02.00

High Gain (Best Noise Level)
Forces Swept IF Gain to be on.

Key Path	Meas setup, ADC Ranging
Example	IF:GAIN:SWEP ON
Dependencies	The High setting for Swept IF Gain is grayed out when FFT IF Gain is manually set to Low (not when Low is chosen by the auto-rules).
State Saved	Saved in instrument state.
Readback	High Gain
Initial S/W Revision	Prior to A.02.00

FFT IF Gain

Accesses the keys to set the ranging in the digital IF when doing FFT sweeps. When in Autorange mode, the IF checks its range once for every FFT chunk, to provide the best signal to noise ratio. You can specify the range for the best FFT speed, and optimize for noise or for large signals.

When the sweep type is FFT and this function is in Autorange, the IF Gain is set ON initially for each chunk of data. The data is then acquired. If the IF overloads, then the IF Gain is set OFF and the data is re-acquired. Because of this operation, the Auto setting uses more measurement time as the instrument checks/resets its range. You can get faster measurement speed by forcing the range to either the high or low gain setting. But you must know that your measurement conditions will not overload the IF (in the high gain range) and that your signals are well above the noise floor (for the low gain range), and that the signals are not changing.

Key Path	Meas Setup
Remote Command	$[$:SENSe]:IF:GAIN:FFT[:STATe] AUTOrange \mid LOW\|HIGH $[$:SENSe] : IF:GAIN:FFT[:STATe]?
Couplings	As with most parameters with an AUTO state, AUTO COUPLE sets it to Auto, which then picks AUTOrange, and setting any specific value (AUTOrange, LOW or HIGH) will set the AUTO state to false.
Preset	AUTOrange
State Saved	Saved in instrument state.
Readback Line	Autorange, High Gain or Low Gain
Initial S/W Revision	Prior to A.02.00

Auto

Allows the instrument to pick the FFT IF Gain method as appropriate. This "Auto" state is set by the

Auto Couple key, and it puts it in Autorange.

Key Path	Meas setup		
Remote Command	[:SENSe] : IF:GAIN:FFT:AUTO[:STATe] OFF\|ON	0	1 [:SENSe]: IF:GAIN:FFT:AUTO[:STATe]?
Example	IF:GAIN:FFT:AUTO ON		
Preset	ON		
State Saved	Saved in instrument state.		
Backwards Compatibility SCPI	DISPlay:WINDow[1]:TRACe:Y[:SCALe]:LOG:RANGe:AUTO		
Initial S/W Revision	Prior to A.02.00		

Autorange (Slower - Follows Signals)

Turns the ADC ranging to automatic which provides the best signal to noise ratio. Autorange is usually preferred over the manual range choices.

Key Path	Meas setup, FFT IF Gain
Example	IF:GAIN:FFT AUTOrange
State Saved	Saved in instrument state.
Readback	Autorange
Initial S/W Revision	Prior to A.02.00

Low Gain (Best for Large Signals)

Forces FFT IF Gain to be off.

Key Path	Meas setup, FFT IF Gain
Example	IF:GAIN:FFT LOW
State Saved	Saved in instrument state.
Readback	Low Gain
Initial S/W Revision	Prior to A.02.00

High Gain (Best Noise Level)

Forces FFT IF Gain to be on.

Key Path	Meas setup, FFT IF Gain
Example	IF:GAIN:FFT HIGH
Dependencies	The High setting for FFT IF Gain is grayed out when Swept IF Gain is manually set to Low (not when Low is chosen by the auto-rules).

Meas Setup

State Saved	Saved in instrument state.
Readback	High Gain
Initial S/W Revision	Prior to A.02.00

Analog Demod Tune \& Listen

The Analog Demod Tune \& Listen key opens the Analog Demod menu which contains keys to turn the demod function on and off and select modulation type. This key only appears if the N9063A Analog Demod personality, the N6141A or W6141A application, or Option EMC is installed and licensed.

When the function is on (set to AM, FM, or PM), the demodulated signal is fed to the analyzer's speaker. Muting and volume control functions are done through the standard Windows speaker volume control interface.

Key Path	Meas Setup		
Remote Command	[:SENSe] : DEMod AM\|FM	PM	OFF [:SENSe] : DEMod?
Example	DEM AM turns amplitude demodulation function ON		
Dependencies	When Tune \& Listen is turned on, all active traces are forced to use the same detector. CISPR detectors (QPD, EMI Avg, RMS Avg) and Tune \& Listen are mutually exclusive. No sound output will be heard if one of these detectors is selected.		
Preset	OFF		
State Saved	Saved in instrument state.		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.02.00		

AM

Pressing this key, when it is not selected, selects and activates the AM demodulation function. Pressing it a second time branches to the AM Demod menu where AM demodulation settings can be adjusted.

Key Path	Meas Setup, Analog Demod Tune\&Listen
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Channel BW (AM Demod)

Sets the RBW setting used by the hardware during the demodulation period in nonzero spans. Note that this is a separate parameter only for the demodulation function and does not affect the RBW setting in the BW menu which is used during the normal sweep. The flat top filter type must be used during the demodulation period. A 5 kHz Video Bandwidth filter is used.

In Zero Span, the instrument’s RBW \& VBW filters are used for the demodulation; thus, the Channel BW (and RBW filter type) will match those of the instrument. This allows gap-free listening. The Channel BW key is grayed out and the value displayed on the key matches the current RBW of the instrument. Upon leaving zero span, the non-zero-span setting of Channel BW is restored as well as the flattop filter type.

Key Path	Meas Setup, Analog Demod Tune\&Listen, AM
Remote Command	[:SENSe] : DEMod : AM: BANDwidth: CHANnel <freq> [:SENSe]: DEMod : AM: BANDwidth: CHANnel?
Example	DEM:AM:BAND:CHAN 200 kHz
Notes	This key/command is grayed out in zero span.
Dependencies	Unavailable in zero span.
Couplings	In zero span only, the value is set equal to the instrument's current RBW value and it displays that value on the softkey, but the softkey is grayed out.
Preset	30 kHz
State Saved	Saved in instrument state.
Min	390 Hz
Max	8 MHz
Initial S/W Revision	Prior to A.02.00
Default Unit	Hz

FM

Pressing this key, when it is not selected, selects and activates the FM demodulation function. Pressing it a second time branches to the FM Demod menu where FM demodulation settings can be adjusted.

Key Path	Meas Setup, Analog Demod Tune\&Listen
Example	DEM FM turns frequency demodulation function ON
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Channel BW (FM Demod)

Sets the RBW setting used by the hardware during the demodulation period in nonzero spans. Note that this is a separate parameter only for the demodulation function and does not affect the RBW setting in the BW menu which is used during the normal sweep. The flat top filter type must be used during the demodulation period. A 5 kHz Video Bandwidth filter is used.

In Zero Span, the instrument’s RBW \& VBW filters are used for the demodulation; thus, the Channel BW (and RBW filter type) will match those of the instrument. This allows gap-free listening. The Channel BW key is grayed out and the value displayed on the key matches the current RBW of the instrument. Upon leaving zero span, the previous setting of Channel BW and the flattop filter type are

Meas Setup

restored.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM
Remote Command	[:SENSe]: DEMod:FM:BANDwidth:CHANnel <freq> [:SENSe]: DEMod:FM: BANDwidth:CHANnel?
Example	DEM:FM:BAND:CHAN 200 MHz
Notes	This key / command is grayed out in zero span
Dependencies	Unavailable in zero span.
Couplings	In zero span only, the value is set equal to the instrument's current RBW value and it displays that value on the softkey, but the softkey is grayed out.
Preset	150 kHz
State Saved	Saved in instrument state.
Min	390 Hz
Max	8 MHz
Initial S/W Revision	Prior to A.02.00
Default Unit	Hz

De-emphasis (FM Demod only)

The De-emphasis setting controls a single-pole filter ($6 \mathrm{~dB} /$ octave roll off), usually to counter intentional pre-emphasis in the transmitter. When De-emphasis state is OFF the hardware digital filter is bypassed, otherwise the setting is applied

The De-emphasis softkey is only available when FM is the demod selected. It is grayed out for AM and PM.

Key Path	Meas Setup, Analog Demod Tune \& Listen, FM		
Remote Command	$[$:SENSe]:DEMod:FM:DEEMphasis OFF IUS25\|US50	US75	US750 [:SENSe]:DEMod:FM:DEEMphasis?
Example	DEM:FM:DEEM US75 DEM:FM:DEEM?		
Dependencies	Only available in FM. Grayed out for AM and PM.		
Preset	US75 (recommended for US commercial FM 75 μ s pre-emphasis)		
State Saved	Saved in instrument state.		
Readback line	1-of-N selection		
Initial S/W Revision	Prior to A.02.00		

Off

This setting bypasses the De-emphasis filter.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM, De-emphasis
Example	DEM:FM:DEEM OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

$25 \mu \mathrm{~s}$

Sets the De-emphasis time constant to $25 \mu \mu \mathrm{~s}$.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM, De-emphasis
Example	DEM:FM:DEEM US25
Readback	$25 \mu \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

$50 \mu \mathrm{~s}$

Sets the De-emphasis time constant to $50 \mu \mathrm{~s}$.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM, De-emphasis
Example	DEM:FM:DEEM US50
Readback	$50 \mu \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

$75 \mu \mathrm{~s}$

Sets the De-emphasis time constant to $75 \mu \mathrm{~s}$.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM, De-emphasis
Example	DEM:FM:DEEM US75
Readback	$75 \mu \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

$750 \mu \mathrm{~s}$

Sets the De-emphasis time constant to $750 \mu \mathrm{sec}$.

Key Path	Meas Setup, Analog Demod Tune\&Listen, FM, De-emphasis
Example	DEM:FM:DEEM US750

Meas Setup

Readback	$750 \mu \mathrm{~s}$
Initial S/W Revision	Prior to A.02.00

PM

Pressing this key, when it is not selected, selects and activates the PM demodulation function. Pressing it a second time branches to the PM Demod menu where PM demodulation settings can be adjusted.

Key Path	Meas Setup, Analog Demod Tune\&Listen
Example	DEM PM turns Phase demodulation function ON
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Channel BW (PM Demod)

Sets the RBW setting used by the hardware during the demodulation period in nonzero spans. Note that this is a separate parameter only for the demodulation function and does not affect the RBW setting in the BW menu which is used during the normal sweep. The flat top filter type must be used during the demodulation period. A 5 kHz Video Bandwidth filter is used.

In Zero Span, the instrument’s RBW \& VBW filters are used for the demodulation; thus, the Channel BW (and RBW filter type) will match those of the instrument. This allows gap-free listening. The Channel BW key is grayed out and the value displayed on the key matches the current RBW of the instrument. Upon leaving zero span, the previous setting of Channel BW and the flattop filter type are restored.

Key Path	Meas Setup, Analog Demod Tune\&Listen, m
Remote Command	[:SENSe]:DEMod:PM:BANDwidth:CHANnel <freq> [:SENSe]: DEMod:PM: BANDwidth:CHANnel?
Example	DEM:PM:BAND:CHAN 200 MHz
Notes	This key / command is grayed out in zero span
Dependencies	Unavailable in zero span.
Couplings	In zero span only, the value is set equal to the instrument's current RBW value and it displays that value on the softkey, but the softkey is grayed out.
Preset	100 kHz
State Saved	Saved in instrument state.
Min	390 Hz
Max	8 MHz
Initial S/W Revision	Prior to A.02.00
Default Unit	Hz

Off

Pressing this key, turns the demodulation function off.

Key Path	Meas Setup, Analog Demod Tune\&Listen
Example	DEM OFF turns the demodulation function OFF
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Demod Time

Sets the amount of time the instrument demodulates the signal after each sweep. The demodulated signal can be heard through the speaker during demodulation. In zero span, demodulation can be performed continuously, making this parameter not applicable, hence it is grayed out in zero span.

Key Path	Meas Setup, Analog Demod Tune\&Listen
Remote Command	$[:$ SENSe] :DEMod:TIME <time> $[: S E N S e]:$ DEMod:TIME?
Example	DEM:TIME 500 ms DEM:TIME?
Notes	This key / command is grayed out in zero span
Dependencies	Unavailable in zero span.
Preset	500 ms
State Saved	Saved in instrument state.
Min	2 ms
Max	100 s
Initial S/W Revision	Prior to A.02.00

Demod State (Remote Command Only)

Sets or queries the state of the Analog Demod Tune and Listen function. Setting the state to ON with this command will select AM demodulation by default and activate it (turn it on).

The response to the query is determined by the current setting of [:SENSE]:DEMod AM|FM|PM|OFF. The response will be 1 if AM, FM, PM are selected, or 0 if OFF is selected..

Remote Command	$[:$ SENSe]:DEMod:STATe OFF $\|O N\| 0 \mid 1$ $[: S E N S e]: D E M o d: S T A T e ? ~$
Preset	OFF
Initial S/W Revision	Prior to A.02.00

Meas Setup

Noise Source

This menu allows you to turn the noise source power on or off when making manual noise figure measurements.

See "More Information" on page 738.

Key Path	Meas Setup
Remote Command	:SOURce : NOISe: TYPE NORMal I SNS :SOURce : NOISe: TYPE?
Example	SOUR:NOIS:TYPE NORM
Couplings	If no SNS is connected, this parameter will be set to "Normal" When Type is set to "SNS" and the SNS is disconnected, this parameter gets bumped to "Normal" When an SNS is not connected, the SNS type will be grayed (disabled).
Preset	Normal
State Saved	Saved in instrument state.
Range	Normal \| SNS
Remote Compatibility Info	In previous Noise Figure analysis applications, this command could optionally be preceded with the :SENSe keyword. The optional :SENSe keyword is no longer supported.
Initial S/W Revision	Prior to A.02.00

More Information

There are 2 types of noise sources: a Smart Noise Source (SNS), and a "Normal" noise source - e.g. 346 series. This menu allows the user to control both. The SNS has its own connector on the rear of the analyzer and when it is connected the user can then select it from the "Type" 1 of N , allowing the State parameter to then control the SNS. The "Normal" source is controlled by a BNC connector that supplies 28 V . If SNS is NOT connected then the "state" parameter controls the "Normal" noise source 28 V BNC port. If both are connected the "Type" parameter will determine which source the "State" parameter will control. Two sources can never be controlled together. The "SNS attached" SCPI query detailed below can be used remotely to determine if an SNS is connected. SNS functionality is limited to turning on and off only. The SNS ENR data and temperature cannot be queried, unless the Noise Figure application is installed. The SNS ENR data is issued in printed form when an SNS is purchased or can be read from the analyzer's Noise Figure application if installed, or other Agilent noise figure instruments that support the SNS (NFA and ESA with option 219).

When first entering the Swept SA measurement the "State" will be set to OFF and the 28v BNC drive and SNS turned off to ensure the two are in sync. When the Swept SA measurement is exited, the "State" parameter will be set to OFF and the 28 v BNC and SNS drive turned off.

For making manual noise figure measurements the following setup is recommended:

- Set the SPAN to Zero
- Set attenuation to 0 dB
- Set the PRE-AMP ON
- Set the RBW to 4 MHz
- Set the Detector to AVERAGE
- Set the sweep time to 16 ms - sets the variance correctly for good results.
- Set a Band/Interval Power Marker function and set the interval over the full width of trace i.e. Left to 0 s and Right to 16 ms

State

This key turns the Noise Source on and off.

Key Path	Meas Setup		
Remote Command	```:SOURce:NOISe[:STATe] ON\|OFF	1	0 :SOURce:NOISe[:STATe]?```
Example	SOUR:NOIS OFF		
Couplings	1. If an SNS is connected, and the Type is set to SNS, this parameter turns the SNS on and off. 2. When an SNS is not connected this parameter turns the BNC 28 V output on and off. 3. When the SA mode is first entered this parameter is set to OFF and the 28 v drive turned OFF. 4. When the SA mode is exited this parameter is set to OFF and the $28 v$ drive turned OFF.		
Preset	OFF		
State Saved	Saved in instrument state.		
Remote Compatibility Info	In previous Noise Figure analysis applications, this command could optionally be preceded with the :SENSe keyword. The optional :SENSe keyword is no longer supported.		
Initial S/W Revision	Prior to A.02.00		

SNS Attached (Remote Command Only)

If an Smart Noise Source (SNS) is present this command will return 1 otherwise it will return 0 .

Remote Command	:SOURce : NOISe: SNS: ATTached?
Example	SOUR:NOIS:SNS:ATT?
Preset	OFF
State Saved	No

Meas Setup

Remote Compatibility Info	In previous Noise Figure analysis applications, this command could optionally be preceded with the :SENSe keyword. The optional :SENSe keyword is no longer supported.
Initial S/W Revision	Prior to A.02.00

Meas Preset

This key returns the Meas Local variables in the Swept SA measurement to their preset values. This is the same as sending the SCPI command CONF:SAN.

The only exception is Limits On/Off, which is a persistent Meas Local variable. It will be set to Off by a Mode Preset but not by Meas Preset.

Key Path	Meas Setup
Initial S/W Revision	Prior to A.02.00

Mode

The Mode key allows you to select the available measurement applications or "Modes". Modes are a collection of measurement capabilities packaged together to provide an instrument personality that is specific to your measurement needs. Each application software product is ordered separately by Model Number and must be licensed to be available. Once an instrument mode is selected, only the commands that are valid for that mode can be executed.

NOTE
 Key operation can be different between modes. The information displayed in Help

 is about the current mode.To access Help for a different Mode you must first exit Help (by pressing the Cancel (Esc) key). Then select the desired mode and re-access Help.

For more information on Modes, preloading Modes, and memory requirements for Modes, see "More Information" on page 742

Key Path	Front panel key																											
Remote Command	:INSTrument[:SELect] SA\|BASIC	WCDMA	CDMA2K	EDGEGSM	PNOISE	CDMA1XEV	CWLAN	WIM AXOFDMA	CWIMAXOFDM	VSA	VSA89601	LTE	IDEN	WIMAXFIXED	LTE TDD	TDSCDMA	NFIGURE	ADEMOD	DVB	DTMB	ISDBT	CMMB	RLC	SCPI LC	SANalyzer	RECeiver	SEQAN	BT :INSTrument[:SELect]?
Example	:INST SA																											
Notes	The available parameters are dependent upon installed and licensed applications resident in the instrument. Parameters given here are an example, specific parameters are in the individual Application. A list of the valid mode choices is returned with the INST:CAT? Query.																											
Preset	Not affected by Preset. Set to SA following Restore System Defaults, if SA is the default mode.																											
State Saved	Saved in instrument state																											
Initial S/W Revision	Prior to A.02.00																											

Example	:INST 'SA'
Notes	NOTE: The query is not a quoted string. It is an enumeration as indicated in the Instrument Select table above.
	The command must be sequential: i.e. continued parsing of commands cannot proceed until the instrument select is complete and the resultant SCPI trees are available.

Mode

| Backwards Compatibility
 SCPI | :INSTrument[:SELect] 'SA'\|'PNOISE'|'EDGE'|'GSM'|'BASIC' |
| :--- | :--- |
| Initial S/W Revision | Prior to A.02.00 |

More Information

The Mode name appears on the banner after the word "Agilent" followed by the Measurement Title. For example, for the Spectrum Analyzer mode with the Swept Sa measurement running:

霊 Agilent Spectrum Analyzer - Swept SA

It is possible to specify the order in which the Modes appear in the Mode menu, using the Configure Applications utility (System, Power On, Configure Applications). It is also possible, using the same utility, to specify a subset of the available applications to load into memory at startup time, which can significantly decrease the startup time of the analyzer. During runtime, if an application that is not loaded into memory is selected (by either pressing that applications Mode key or sending that applications :INST:SEL command over SCPI), there will be a pause while the Application is loaded. During this pause a message box that says "Loading application, please wait..." is displayed.
Each application (Mode) that runs in the X-Series signal analyzers consumes virtual memory. The various applications consume varying amounts of virtual memory, and as more applications run, the memory consumption increases. Once an application is run, some of its memory remains allocated even when it is not running, and is not released until the analyzer program (xSA.exe) is shut down.

Agilent characterizes each Mode and assigns a memory usage quantity based on a conservative estimate. There is a limited amount of virtual memory available to applications (note that this is virtual memory and is independent of how much physical RAM is in the instrument). The instrument keeps track of how much memory is being used by all loaded applicationss - which includes those that preloaded at startup, and all of those that have been run since startup.

When you request a Mode that is not currently loaded, the instrument looks up the memory estimate for that Mode, and adds it to the residual total for all currently loaded Modes. If there is not enough virtual memory to load the Mode, a dialog box and menu will appear that gives you four options:

Close and restart the analyzer program without changing your configured preloads. This may free up enough memory to load the requested Mode, depending on your configured preloads

Clear out all preloads and close and restart the analyzer program with only the requested application preloaded, and with that application running. This choice is guaranteed to allow you to run the requested application; but you will lose your previously configured preloads. In addition, there may be little or no room for other applications, depending on the size of the requested application.

Bring up the Configure Applications utility in order to reconfigure the preloaded apps to make room for the applications you want to run (this will then require restarting the analyzer program with your new configuration). This is the recommended choice because it gives you full flexibility to select exactly what you want.

Exit the dialog box without doing anything, which means you will be unable to load the application you requested.

In each case except 4, this will cause the analyzer software to close, and you will lose all unsaved traces and results.

If you attempt to load a mode via SCPI that will exceed memory capacity, the Mode does not load and an error message is returned:
-225, "Out of memory;Insufficient resources to load Mode (mode name)" where "mode name" is the SCPI parameter for the Mode in question, for example, SA for Spectrum Analyzer Mode

Application Mode Number Selection (Remote Command Only)

Select the measurement mode by its mode number. The actual available choices depend upon which applications are installed in your instrument. The modes appear in this table by NSEL number, which is not the same as their order in the Mode menu (see "Detailed List of Modes" on page 747 for the mode order).

Mode	:INSTrument:NSELect <integer>	:INSTrument[:SELect] <parameter>
Spectrum Analyzer	1	SA
I/Q Analyzer (Basic)	8	BASIC
WCDMA with HSDPA/HSUPA	9	WCDMA
cdma2000	10	CDMA2K
GSM/EDGE/EDGE Evo	13	EDGEGSM
Phase Noise	14	PNOISE
1xEV-DO	15	CDMA1XEV
Combined WLAN	19	CWLAN
802.16 OFDMA (WiMAX/WiBro)	75	WIMAXOFDMA
Combined Fixed WiMAX	81	CWIMAXOFDM
Vector Signal Analyzer (VXA)	100	VSA
89601 VSA	101	VSA89601
LTE	102	LTE
iDEN/WiDEN/MotoTalk	103	IDEN
802.16 OFDM (Fixed WiMAX)	104	WIMAXFIXED
LTE TDD	105	LTETDD
EMI Receiver	141	EMI
TD-SCDMA with HSPA/8PSK	211	TDSCDMA
Noise Figure	219	NFIGURE
Bluetooth	228	BT
Analog Demod	234	ADEMOD

Mode

Mode	$:$ INSTrument:NSELect <integer>	:INSTrument[:SELect] <parameter>
DVB-T/H with T2	235	DVB
DTMB (CTTB)	236	DTMB
Digital Cable TV	238	DCATV
ISDB-T	239	ISDBT
CMMB	240	CMMB
Remote Language Compatibility	266	RLC
SCPI Language Compatibility	270	SCPILC
Sequence Analyzer	400	SEQAN

Remote Command	: INSTrument : NSELect <integer> $:$ INSTrument : NSELect?
Example	:INST:NSEL 1
Notes	SA mode is 1 The command must be sequential: i.e. continued parsing of commands cannot proceed until the instrument select is complete and the resultant SCPI trees are available.
Preset	Not affected by Preset. Set to default mode (1 for SA mode) following Restore System Defaults.
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Application Mode Catalog Query (Remote Command Only)

Returns a string containing a comma separated list of names of all the installed and licensed measurement modes (applications). These names can only be used with the :INSTrument[:SELect] command.

Remote Command	: INSTrument : CATalog?
Example	:INST:CAT?
Notes	Query returns a quoted string of the installed and licensed modes separated with a comma. Example: "SA,PNOISE,WCDMA"
Initial S/W Revision	Prior to A.02.00

Application Identification (Remote Commands Only)

Each entry in the Mode Menu will have a Model Number and associated information: Version, and

Options.

This information is displayed in the Show System screen. The corresponding SCPI remote commands are defined here.

Current Application Model

Returns a string that is the Model Number of the currently selected application (mode).

Remote Command	:SYSTem:APPLication[:CURRent][:NAME]?
Example	:SYST:APPL?
Notes	Query returns a quoted string that is the Model Number of the currently selected application (Mode). Example: "N9060A" String length is 6 characters.
Preset	Not affected by Preset
State Saved	Not saved in state, the value will be the selected application when a Save is done.
Initial S/W Revision	Prior to A.02.00

Current Application Revision

Returns a string that is the Revision of the currently selected application (mode).

Remote Command	:SYSTem:APPLication[:CURRent] :REVision?
Example	:SYST:APPL:REV?
Notes	Query returns a quoted string that is the Revision of the currently selected application (Mode). Example: "1.0.0.0" String length is a maximum of 23 characters. (each numeral can be an integer + 3 decimal points)
Preset	Not affected by a Preset
State Saved	Not saved in state, the value will be the selected application when a Save is done.
Initial S/W Revision	Prior to A.02.00

Current Application Options

Returns a string that is the Options list of the currently selected application (Mode).

Remote Command	:SYSTem : APPLication[:CURRent] : OPTion?
Example	:SYST:APPL:OPT?

Mode

Notes	Query returns a quoted string that is the Option list of the currently selected application (Mode). The format is the name as the *OPT? or SYSTem:OPTion command: a comma separated list of option identifiers. Example: "1FP,2FP" String length is a maximum of 255 characters.
Preset	Not affected by a Preset
State Saved	Not saved in state per se, the value will be the selected application when a Save is invoked.
Initial S/W Revision	Prior to A.02.00

Application Identification Catalog (Remote Commands Only)

A catalog of the installed and licensed applications (Modes) can be queried for their identification.

Application Catalog number of entries

Returns the number of installed and licensed applications (Modes).

Remote Command	:SYSTem:APPLication:CATalog[:NAME]:COUNt?
Example	:SYST:APPL:CAT:COUN?
Preset	Not affected by Preset
State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Application Catalog Model Numbers

Returns a list of Model Numbers for the installed and licensed applications (Modes).

Remote Command	:SYSTem:APPLication:CATalog[:NAME]?
Example	:SYST:APPL:CAT?
Notes	Returned value is a quoted string of a comma separated list of Model Numbers. Example, if SAMS and Phase Noise are installed and licensed: "N9060A,N9068A" String length is COUNt * 7 - 1. (7 = Model Number length + 1 for comma. -1 $=$ no comma for the 1st entry.)
Preset	Not affected by a Preset
State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Application Catalog Revision

Returns the Revision of the provided Model Number.

Remote Command	:SYSTem: APPLication:CATalog:REVision? <model>
Example	:SYST:APPL:CAT:REV? 'N9060A'
Notes	Returned value is a quoted string of revision for the provided Model Number. The revision will be a null-string ("") if the provided Model Number is not installed and licensed. Example, if SAMS is installed and licensed: $" 1.0 .0 .0 " ~$
Preset	Not affected by a Preset.
State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Application Catalog Options

Returns a list of Options for the provided Model Number

Remote Command	:SYSTem:APPLication: CATalog:OPTion? <model>
Example	:SYST:APPL:CAT:OPT? 'N9060A'
Notes	Returned value is a quoted string of a comma separated list of Options, in the same format as *OPT? or :SYSTem:OPTion?. If the provided Model Number is not installed and licensed a null-string ("") will be returned. Example, if SAMS is installed and licensed: "2FP" String length is a maximum of 255 characters.
Preset	Not affected bya Preset
State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Detailed List of Modes

Spectrum Analyzer

Selects the Spectrum Analyzer mode for general purpose measurements. There are several measurements available in this mode. General spectrum analysis measurements, in swept and zero span, can be done using the first key in the Meas menu, labeled Swept SA. Other measurements in the Meas Menu are designed to perform specialized measurement tasks, including power and demod measurements.

If you are using the Help feature, this mode must be currently active to access its detailed information. If

Mode

it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL SA INST:NSEL 1
Initial S/W Revision	Prior to A.02.00

EMI Receiver

The EMI Receiver Mode makes EMC measurements. Several measurements are provided to aid the user in characterizing EMC performance of their systems, including looking at signals with CISPR-16 compliant detectors, performing scans for interfering signals, and determining and charting interfering signals over time.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL EMI INST:NSEL 141
Initial S/W Revision	A.07.01

IQ Analyzer (Basic)

The IQ Analyzer Mode makes general purpose frequency domain and time domain measurements. These measurements often use alternate hardware signal paths when compared with a similar measurement in the Signal Analysis Mode using the Swept SA measurement. These frequency domain and time domain measurements can be used to output I/Q data results when measuring complex modulated digital signals.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL BASIC INST:NSEL 8
Initial S/W Revision	Prior to A.02.00

W-CDMA with HSDPA/HSUPA

Selects the W-CDMA with HSDPA/HSUPA mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode

Example	INST:SEL WCDMA INST:NSEL 9
Initial S/W Revision	Prior to A.02.00

GSM/EDGE/EDGE Evo

Selects the GSM with EDGE mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL EDGEGSM INST:NSEL 13
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

802.16 OFDMA (WiMAX/WiBro)

Selects the OFDMA mode for general purpose measurements of WiMAX signals. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL WIMAXOFDMA INST:NSEL 75
Initial S/W Revision	Prior to A.02.00

Vector Signal Analyzer (VXA)

The N9064A (formerly 89601X) VXA Vector signal and WLAN modulation analysis application provides solutions for basic vector signal analysis, analog demodulation, digital demodulation and WLAN analysis. The digital demodulation portion of N9064A allows you to perform measurements on standard-based formats such as cellular, wireless networking and digital video as well as general purpose flexible modulation analysis for wide range of digital formats, FSK to 1024QAM, with easy-to-use measurements and display tools such as constellation and eye diagram, EVM traces and up to four simultaneous displays. The WLAN portion of N9064A allows you to make RF transmitter measurements on $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{p} / \mathrm{j}$ WLAN devices. Analog baseband analysis is available using the MXA with option BBA.

N9064A honors existing 89601X licenses with all features and functionalities found on X-Series software versions prior to A.06.00.

If you are using the Help feature, this mode must be currently active to access its detailed information. If

Mode

it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL VSA INST:NSEL 100
Initial S/W Revision	Prior to A.02.00

Phase Noise

The Phase Noise mode provides pre-configured measurements for making general purpose measurements of device phase noise.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL PNOISE
	or
	INST:NSEL 14
Initial S/W Revision	Prior to A.02.00

Noise Figure

The Noise Figure mode provides pre-configured measurements for making general purpose measurements of device noise figure.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL NFIGURE
	Or INST:NSEL 219
Initial S/W Revision	Prior to A.02.00

Analog Demod

Selects the Analog Demod mode for making measurements of AM, FM and phase modulated signals.
If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode

Example	INST:SEL ADEMOD INST:NSEL 234
Initial S/W Revision	Prior to A.02.00

Bluetooth

Selects the Bluetooth mode for Bluetooth specific measurements. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL BT INST:NSEL 228
Initial S/W Revision	A.06.01

TD-SCDMA with HSPA/8PSK

Selects the TD-SCDMA mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL TDSCDMA INST:NSEL 211
Initial S/W Revision	Prior to A.02.00

cdma2000

Selects the cdma2000 mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL CDMA2K INST:NSEL 10
Initial S/W Revision	Prior to A.02.00

Mode

1xEV-DO

Selects the 1xEV-DO mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL CDMA1XEV INST:NSEL 15
Initial S/W Revision	Prior to A.02.00

LTE

Selects the LTE mode for general purpose measurements of signals following the LTE FDD standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL LTE INST:NSEL 102
Initial S/W Revision	Prior to A.02.00

LTE TDD

Selects the LTE TDD mode for general purpose measurements of signals following the LTE TDD standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL LTETDD INST:NSEL 105
Initial S/W Revision	A.03.00

DVB-T/H with T2

Selects the DVB-T/H mode for measurements of digital video signals using this format. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If
it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL DVB INST:NSEL 235
Initial S/W Revision	A.02.00
Modified at S/W Revision	A.07.00

DTMB (CTTB)

Selects the DTMB (CTTB) mode for measurements of digital video signals using this format. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL DTMB INST:NSEL 236
Initial S/W Revision	A.02.00

ACATV

Selects the ACATV mode for measurements of analog cable television systems. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL ACATV INST:NSEL 237
Initial S/W Revision	A.08.00

Digital Cable TV

Selects the Digital Cable TV mode for measurements of digital cable television systems. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode

Mode

Example	INST:SEL DCATV INST:NSEL 238
Initial S/W Revision	A.07.00

ISDB-T

Selects the ISDB-T mode for measurements of digital video signals using this format. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL ISDBT INST:NSEL 239
Initial S/W Revision	A.03.00

CMMB

Selects the CMMB mode for measurements of digital video signals using this format. There are several power and demod measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL CMMB INST:NSEL 240
Initial S/W Revision	A.03.00

Combined WLAN

Selects the CWLAN mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL CWLAN INST:NSEL 19
Initial S/W Revision	A.02.00

Combined Fixed WiMAX

Selects the Combined Fixed WiMAX mode for general purpose measurements of signals following this standard. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL CWIMAXOFDM INST:NSEL 81
Initial S/W Revision	A.02.00

802.16 OFDM (Fixed WiMAX)

Selects the 802.16 OFDM (Fixed WiMAX) mode. This mode allows modulation quality measurements of signals that comply with IEEE 802.16a-2003 and IEEE 802.16-2004 standards, with flexibility to measure nonstandard OFDM formats. Along with the typical digital demodulation measurement results, several additional 802.16 OFDM unique trace data formats and numeric error data results provide enhanced data analysis.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL WIMAXFIXED INST:NSEL 104
Initial S/W Revision	A.02.00

iDEN/WiDEN/MOTOTalk

Selects the iDEN/WiDEN/MOTOTalk mode for general purpose measurements of iDEN and iDEN-related signals. There are several measurements available in this mode.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL IDEN INST:NSEL 103
Initial S/W Revision	A.02.00

Remote Language Compatibility

The Remote Language Compatibility (RLC) mode provides remote command backwards compatibility for the 8560 series of spectrum analyzers, known as legacy spectrum analyzers.

Mode

NOTE

After changing into or out of this mode, allow a 1 second delay before sending any subsequent commands.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL RLC
	Or
	INST:NSEL 266
Initial S/W Revision	Prior to A.02.00

SCPI Language Compatibility

The SCPI Language Compatibility mode provides remote language compatibility for SCPI-based instruments, such as the Rohde and Schwartz FSP and related series of spectrum analyzers.

NOTE

After changing into or out of this mode, allow a 1 second delay before sending any subsequent commands.

If you are using the Help feature, this mode must be currently active to access its detailed information. If it is not active, exit the Help feature (Esc key), select the mode, and re-access Help.

Key Path	Mode
Example	INST:SEL SCPILC
	Or INST:NSEL 270
Initial S/W Revision	A.06.00

89601 VSA

Selecting the 89601 VSA mode will start the 89600 -Series VSA software application. The 89600 VSA software is powerful, PC-based software, offering the industry's most sophisticated general purpose and standards specific signal evaluation and troubleshooting tools for the R\&D engineer. Reach deeper into signals, gather more data on signal problems, and gain greater insight.

- Over 30 general-purpose analog and digital demodulators ranging from 2FSK to 1024QAM
- Standards specific modulation analysis including:
- Cell: GSM, cdma2000, WCDMA, TD-SCDMA and more
- Wireless networking: 802.11a/b/g, 802.11n, 802.16 WiMAX (fixed/mobile), UWB
- RFID
- Digital satellite video and other satellite signals, radar, LMDS
- Up to 400K bin FFT, for the highest resolution spectrum analysis
- A full suite of time domain analysis tools, including signal capture and playback, time gating, and CCDF measurements
- Six simultaneous trace displays and the industry's most complete set of marker functions
- Easy-to-use Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ graphical user interface

For more information see the Agilent 89600 Series VSA web site at www.agilent.com/find/89600
To learn more about how to use the 89600 VSA running in the X-Series, after the 89600 VSA application is running, open the 89600 VSA Help and open the "About Agilent X-Series Signal Analyzers (MXA/EXA) with 89600-Series Software" help topic.

Key Path	Mode
Example	INST:SEL VSA89601 INST:NSEL 101
Initial S/W Revision	Prior to A.02.00

EMI Receiver Aliases (Remote Command Only)

The following commands are translated to the specified X-Series instrument commands, in order to emulate EMI Receiver products from other manufacturers

Example	INST:SEL SANalyzer
Notes	When this command is received, the analyzer aliases it to the following: INST:SEL SCPILC This results in the analyzer being placed in SCPI Language Compatibility Mode, in order to emulate the ESU Spectrum Analyzer Mode.
Initial S/W Revision	A.07.00

Example	INST:SEL RECeiver
Notes	When this command is received, the analyzer aliases it to the following: :INST:SEL EMI :CONF FSC This results in the analyzer being placed in the EMI Receiver Mode, running the Frequency Scan measurement, in order to emulate the ESU Receiever Mode.
Initial S/W Revision	A.07.00

Global Settings

Opens a menu that allows you to switch certain Meas Global parameters to a Mode Global state. These

Mode

switches apply to all Modes that support global settings. No matter what Mode you are in when you set the "Global Center Frequency" switch to on, it applies to all Modes that support Global Settings.

Key Path	Front Panel Key
Initial S/W Revision	Prior to A.02.00

Global Center Freq

The software maintains a Mode Global value called "Global Center Freq".
When the Global Center Freq key is switched to On in any mode, the current mode's center frequency is copied into the Global Center Frequency, and from then on all modes which support global settings use the Global Center Frequency. So you can switch between any of these modes and the Center Freq will remain unchanged.

Adjusting the Center Freq of any mode which supports Global Settings, while Global Center Freq is On, will modify the Global Center Frequency.

When Global Center Freq is turned Off, the Center Freq of the current mode is unchanged, but now the Center Freq of each mode is once again independent.

When Mode Preset is pressed while Global Center Freq is On, the Global Center Freq is preset to the preset Center Freq of the current mode.

This function is reset to Off when the Restore Defaults key is pressed in the Global Settings menu, or when System, Restore Defaults, All Modes is pressed.

Key Path	Mode Setup, Global Settings
Scope	Mode Global
Remote Command	: INSTrument : COUPle:FREQuency : CENTer ALL \|NONE : INSTrument : COUPle:FREQuency : CENTer?
Example	INST:COUP:FREQ:CENT ALL INST:COUP:FREQ:CENT?
Preset	Set to Off on Global Settings, Restore Defaults and System, Restore Defaults, All Modes
Range	On\|Off
Initial S/W Revision	Prior to A.02.00

| Remote Command | :GLOBal:FREQuency: CENTer[:STATe] 1\|0|ON|OFF
 :GLOBal:FREQuency: CENTer[:STATe]? |
| :--- | :--- |
| Preset | Off |
| Initial S/W Revision | Prior to A.02.00 |

Restore Defaults

This key resets all of the functions in the Global Settings menu to Off. This also occurs when System, Restore Defaults, All Modes is pressed.

Key Path	Mode Setup, Global Settings
Remote Command	: INSTrument : COUPle: DEFault
Example	INST:COUP:DEF
Backwards Compatibility SCPI	:GLOBal:DEFault
Initial S/W Revision	Prior to A.02.00

Mode

Mode Setup

This key accesses a menu allowing you to set various parameters for all iDEN/WiDEN/MotoTalk Analyzer measurements.

Key Path:	Front Panel
Mode:	IDEN
Instrument S/W Revision:	A.02.00

Spectrum

This function determines if the spectrum of the incoming data is mirrored or not. The actual mirroring is accomplished by conjugating the complex time data.

Key Path:	Mode
Mode:	IDEN
Remote Command:	$[:$ SENSe] : SPECtrum NORMal\|INVert
	$[:$ SENSe] : SPECtrum?
Example:	SPEC INV
	SPEC?
Preset:	NORM
State Saved:	Saved in instrument state.
Range:	Normal \| Invert
Instrument S/W Revision:	A. 02.00

Fixed Equalization

Fixed Equalization allows you to apply a fixed FIR (finite-impulse-response) equalization filter to the time data, before it is used in further analysis. You define the filter by its frequency response rather than by its impulse response. The frequency response must be stored in a data register.

Key Path:	Mode Setup
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Fixed EQ Mode

This allows you to turn fixed equalization OFF, ON in normal mode, or ON in inverted mode. The effect of Normal mode is to divide the spectrum of the unequalized data by the frequency response in the data

Mode Setup

register. Invert mode multiplies instead of dividing.

Key Path:	Mode Setup, Fixed Equalization	
Mode:	IDEN	
Remote Command:	$[:$ SENSe]:CORRection:FEQualizer OFF \|NORMal	INVert
	$[:$ SENSe]:CORRection:FEQualizer?	
Example:	CORR:FEQ NORM	
	CORR:FEQ?	
Preset:	OFF	
State Saved:	Saved in instrument state.	
Range:	Off \| Normal	Invert
Instrument S/W Revision:	A.02.00	

Freq Response Register

This allows you to choose a register that contains the frequency response information for fixed equalization.

Key Path:	Mode Setup, Fixed Equalization				
Mode:	IDEN				
Remote Command:	$[:$ SENSe $]:$ CORRection: FEQualizer : REGister				
	D1\|D2	D3	D4	D5	D6
	[:SENSe]:CORRection:FEQualizer : REGister?				
	CORR:FEQ:REG D2				
Example:	CORR:FEQ:REG?				
	D1				
Preset:	Saved in instrument state.				
State Saved:	Data 1\| Data 2	Data 3	Data 4	Data 5	Data 6
Range:	A.02.00				

Fixed Equalization Mapping

This read-only SCPI function allows you to determine if fixed equalization is applied using relative or absolute frequency mapping between the current measurement span and the span of the frequency response data in the chosen register.

If possible, the equalizer response is defined using the portion of the register data that falls within the current measurement span. For example, if the data register covers frequencies from 200 MHz to 236 MHz , and the measurement span is 6 MHz wide centered at 210 MHz , then the register data from 207 MHz to 213 MHz is used to define the equalizer response. This is an example of absolute frequency mapping.

If the same register data is used but measurement center frequency is then changed to 70 MHz , then relative frequency mapping must be used. The center frequency of the register data is mapped to the measurement center frequency, and an equivalent span of data is taken. In this example, register data from 215 MHz to 221 MHz is used as though it covered a frequency span of 67 MHz to 73 MHz .

Relative frequency mapping is used if part, or the entire measurement span falls outside the data register's frequency span. It can be desirable when measuring across frequency converters, but should be used with caution. Be careful to use a measurement span that is equal to or narrower than the span of the data register.

Mode:	IDEN
Remote Command:	[:SENSe]:CORRection:FEQualizer : RELative?
Example:	CORR:FEQ:REL?
Notes:	Returns 1 if fixed equalizer frequency mapping is relative; 0 otherwise.
Instrument S/W Revision:	A. 02.00

Radio Standards

The iDEN/WiDEN/MotoTalk Analyzer is used for testing iDEN, WiDEN and MotoTalk radio standards.
This menu accesses the modulation format selections and global parameters for the iDEN/WiDEN standards.
Key Path: Mode Setup

Instrument S/W Revision: A.02.00

MQAM Format

This softkey selects the submenu for the MQAM modulation format.

Key Path:	Mode Setup, iDEN/WiDEN	
Mode:	IDEN	
Remote Command:	[:SENSe]:RADio: IDEN:FORMat M4QAM\|M16QAM	M64QAM
	[:SENSe]:RADio: IDEN: FORMat?	
Example:	:RAD:IDEN:FORM M16QAM	
Couplings:	No	
Preset:	M16QAM	
State Saved:	Saved in instrument state.	
Range:	M4QAM \| M16QAM	M64QAM
Instrument S/W Revision:	A.02.00	

Mode Setup

M4QAM This softkey selects M4QAM MQAM Modulation Format.

Key Path:	Mode Setup, iDEN/WiDEN, MQAM Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00
M16QAM This softkey selects M16QAM MQAM Modulation Format.	
Key Path:	Mode Setup, iDEN/WiDEN, MQAM Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

M64QAM This softkey selects M64QAM MQAM Modulation Format.

Key Path:	Mode Setup, iDEN/WiDEN, MQAM Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Slot Format

This softkey selects the submenu for the iDEN or WiDEN slot format.

Key Path:	Mode Setup, iDEN/WiDEN						
Mode:	IDEN						
Remote Command:	[:SENSe]:RADio:IDEN:SLOT TCHFull\|RAP	TCHN61	TCHN61T	TCHE61	WIDen	OTCFull	OTCN61 [:SENSe]:RADio:IDEN:SLOT?
Example:	:RAD:IDEN:SLOT TCHF						
Couplings:	Changing this to/from iDEN and WiDEN slot formats when the WiDEN Carrier Config is wider than 25 kHz will cause the Span to be changed to accommodate the different bandwidth signal. Changing to an Outbound Slot Format from an Inbound Slot Format will cause the Free Run trigger to be selected and Search Length preset to accommodate slot latency. The X Scaling of the PvT Rise \& Fall displays may also be changed as necessary for proper viewing of these regions.						
Preset:	TCHFull						
State Saved:	Saved in instrument state.						

Range:	Full Slot Reserved (Inbound) \mid Random Access (Inbound) \mid New 6:1 Reserved
	Pseudo (Inbound) \mid New 6:1 Reserved Training (Inbound) \mid Full Slot
	Enhanced 6:1 (Inbound) \mid WiDEN (Inbound) \mid Full Slot Reserved (Outbound) \mid
	New 6:1 Reserved (Outbound)
Readback Text:	In Full Slot Reserved \| In Random Access \mid In New 6:1 Res Pseudo \mid In New
	6:1 Res Training \mid In Full Slot Enhanced 6:1\| In WiDEN \mid Out Full Slot
	Reserved \mid Out New 6:1 Reserved
Instrument S/W Revision:	A.02.00

Mapping between the Key Name and the SCPI parameter:

Key Name	SCPI
Full Slot Reserved (Inbound)	TCHFull
Full Slot Random Access (Inbound)	RAPFull
New 6:1 Reserved Pseudo (Inbound)	TCHN61
New 6:1 Reserved Training (Inbound)	TCHN61T
Full Slot Enhanced 6:1 (Inbound)	TCHE61
WiDEN (Inbound)	WIDen
Full Slot Reserved (Outbound)	OTCFull
New 6:1 Reserved (Outbound)	OTCN61

Full Slot Reserved (Inbound) This softkey selects the Full Slot Reserved Access iDEN Inbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Random Access (Inbound) This softkey selects the Random Access iDEN Inbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

New 6:1 Reserved Pseudo (Inbound) This softkey selects the New 6:1 Reserved Access iDEN Inbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN

Mode Setup

Instrument S/W Revision: A.02.00
New 6:1 Reserved Training (Inbound) This softkey selects the Full Slot Reserved with Training iDEN Inbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Full Slot Enhanced 6:1 (Inbound) This softkey selects the Full Slot Enhanced iDEN Inbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

WiDEN (Inbound) This softkey selects the Inbound WiDEN Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

Full Slot Reserved (Outbound) This softkey selects the Full Slot Reserved Access iDEN Outbound Slot Format.

Key Path:	Mode Setup, iDEN/WiDEN, Slot Format, More
Mode:	IDEN
Instrument S/W Revision:	A. 02.00

New 6:1 Reserved (Outbound) This softkey selects the New 6:1 Reserved Access iDEN Outbound Slot Format.

Key Path:
Mode:
Instrument S/W Revision:

Mode Setup, iDEN/WiDEN, Slot Format, More
IDEN
A. 02.00

Color Code

The color code is an integer denoting the 16 value color and the color code extension.

Key Path:
Mode Setup, iDEN/WiDEN

Mode:	IDEN
Remote Command:	$[: S E N S e]:$ RADio: IDEN:CCODe <integer>
	$[: S E N S e]:$ RADio: IDEN: CCODe?
Example:	:RAD:IDEN:CCOD 0
Notes:	Set this parameter to Color Code Extension*16 + Color Code
Preset:	0
State Saved:	Saved in instrument state.
Min:	0
Max:	95
Instrument S/W Revision:	A. 02.00

Carrier Config

Carrier Config is used only when WiDEN slot formats are active, it is ignored (grayed out) for other slot formats.

Key Path:	Mode Setup, iDEN/WiDEN			
Mode:	IDEN			
Remote Command:	[:SENSe]:RADio:IDEN:WCARrier I25\|I50	050	I75	I100
	[:SENSe]:RADio:IDEN:WCARrier?			
Example:	:RAD:IDEN:WCAR I25			
Couplings:	The Span is adjusted to accommodate the WiDEN carriers.			
Preset:	I25			
State Saved:	Saved in instrument state.			
Range:	25 kHz \| 50 kHz	50 kHz Outer	75 kHz	100 kHz
Instrument S/W Revision:	A.02.00			

$25 \mathbf{k H z}$ This softkey selects the 25 kHz WiDEN Carrier Config.

Key Path:	Mode Setup, iDEN/WiDEN, Carrier Config
Mode:	IDEN
Example:	$:$ RAD:IDEN:WCAR I25
Instrument S/W Revision:	A. 02.00

$50 \mathbf{k H z}$ This softkey selects the 50 kHz WiDEN Carrier Config.

Key Path: Mode Setup, iDEN/WiDEN, Carrier Config

Mode Setup

Mode:	IDEN
Example:	:RAD:IDEN:WCAR I50
Instrument S/W Revision:	A.02.00

$\mathbf{5 0} \mathbf{~ k H z}$ Outer This softkey selects the 50 kHz Outer WiDEN Carrier Config (sometimes called 100 kHz Outer WiDEN Carrier Config).

Key Path:
Mode:
Example:
Instrument S/W Revision:

Mode Setup, iDEN/WiDEN, Carrier Config
IDEN
:RAD:IDEN:WCAR O50
A. 02.00
$75 \mathbf{k H z}$ This softkey selects the 75 kHz WiDEN Carrier Config.

Key Path:	Mode Setup, iDEN/WiDEN, Carrier Config
Mode:	IDEN
Example:	:RAD:IDEN:WCAR I75
Instrument S/W Revision:	A. 02.00

$100 \mathbf{k H z}$ This softkey selects the 100 kHz WiDEN Carrier Config.

Key Path:	Mode Setup, iDEN/WiDEN, Carrier Config
Mode:	IDEN
Example:	$:$ RAD:IDEN:WCAR I100
Instrument S/W Revision:	A. 02.00

Peak Search

Pressing the Peak Search key displays the Peak Search menu and places the selected marker on the trace point with the maximum y-axis value for that marker's trace. The Peak Search features allow you to define specific search criteria to determine which signals can be considered peaks, excluding unwanted signals from the search.

For all Peak Search functions, if you are in the Trace Zoom View of the Swept SA measurement, and the bottom window is selected, the search function will operate ONLY within that window. This allows you to perform a Peak Search over a specified, limited frequency range, while still viewing the larger frequency range in the top window.

See "More Information" on page 769.

Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$:MAXimum
Example	CALC:MARK2:MAX performs a peak search using marker 2.
	CALC:MARK2:Y? queries the marker amplitude (Y-axis) value for marker 2. CALC:MARK2:X? queries the marker frequency or time (X-axis) value for marker 2. SYST:ERR? can be used to query the errors to determine if a peak is found. The message "No peak found" will be returned after an unsuccessful search.
Notes	Sending this command selects the subopcoded marker.
Initial S/W Revision	Prior to A.02.00

More Information

The behavior of a Peak Search is dependent on settings under the Peak Criteria softkey on the second page of the menu. If Same as "Next Peak" Criteria is selected, and either Pk Excursion or Pk
Threshold are on, a signal must meet those criteriato be considered a peak. If no valid peak is found, a "No peak found" message is generated and the marker is not moved.. When Highest Peak is on, or both Pk Excursion and $\mathbf{P k}$ Threshold are off, the marker is always placed at the point on the trace with the maximum y-axis value, even if that point is on the very edge of the trace (exception: negative frequencies and signals close to the LO are not searched at all.

Pressing Peak Search with the selected marker off causes the selected marker to be set to Normal at the center of the screen, then a peak search is immediately performed.

Pressing the front panel Peak Search key always does a peak search. Occasionally, you may need to get to the Peak Search menu key functions without doing a peak search. You can do this by first accessing the Peak Search menu. Then go to the other menus that you need to access. Finally, you can get back to the Peak Search key menu by using the front panel Return key and pressing it as many times as required to navigate back through the previously accessed menus until you get back to the Peak Search menu.

Next Peak

Pressing Next Peak moves the selected marker to the peak that has the next highest amplitude less than

Peak Search

the marker's current value. Only peaks which meet all enabled peak criteria are considered. If there is no valid peak lower than the current marker position, a "No peak found" message is generated and the marker is not moved.

If the selected marker was off, then it is turned on as a normal marker and a peak search is performed.

Key Path	Peak Search
Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum: N EXT
Example	CALC:MARK2:MAX:NEXT Selects marker 2 and moves it to the peak that is closest in amplitude to the current peak, but the next lower value.
Notes	Sending this command selects the subopcoded marker.
State Saved	Not part of saved state.
Initial S/W Revision	Prior to A.02.00

Next Pk Right

Pressing Next Pk Right moves the selected marker to the nearest peak right of the current marker which meets all enabled peak criteria. If there is no valid peak to the right of the current marker position, a "No peak found" message is generated and the marker is not moved.

If the selected marker was off, then it is turned on as a normal marker and a peak search is performed.

Key Path	Peak Search
Remote Command	:CALCulate: MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum:R IGHt
Example	CALC:MARK2:MAX:RIGH Selects marker 2 and moves it to the next peak to the right of the current marker position.
Notes	Sending this command selects the subopcoded marker.
State Saved	Not part of saved state.
Initial S/W Revision	Prior to A.02.00

Next Pk Left

Pressing Next Pk Left moves the selected marker to the nearest peak left of the current marker which meets all enabled peak criteria. If there is no valid peak to the left of the current marker position, a "No peak found" message is generated and the marker is not moved.

If the selected marker was off, then it is turned on as a normal marker and a peak search is performed.

Key Path	Peak Search
Remote Command	:CALCulate :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum:L EFT

Example	CALC:MARK2:MAX:LEFT selects marker 2 and moves it to the next peak to the left of the current marker position.
State Saved	Not part of saved state.
Initial S/W Revision	Prior to A.02.00

Marker Delta

Performs the same function as the Delta 1-of-N selection key in the Marker menu. Basically this sets the control mode for the selected marker to Delta mode. See the Section "Marker" on page 631" for the complete description of this function. The key is duplicated here in the Peak Search Menu to allow you to conveniently perform a peak search and change the marker's control mode to Delta without having to access two separate menus.

Key Path	Peak Search or Marker
Notes	Whenever the selected marker is in Delta mode and you are in the Peak Search menu, the Marker Delta key should be highlighted and the active function for setting its delta value turned on.
Initial S/W Revision	Prior to A.02.00

Mkr->CF

Assigns the selected marker's frequency to the Center Frequency setting. See the Section "Marker To" on page 673 for the description of this function. The key is duplicated here in the Peak Search Menu to allow you to conveniently perform a peak search and marker to CF without having to access two separate menus.

Key Path	Peak Search or Marker ->
Dependencies	Same as specified under Marker To
Initial S/W Revision	Prior to A.02.00

Mkr->Ref Lvl

Assigns the selected marker’s level to the Reference Level setting. See the Section "Marker To" on page 673 for the description of this function. The key is duplicated here in the Peak Search Menu to allow you to conveniently perform a peak search and marker to RL without having to access two separate menus.

Key Path	Peak Search or Marker ->
Dependencies	Same as specified under Marker To
Initial S/W Revision	Prior to A.02.00

Peak Search

Peak Criteria

Pressing this key opens the Peak Criteria menu and allows you to adjust the Pk Threshold and Pk Excursion parameters used for peak search functions.

For a signal to be identified as a peak it must meet certain criteria. Signals in the negative frequency range and signals very close to 0 Hz are ignored. If either the peak excursion or peak threshold functions are on, then the signal must satisfy those criteria before being identified as a peak.

When peak excursion and peak threshold are both off:
Peak Search, Continuous Peak Search, and maximum part of Pk-Pk Search will search the trace for the point with the highest y-axis value which does not violate the LO feedthrough rules. A rising and falling slope are not required for these three peak search functions.

The remaining search functions Next Peak, Next Pk Right, etc. will only consider trace points which have a rising and falling slope on the left and right respectively.

Key Path	Peak Search
Initial S/W Revision	Prior to A.02.00

"Peak Search" Criteria

This menu lets you decide what kind of search you want to do when the Peak Search key is pressed (or the equivalent SCPI command sent).

Note that there are two "types" of peak search functions. One type is the "Peak Search" type, the other type is the "Next Peak" type. "Next Peak" searches (for example, Next Peak, Next Pk Left, Next Pk Right) are always checked using the Excursion and Threshold criteria as long as these criteria are On.The "Peak Search" type of search, simply finds the highest point on the trace. However you can change the "Peak Search" type of search so that it also uses the Excursion and Threshold criteria. This allows you to find the Maximum point on the trace that also obeys the Excursion and/or Threshold criteria.

When Highest Peak is selected, pressing Peak Search simply finds the highest peak on the marker's trace. If Same as "Next Peak" Criteria is selected, then the search is also forced to consider the Excursion and Threshold found under the "Next Peak" Criteria menu.

Key Path	Peak Search, Peak Criteria
Remote Command	:CALCulate:MARKer :PEAK: SEARch:MODE MAXimum\|PARameter :CALCulate:MARKer :PEAK:SEARch:MODE?
Notes	MAXimum corresponds to the Highest Peak setting PARameter corresponds to the Same as "Next Peak" Criteria setting
Preset	MAXimum
State Saved	Saved in instrument state.
Readback line	Current state
Initial S/W Revision	Prior to A.02.00

Highest Peak

When this key is selected, pressing the Peak Search key or issuing the equivalent SCPI command finds the maximum point on the trace, subject to the peak-search qualifications. This also affects the Peak Search half of Pk-Pk search and the Continuous Peak Search.

Key Path	Peak Search, Peak Criteria, "Peak Search" Criteria
Example	CALC:MARK:PEAK:SEAR:MODE MAX
Readback	Highest Peak
Initial S/W Revision	Prior to A.02.00

Same as "Next Peak" Criteria

When this key is selected, pressing the Peak Search key or issuing the equivalent SCPI command finds the maximum point on the trace, but subject to the Excursion and Threshold set under the Next Peak Criteria menu. The search is, of course, also subject to the peak-search qualifications. This also affects the Peak Search half of $\mathrm{Pk}-\mathrm{Pk}$ search and the Continuous Peak Search.

Key Path	Peak Search, Peak Criteria, "Peak Search" Criteria
Example	CALC:MARK:PEAK:SEAR:MODE PAR
Readback	Use Excurs \& Thr
Initial S/W Revision	Prior to A.02.00

"Next Peak" Criteria

This key opens up a menu which allows you to independently set the Peak Excursion and Peak Threshold and turn them on and off.

Key Path	Peak Search, Peak Criteria
Initial S/W Revision	Prior to A.02.00

Pk Excursion

Turns the peak excursion requirement on/off and sets the excursion value. The value defines the minimum amplitude variation (rise and fall) required for a signal to be identified as peak. For example, if a value of
6 dB is selected, peak search functions like the marker Next Pk Right function move only to peaks that rise and fall 6 dB or more.

When both Pk Excursion and Pk Threshold are on, a signal must rise above the Pk Threshold value by at least the Peak Excursion value and then fall back from its local maximum by at least the Peak
Excursion value to be considered a peak.

NOTE
In the event that a sequence of trace points with precisely the same values represents the maximum, the leftmost point is found.

Peak Search

See "More Information" on page 774.

Key Path	Peak Search, Peak Criteria, "Next Peak" Criteria		
Remote Command	:CALCulate:MARKer:PEAK:EXCursion <rel_ampl> :CALCulate:MARKer:PEAK:EXCursion? :CALCulate:MARKer:PEAK:EXCursion:STATe OFF\|ON	0	1 :CALCulate:MARKer:PEAK:EXCursion:STATe?
Example	:CALC:MARK:PEAK:EXC:STAT ON :CALC:MARK:PEAK:EXC 30 DB sets the minimum peak excursion requirement to 30 dB		
Dependencies	Available only when Y axis unit is amplitude units, otherwise grayed out.		
Couplings	Whenever you adjust the value of Pk Excursion (with the knob, step keys, or by completing a numeric entry), and Peak Threshold is turned ON, the Peak Threshold Line and the Peak Excursion Region are displayed.		
Preset	$6.0 \mathrm{~dB}$ ON		
Preset	$6.0 \mathrm{~dB}$ ON		
State Saved	Saved in instrument state		
Min	0.0 dB		
Max	100.0 dB		
Initial S/W Revision	Prior to A.02.00		

More Information

If two signals are very close together and the peak excursion and threshold criteria are met at the outside edges of the combined signals, this function finds the highest of these two signals as a peak (or next peak). However, if a signal appears near the edge of the screen such that the full extent of either the rising or falling edge cannot be determined, and the portion that is on screen does not meet the excursion criteria, then the signal cannot be identified as a peak.

When measuring signals near the noise floor, you can reduce the excursion value even further to make these signals recognizable. To prevent the marker from identifying noise as signals, reduce the noise floor variations to a value less than the peak-excursion value by reducing the video bandwidth or by using trace averaging.

Pk Threshold

Turns the peak threshold requirement on/off and sets the threshold value. The peak threshold value defines the minimum signal level (or min threshold) that the peak identification algorithm uses to recognize a peak.

When both Pk Excursion and Pk Threshold are on, a signal must rise above the Pk Threshold value by at
least the Peak Excursion value and then fall back from its local maximum by at least the Peak Excursion value to be considered a peak.

For example, if a threshold value of -90 dBm is selected, the peak search algorithm will only consider signals with amplitude greater than the -90 dBm threshold. If a threshold value of -90 dBm is selected, and Peak Excursion is On and set to 6 dB , the peak search algorithm will only consider signals with amplitude greater than the -90 dBm threshold which rise 6 dB above the threshold and then fall back to the threshold.

Key Path	Peak Search, Peak Criteria, "Next Peak Criteria"		
Remote Command	:CALCulate:MARKer:PEAK: THReshold <ampl> :CALCulate:MARKer:PEAK: THReshold? :CALCulate:MARKer :PEAK: THReshold:STATe OFF\|ON	0	1 :CALCulate:MARKer:PEAK: THReshold:STATe?
Example	CALC:MARK:PEAK:THR:STAT ON turns on the threshold criterion. CALC:MARK:PEAK:THR -60 dBm sets the threshold to -60 dBm.		
Dependencies	When Ref Level Offset changes, Peak Threshold must change by the same amount.		
Preset	-90.0 dBm ON		
State Saved	Saved in instrument state.		
Min	The current displayed Ref Level - 200 dB. The current displayed Ref Level is the current Ref Level, offset by the Ref Level Offset.		
Max	The current displayed Ref Level. This means the current Ref Level, offset by the Ref Level Offset.		
Initial S/W Revision	Prior to A.02.00		
Default Unit	depends on the current selected Y axis unit		

Pk Threshold Line

Turns the peak threshold line on or off. Preset state is off. No equivalent SCPI command.
See "More Information" on page 775.

Dependencies	If Peak Threshold is Off and the Peak Threshold line is turned on, it should turn on Peak Threshold.
Initial S/W Revision	Prior to A.02.00

More Information

The Peak Threshold line is green and has the value of the peak threshold (for example, "-20.3 dBm") written above its right side, above the line itself. If Peak Excursion is ON it shows on the left side as a region above the Peak Threshold line. As with all such lines (Display Line, Trigger Level line, etc) it is
drawn on top of all traces.

This function is automatically set to ON (thus turning on the Peak Threshold line) whenever the value of Peak Threshold or Peak Excursion becomes the active function, unless Peak Threshold is OFF. It is automatically set to OFF whenever Peak Threshold is set to OFF. Manually turning it ON automatically turns on Pk Threshold.

The Peak Excursion part is on whenever the Pk Threshold part is on, unless Peak Excursion is OFF.

Peak Table

Opens the Peak Table menu.
The Peak Table provides a displayed list of up to 20 signal peaks from the selected trace. If more than one trace window is displayed, the selected trace in the selected window is used. If there are more than 20 signals which meet the peak search criteria, only the 20 highest peaks are listed.

The Peak Table is updated after each sweep. The list of peaks in the Peak Table can be ordered either by ascending frequency or by descending amplitude. In either case, the entire trace is first evaluated and the 20 highest peaks are selected for inclusion in the list. After the peaks are selected, they are then sorted and displayed according to the Peak Sort setting.

Key Path	Peak Search
Initial S/W Revision	Prior to A.02.00

Peak Table On/Off

Turns Peak Table on/off. When turned on, the display is split into a measurement window and a peak
table display window.
Turning the Peak Table on turns the Marker Table off and vice versa.

Key Path	Peak Search, Peak Table
Remote Command	:CALCulate:MARKer :PEAK:TABLe: STATe OFF $\|\mathrm{ON}\| 0 \mid 1$:CALCulate:MARKer :PEAK:TABLe: $\mathrm{STATe} ?$
Example	CALC:MARK:PEAK:TABL:STAT ON Turns on and displays the peak table.
Dependencies	When the Peak Table turns on, if Peak Threshold is On then it becomes the active function.
Preset	OFF
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Peak Sort

Sets the peak table sorting routine to list the peaks in order of descending amplitude or ascending frequency. The remote command can also be used to sort the peaks found using the :CALCulate:DATA:PEAKs command.

Key Path	Peak Search, Peak Table
Remote Command	:CALCulate:MARKer :PEAK:SORT FREQuency\|AMPLitude :CALCulate:MARKer :PEAK:SORT?
Example	CALC:MARK:PEAK:SORT AMPL Sets sorting routine to list peaks in order of descending amplitude. CALC:MARK:PEAK:SORT?
Preset	AMPLitude
Preset	AMPLitude
State Saved	Saved in instrument state.
Backwards Compatibility SCPI	:TRACe:MATH:PEAK:SORT
Backwards Compatibility SCPI	The old TRAC:MATH:PEAK:SORT command/query used in ESA is still supported for backward compatibility.
Initial S/W Revision	Prior to A.02.00

Peak Readout

Shows up to twenty signal peaks as defined by the setting:
All (ALL) - lists all the peaks defined by the peak criteria, in the current sort setting.
Above Display Line (GTDLine) - lists the peaks that are greater than the defined display line, and that meet the peak criteria. They are listed in the current sort order.

Peak Search

Below Display Line (LTDLine) - lists the peaks that are less than the defined display line, and that meet the peak criteria. They are listed in the current sort order.

If the peak threshold is defined and turned on, then the peaks must meet this peak criteria in addition to the display line requirements.

See "More Information" on page 778.

Key Path	Peak Search, Peak Table	
Remote Command	:CALCulate:MARKer:PEAK:TABLe:READout ALL\|GTDLine	LTDLine :CALCulate:MARKer:PEAK:TABLe:READout?
Example	CALC:MARK:PEAK:TABL:READ GTDL	
Dependencies	Turning Display Line off forces Readout to ALL	
Preset	All	
Preset	All	
State Saved	Saved in instrument state.	
Readback line	1-of-N selection	
Initial S/W Revision	Prior to A.02.00	

More Information

If the Display Line (see the Section "View/Display") is turned on, the Peak Table can be selected to include all peaks, only those above the Display Line, or only those below the Display Line. See Figures 1-2 and 1-3 to understand what happens if both Display Line and Pk Threshold are turned on.

Figure 1- 2Above Display Line Peak Identification

Figure 1- 3Below Display Line Peak Identification

All

Sets the peak table to display the 20 highest peaks in the order specified by the current Peak Sort setting. If the Peak Criteria are turned on, then only peaks that meet the defined Pk Excursion and Pk Threshold values will be found.

Key Path	Peak Search, Peak Table, Peak Readout
Example	CALC:MARK:PEAK:TABL:READ ALL
Notes	Auto return after pressed
Readback	All
Initial S/W Revision	Prior to A.02.00

Above Display Line

Sets the peak table to display only the 20 highest peaks above the display line in the order specified by the current Sort setting. If the Peak Criteria are turned on, then only peaks that meet the defined criteria will be found. If the display line is not already on, it is turned on (it has to be on or it cannot be used to exclude peaks).

Key Path	Peak Search, Peak Table, Peak Readout
Example	CALC:MARK:PEAK:TABL:READ GTDL
Notes	Auto return after pressed
Dependencies	When Above Display Line is selected, Display Line is turned on and becomes the active function.
Readback	Above DL
Initial S/W Revision	Prior to A.02.00

Below Display Line

Sets the peak table to display only the 20 highest peaks below the display line as defined by the peak in

Peak Search

the order specified by the current Sort setting. If the Peak Criteria are turned on, then only peaks that meet the defined criteria will be found. If the display line is not already on, it is turned on (it has to be on or it cannot be used to exclude peaks).

Key Path	Peak Search, Peak Table, Peak Readout
Example	CALC:MARK:PEAK:TABL:READ LTDL
Notes	Auto return after pressed
Dependencies	When Below Display Line is selected, Display Line is turned on and becomes the active function.
Readback	Below DL
Initial S/W Revision	Prior to A.02.00

Continuous Peak Search

Turns Continuous Peak Search on or off. When Continuous Peak Search is on, a peak search is automatically performed for the selected marker after each sweep. The rules for finding the peak are exactly the same as for Peak Search, including the use of the peak criteria rules. If no valid peak is found, a "No peak found" message is generated after each sweep.

See "More Information" on page 781.

Key Path	Peak Search
Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CPSearch[:STATe] ON \mid OFF $\|1\| 0$ $:$ CALCulate $:$ MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CPSearch[$:$ STATe]?
Example	CALC:MARK:CPS ON Turns on Continuous Peak Search.
Notes	Sending this command selects the subopcoded marker
Couplings	The Continuous Peak Search key is grayed out when the selected marker is a Fixed marker. Also, if Continuous Peak Search is on and the selected marker becomes a fixed marker, then Continuous Peak Search is turned off and the key grayed out. Signal Track and Continuous Peak Search are mutually exclusive so if Signal Track is on, Continuous Peak Search will be grayed out and vice versa.
Preset	Mode Preset
State Saved	Saved in instrument state.
Status Bits/OPC dependencies	The Measuring bit should remain set while this command is operating and should not go false until the marker position has been updated.
Initial S/W Revision	Prior to A.02.00

More Information

When Continuous Peak Search is turned on a peak search is immediately performed and then is repeated after each sweep. If Continuous Peak Search is turned on with the selected marker off, the selected marker is set to Normal at the center of the screen, and then a peak search is immediately performed and subsequently repeated after each sweep.

When in Continuous Peak Search, *OPC will not return true, nor will READ or MEASure return any data, until the sweep is complete and the marker has been re-peaked. Note further that if the analyzer is in a measurement such as averaging, and Continuous Peak Search is on, the entire measurement will be allowed to complete (i.e., all the averages taken up to the average number) before the repeak takes place, and only THEN will *OPC go true and READ or MEASure return data.

Note that this function is not the "Continuous Peak" function found in some other instruments. That function was designed to track the signal; this function simply does a Peak Search after each sweep.

When Continuous Peak Search is turned on for a marker, a little "hat" is placed above the marker.

Pk-Pk Search

Finds and displays the amplitude and frequency (or time, if in zero span) differences between the highest and lowest y-axis value. It places the selected marker on the minimum value on its selected trace. And it places that marker's reference marker on the peak of its selected trace. This function turns on the reference marker and sets its mode to Fixed if it is not already on. (These markers may be on two different traces.)

The rules for finding the maximum peak are exactly the same as for Peak Search, including the use of the peak criteria rules. However, the minimum trace value is not required to meet any criteria other than being the minimum y-axis value in the trace.

If the selected marker is off, a delta type marker is turned on and the peak-to-peak search is done. If the selected marker is on, but it is not a delta marker, then it is changed to delta which turns on the reference marker if needed, and then it performs the peak-to-peak function.

Key Path	Peak Search

Peak Search

Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ PTPeak
Example	CALC:MARK:PTP CALC:MARK:Y? queries the delta amplitude value for marker 1.
Notes	Turns on the Marker Δ active function.
Notes	Sending this command selects the subopcoded marker.
Dependencies	Pk-Pk Search is grayed out when Coupled Markers is on.
Couplings	The selected marker becomes a delta marker if not already in delta mode.
State Saved	Not part of saved state.
Initial S/W Revision	Prior to A.02.00

Min Search

Moves the selected marker to the minimum y-axis value on the current trace. Minimum (negative) peak searches do not have to meet the peak search criteria. It just looks for the lowest y-axis value. If the selected marker is Off, it is turned on before the minimum search is performed.

Key Path	Peak Search
Remote Command	:CALCulate:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MINimum
Example	CALC:MARK:MIN selects marker 1 and moves it to the minimum amplitude value.
Notes	Sending this command selects the subopcoded marker.
State Saved	Not part of saved state.
Initial S/W Revision	Prior to A.02.00

Peak Data Query (RemoteCommand Only)

This command works the same way in this and many other measurements, so it is documented in the Common Measurement Functions section.. For details about this key, see "Calculate Peaks of Trace Data (Remote Command Only)" on page 689.

Recall

Most of the functions under this key work the same way in many measurements, so they are documented in the Utility Functions section. For details about this key, see "Recall" on page 152.
The Amplitude Correction Import Data function under Recall is documented here.

Amplitude Correction

This key selects the Amplitude Corrections as the data type to be imported. When pressed a second time, it brings up the Select Menu, which lets you select the Correction into which the data will be imported.

Amplitude Corrections are fully discussed in the documentation of the Input/Output key, under the Corrections softkey.

A set of preloaded Corrections files can be found in the directory
/My Documents/ EMC Limits and Ampcor.
Under this directory, the directory called Ampcor (Legacy Naming) contains a set of legacy corrections files, generally the same files that were supplied with older Agilent EMI analyzers, that use the legacy suffixes .ant, .oth, .usr, and .cbl, and the old 8-character file names. In the directory called Ampcor, the same files can be found, with the same suffixes, but with longer, more descriptive filenames.

When the Amplitude Correction is an Antenna correction and the Antenna Unit in the file is not None, the Y Axis Unit setting will change to match the Antenna Unit in the file.

Key Path	Front Panel Key				
Mode	SA\|EDGEGSM				
Remote Command	:MMEMory:LOAD:CORRection 1\|2	3	4	5	6, <filename>
Example	:MMEM:LOAD:CORR 2 "myAmpcor.csv" recalls the Amplitude Correction data from the file myAmpcor.csv in the current directory to the 2nd Amplitude Correction table, and turns on Correction 2. The default path is My DocumentslamplitudeCorrections.				

Recall

$\left.\begin{array}{|l|l|}\hline \text { Dependencies } & \begin{array}{l}\text { Only the first correction array (Correction 1) supports antenna units. This } \\ \text { means that a correction file with an Antenna Unit can only be loaded into the } \\ \text { Corrections 1 register. Consequently only for Correction 1 does the dropdown } \\ \text { in the Recall dialog include.ant, and if an attempt is made to load a correction } \\ \text { file into any other Correction register which DOES contain an antenna unit, a } \\ \text { Mass Storage error is generated. } \\ \text { Corrections are not supported by all Measurements. If in a Mode in which } \\ \text { some Measurements support it, this key will be grayed out in measurements } \\ \text { that do not. The key will not show at all if no measurements in the Mode } \\ \text { support it. } \\ \text { Errors are reported if the file is empty or missing, or if the file type does not } \\ \text { match, or if there is a mismatch between the file type and the destination data } \\ \text { type. If any of these occur during manual operation, the analyzer returns to } \\ \text { the Import Data menu and the File Open dialog goes away. } \\ \text { This key does not appear unless you have the proper option installed in your } \\ \text { instrument. } \\ \text { This command will generate an "Option not available" error unless you have } \\ \text { the proper option installed in your instrument. }\end{array} \\ \hline \text { Couplings } & \begin{array}{l}\text { When a correction file is loaded from mass storage, it is automatically turned } \\ \text { on (Correction ON) and Apply Corrections is set to On. This allows the } \\ \text { user to see its effect, thus confirming the load. }\end{array} \\ \hline \text { Readback } & \text { selected Correction } \\ \hline \text { Backwards Compatibility SCPI } & \text { For backwards compatibility, the following parameters syntax is supported: } \\ \text { :MMEMory:LOAD:CORRection ANTenna|CABLe|OTHer|USER, } \\ \text { <filename> } \\ \text { ANTenna maps to 1, CABle maps to 2, OTHer maps to 3 and USER maps to } 4\end{array}\right\}$

Amplitude Correction 1, 2, 3, 4

These keys let you select which Correction to import the data into. Once selected, the key returns back to the Import Data menu and the selected Correction number is annotated on the key. The next step is to select the Open key in the Import Data menu.

Antenna corrections are a particular kind of Amplitude Corrections - they are distinguished in the corrections file by having the Antenna Unit set to a value other than None. Only Correction 1 supports Antenna Units.

Key Path	Recall, Data, Amplitude Correction
Notes	auto return
Dependencies	Only Correction 1 may be used to load a Correction that contains an Antenna Unit other than None
Preset	not part of Preset, but is reset to Correction 1 by Restore Input/Output Defaults; survives shutdown

State Saved	The current Correction number is saved in instrument state
Initial S/W Revision	A.02.00

Recall

Restart

The Restart function restarts the current sweep, or measurement, or set of averaged/held sweeps or measurements. If you are Paused, pressing Restart does a Resume.

The Restart function is accessed in several ways:

- Pressing the Restart key
- Sending the remote command INIT:IMMediate
- Sending the remote command INIT:RESTart

Key Path	Front panel key
Remote Command	:INITiate[: IMMediate]
Example	:INIT:IMM
Notes	:INITiate:RESTart $:$ INITiate:IMMediate Either of the above commands perform exactly the same function.
Couplings	Resets average/hold count k. For the first sweep overwrites all active (update=on) traces with new current data. For application modes, it resets other parameters as required by the measurement.
Status Bits/OPC dependencies	This is an Overlapped command. The STATus:OPERation register bits 0 through 8 are cleared. The STATus:QUEStionable register bit 9 (INTegrity sum) is cleared. The SWEEPING bit is set. The MEASURING bit is set.
Initial S/W Revision	Prior to A.02.00

Remote Command	: INITiate:RESTart
Example	:INIT:REST
Notes	:INITiate:RESTart :INITiate:IMMediate Either of the above commands perform exactly the same function.
Couplings	Resets average/hold count k. For the first sweep overwrites all active (update=on) traces with new current data. For application modes, it resets other parameters as required by the measurement.

Restart

Status Bits/OPC dependencies	This is an Overlapped command.
	The STATus:OPERation register bits 0 through 8 are cleared.
	The STATus:QUEStionable register bit 9 (INTegrity sum) is cleared.
	The SWEEPING bit is set.
	The MEASURING bit is set.
Initial S/W Revision	Prior to A.02.00

The Restart function first aborts the current sweep/measurement as quickly as possible. It then resets the sweep and trigger systems, sets up the measurement and initiates a new data measurement sequence with a new data acquisition (sweep) taken once the trigger condition is met.

If the analyzer is in the process of aligning when Restart is executed, the alignment finishes before the restart function is performed.

Even when set for Single operation, multiple sweeps may be taken when Restart is pressed (for example, when averaging/holding is on). Thus when we say that Restart "restarts a measurement," we may mean:

- It restarts the current sweep
- It restarts the current measurement
- It restarts the current set of sweeps if any trace is in Trace Average, Max Hold or Min Hold
- It restarts the current set of measurements if Averaging, or Max Hold, or Min Hold is on for the measurement
- depending on the current settings.

With Average/Hold Number (in Meas Setup menu) set to 1, or Averaging off, or no trace in Trace Average or Hold, a single sweep is equivalent to a single measurement. A single sweep is taken after the trigger condition is met; and the analyzer stops sweeping once that sweep has completed. However, with Average/Hold Number >1 and at least one trace set to Trace Average, Max Hold, or Min Hold (SA Measurement) or Averaging on (most other measurements), multiple sweeps/data acquisitions are taken for a single measurement. The trigger condition must be met prior to each sweep. The sweep is stopped when the average count k equals the number N set for Average/Hold Number. A measurement average usually applies to all traces, marker results, and numeric results; but sometimes it only applies to the numeric results.

Once the full set of sweeps has been taken, the analyzer will go to idle state. To take one more sweep without resetting the average count, increment the average count by 1 , by pressing the step up key while Average/Hold Number is the active function, or sending the remote command CALC:AVER:TCON UP.

Save

Most of the functions under this key work the same way in many measurements, so they are documented in the Utility Functions section. For details about this key, see "Save" on page 169.

The Amplitude Correction Export Data function under Save is documented here.

Amplitude Correction

Pressing this key selects Amplitude Corrections as the data type to be exported. Pressing this key again brings up the Select Menu, which allows the user to select which Amplitude Correction to save.

Amplitude Corrections are fully discussed in the documentation of the Input/Output key, under the Corrections softkey.

Key Path	Front Panel Key
Remote Command	:MMEMory:STORe:CORRection $1\|2\| 3\|4\| 5 \mid 6$, <filename>
Example	:MMEM:STOR:CORR 2 "myAmpcor.csv" saves Correction 2 to the file myAmpcor.csv on the current path. The default path is My DocumentslamplitudeCorrections.
Notes	If the save is initiated via SCPI, and the file already exists, the file will be overwritten. Using the C: drive is strongly discouraged, since it runs the risk of being overwritten during an instrument software upgrade. Both single and double quotes are supported for any filename parameter over SCPI.
Dependencies	Corrections are not supported by all Measurements. If in a Mode in which some Measurements support it, this key will be grayed out in measurements that do not. The key will not show at all if no measurements in the Mode support it. This key will not appear unless you have the proper option installed in your instrument.
Readback	Selected Correction
Backwards Compatibility SCPI	For backwards compatibility only, the following parameters syntax is supported: $: M M E M o r y: S T O R e: C O R R e c t i o n ~ A N T e n n a\|C A B L e\| O T H e r \mid U S E R, ~$
<filename>	
ANTenna maps to 1, CABle maps to 2, OTHer maps to 3 and USER maps to 4	

Correction Data File

A Corrections Data File contains a copy of one of the analyzer correction tables. Corrections provide a

Save

way to adjust the trace display for predetermined gain curves (such as for cable loss).
The first five lines are system-required header lines, and must be in the correct order.
Amplitude CorrectionData file type name
"Correction Factors for 11966E"File Description
"Class B Radiated"Comment
A.01.00.R0001,N9020AInstrument Version, Model Number

P13 EA3 UK6,01 Option List, File Format Version
Corrections files may include Antenna amplitude units. This amplitude unit in the Antenna Unit field is a conversion factor that is used to adjust the Y Axis Units of the current mode, if the mode supports Antenna Units. For more details on antenna correction data, refer to the Input/Output chapter, Corrections section.

The metadata required to properly import the correction data is:

- Frequency Unit for the x axis data
- Antenna Unit for the y axis data (not required)
- Frequency Interpolation algorithm - either Logarithmic or Linear

The data follows as comma separated X, Y pairs; one pair per line. The keyword "DATA" precedes the data.

For example, suppose you have an Antenna to correct for on an E4445A version A. 01.00 R0011 and the correction data is:

- 0 dB at 200 MHz
- 17 dB at 210 MHz
- 14.8 dB at 225 MHz

Then the file will look like:

- Amplitude Correction
- "Correction Factors for 11966E"
- "Class B Radiated"
- A.01.00 R0011,N9020A
- P13 EA3 UK6,01
- Frequency Unit, MHz
- Antenna Unit,dBuV/m
- Frequency Interpolation,Linear
- DATA
- 200.000000,0.00
- 210.000000,17.00
- 225.000000,14.80

The choices for the 1 of N fields in the metadata are as follows:

- Frequency Unit: $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}, \mathrm{GHz}$
- Antenna Unit: dBuv/m, dBuA/m, dBG, dBpT, None
- Frequency Interpolation: Logarithmic, Linear

Amplitude Correction 1, 2, 3, 4

These keys let you pick which Correction to save. Once selected, the key returns back to the Export Data menu and the selected Correction number is annotated on the key.

The next step in the Save process is to select the Save As key in the Export Data menu.

Key Path	Save, Data, Amplitude Correction
Preset	Not part of a Preset, but is reset to Correction 1 by Restore Input/Output Defaults. Survives a shutdown.
Readback	1
Initial S/W Revision	A. 02.00

Save

Single (Single Measurement/Sweep)

Sets the analyzer for Single measurement operation. The single/continuous state is Meas Global, so the setting will affect all the measurements. If you are Paused, pressing Single does a Resume.

Key Path	Front-panel key
Example	:INIT:CONT OFF
Notes	See Cont key description.
Initial S/W Revision	Prior to A.02.00

Single (Single Measurement/Sweep)

Source

This mode does not have any Source control functionality.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Common Measurement Functions

Source

Sweep/Control

Accesses a menu that enables you to configure the Sweep and Control functions of the analyzer, such as Sweep Time and Gating.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Sweep Time

Controls the time the analyzer takes to sweep the current frequency span when the Sweep Type is Swept, and displays the equivalent Sweep Time when the Sweep Type is FFT.

When Sweep Time is in Auto, the analyzer computes a sweep time which will give accurate measurements based on other settings of the analyzer, such as RBW and VBW.

NOTE
 The Meas Uncal (measurement uncalibrated) warning is given in the Status Bar in

 the lower right corner of the screen when the manual sweep time entered is faster than the sweep time computed by the analyzer's sweep time equations, that is, the Auto Sweep Time. The analyzer's computed sweep time will give accurate measurements; if you sweep faster than this your measurements may be inaccurate. A Meas Uncal condition may be corrected by returning the Sweep Time to Auto; by entering a longer Sweep Time; or by choosing a wider RBW and/or VBWOn occasion other factors such as the Tracking Generator's maximum sweep rate, the YTF sweep rate (in high band) or the LO's capability (in low band) can cause a Meas Uncal condition. The most reliable way to correct it is to return the Sweep Time to Auto.

When Sweep Type is FFT, you cannot control the sweep time, it is simply reported by the analyzer to give you an idea of how long the measurement is taking.

Note that although some overhead time is required by the analyzer to complete a sweep cycle, the sweep time reported when Sweep Type is Swept does not include the overhead time, just the time to sweep the LO over the current Span. When Sweep Type is FFT, however, the reported Sweep Time takes into account both the data acquisition time and the processing time, in order to report an equivalent Sweep Time for a meaningful comparison to the Swept case.

Because there is no "Auto Sweep Time" when in zero span, the Auto/Man line on this key disappears when in Zero Span. The Auto/Man line also disappears when in an FFT sweep. In this case the key is grayed out as shown below.

Sweep Time
66.24 ms

Sweep/Control

NOTE

When using a Tracking Source (Source, Source Mode set to "Tracking"), the sweep time shown includes an estimate of the source's settling time. This estimate may conatain inaccuracies, particularly when software triggering is used for the source. This can result in the reported sweep time being shorter than the actual sweep time.

Key Path	Sweep/Control		
Remote Command	[:SENSe]:SWEep:TIME <time> [:SENSe]:SWEep:TIME? [:SENSe]:SWEep:TIME:AUTO OFF\|ON	0	1 [:SENSe]:SWEep:TIME:AUTO?
Example	SWE:TIME 500 ms SWE:TIME:AUTO OFF		
Notes	The values shown in this table reflect the "swept spans" conditions which are the default settings after a preset. See "Couplings" for values in the zero span domain.		
Dependencies	The third line of the softkey (Auto/Man) disappears in Zero Span. The SCPI command SWEep:TIME:AUTO ON if sent in Zero Span generates an error message. Softkey grayed out and third line of the softkey (Auto/Man) disappears in FFT sweeps. Pressing the key or sending the SCPI for sweep time while the instrument is in FFT sweep generates a -221, "Settings Conflict;" error. F The SCPI command :SWEep:TIME:AUTO ON if sent in FFT sweeps generates an error. Grayed out while in Gate View, to avoid confusing those who want to set GATE VIEW Sweep Time. Key is grayed out in Measurements that do not support swept mode. Key is blanked in Modes that do not support swept mode. Set to Auto when Auto Couple is pressed or sent remotely		

Couplings	Sweep Time is coupled primarily to Span and RBW. Center Frequency, VBW, and the number of sweep points also can have an effect. So changing these parameters may change the sweep time. The Sweep Time used upon entry to Zero Span is the same as the Sweep Time that was in effect before entering Zero Span. The Sweep Time can be changed while in Zero Span. Upon leaving Zero Span, the Auto/Man state of Sweep Time that existed before entering Zero Span is restored. If Sweep Time was in Auto before entering Zero Span, or if it is set to Auto while in zero span (which can happen via remote command or if Auto Couple is pressed) it returns to Auto and recouples when returning to non-zero spans. If Sweep Time was in Man before entering Zero Span, it returns to Man when returning to non-zero spans, and any changes to Sweep Time that were made while in Zero Span are retained in the non-zero span (except where constrained by minimum limits, which are different in and out of zero span).
Preset	The preset Sweep Time value is hardware dependent since Sweep Time presets to "Auto".
State Saved	Saved in instrument state
Min	in zero span: 1 ps in swept spans: 1 ms in Stepped Tracking (as with option ESC): same as auto sweep time (in Swept Tracking, with Tracking Generator option T03 or T07, the minimum sweep time is 1 ms, but the Meas Uncal indicator is turned on for sweep times faster than 50 ms)
Status Bits/OPC dependencies	in zero span: 6000 s in swept spans: 4000 s Meas Uncal is Bit 0 in the STATus:QUEStionable:INTegrity:UNCalibrated regial S/W Revision
Prior to A.02.00	

Sweep Setup

Lets you set the sweep functions that control features such as sweep type and time.

Key Path	Sweep/Control
Dependencies	The whole Sweep Setup menu is grayed out in Zero Span, however, the settings in the menus under Sweep Setup can be changed remotely with no error indication. Grayed out in measurements that do not support swept mode. Blanked in modes that do not support swept mode
Initial S/W Revision	Prior to A.02.00

Sweep/Control

Sweep Time Rules

Allows the choice of three distinct sets of sweep time rules. These are the rules that are used to set the sweep time when Sweep Time is in Auto mode. Note that these rules only apply when in the Swept Sweep Type (either manually or automatically chosen) and not when in FFT sweeps.

See "More Information" on page 800.

Key Path	Sweep/Control, Sweep Setup	
Remote Command	[:SENSe]:SWEep:TIME:AUTO:RULes NORMal\|ACCuracy	SRESponse [:SENSe]:SWEep:TIME:AUTO:RULes?
Example	SWE:TIME:AUTO:RUL ACC	
Dependencies	In Zero Span, this key is irrelevant and cannot be accessed (because the whole Sweep Setup menu is grayed out in Zero Span), however its settings can be changed remotely with no error indication. Grayed out in FFT sweeps. Pressing the key while the instrument is in FFT sweep generates an advisory message. The SCPI is acted upon if sent, but has no effect other than to change the readout on the key, as long as the analyzer is in an FFT sweep.	
Couplings	Set to Auto on Auto Couple	
Preset	AUTO	
State Saved	Saved in instrument state	
Backwards Compatibility SCPI	The old Auto Sweep Time command was the same [:SENSe]:SWEep:TIME:AUTO:RULes NORMal\|ACCuracy so it still works although it now has a third parameter (SRESponse). The old Sweep Coupling command was [:SENSe]:SWEep:TIME:AUTO:MODE SRESponse\|SANalyzer and it is aliased as follows: :SWEep:TIME:AUTO:MODE SRESponse is aliased to :SWEep:TIME:AUTO:RULes SRESponse, and :SWEep:TIME:AUTO:MODE SANalyzer is aliased to :SWEep:TIME:AUTO:RULes NORMal The query :SWEep:TIME:AUTO:MODE? is aliased to :SWEep:TIME:RULes? So it will fail to match for SANalyzer	
Initial S/W Revision	Prior to A.02.00	

More Information

The first set of rules is called SA - Normal. Sweep Time Rules is set to SA-Normal on a Preset or

Auto Couple. These rules give optimal sweep times at a lossof accuracy. Note that this means that in the Preset or Auto Coupled state, instrument amplitude accuracy specifications do not apply.

Setting Sweep Time Rules to SA-Accuracy will result in slower sweep times than SA-Normal, usually about three times as long, but with better amplitude accuracy for CW signals. The instrument absolute amplitude accuracy specifications only apply when Sweep Time is set to Auto, and Sweep Time Rules are set to SA-Accuracy. Additional amplitude errors which occur when Sweep Time Rules are set to SA-Normal are usually well under 0.1 dB , though this is not guaranteed. Because of the faster sweep times and still low errors, SA-Normal is the preferred setting of Sweep Time Rules.

The third set of sweep time rules is called Stimulus/Response and is automatically selected when an integrated source is turned on, such as a Tracking Generator or a synchronized external source. The sweep times for this set of rules are usually much faster for swept-response measurements. Stimulus-response auto-coupled sweep times are typically valid in stimulus-response measurements when the system's frequency span is less than 20 times the bandwidth of the device under test. You can select these rules manually (even if not making Stimulus-Response measurements) which will allow you to sweep faster before the "Meas Uncal" warning comes on, but you are then not protected from the over-sweep condition and may end up with uncalibrated results. However, it is commonplace in measuring non-CW signals such as noise to be able to get excellent measurement accuracy at sweep rates higher than those required for CW signal accuracy, so this is a valid measurement technique.

Auto

Sets the analyzer to automatically choose the Sweep Time Rules for the measurement.

Key Path	Sweep/Control, Sweep Setup, Sweep Time Rules		
Remote Command	[:SENSe] : SWEep:TIME:AUTO: RULes : AUTO[:STATe] ON \|OFF	1	0 [:SENSe] : SWEep:TIME:AUTO: RULes : AUTO[:STATe]?
Example	:SWE:TIME:AUTO:RUL:AUTO ON		
Couplings	Set on Preset or Auto Couple		
Preset	ON		
Initial S/W Revision	Prior to A.02.00		

SA - Normal

Chooses Sweep Time Auto Rules for optimal speed and generally sufficient accuracy.

Key Path	Sweep/Control, Sweep Setup, Sweep Time Rules
Example	:SWE:TIME:AUTO:RUL NORM
Dependencies	Not available (grayed out) when Source Mode=Tracking.
Couplings	Automatically selected unless Source is on If directly selected, sets AUTO to Off
Readback	SA - Normal
Initial S/W Revision	Prior to A.02.00

Sweep/Control

SA - Accuracy

Chooses Sweep Time Auto Rules for specified absolute amplitude accuracy.
NOTE: For specified accuracy, do not allow sweep time to fall below 20 ms when in SA - Accuracy

Key Path	Sweep/Control, Sweep Setup, Sweep Time Rules
Example	:SWE:TIME:AUTO:RUL ACC
Dependencies	Not available (grayed out) when Source Mode=Tracking.
Couplings	If directly selected, sets AUTO to Off
Readback	SA - Accuracy
Initial S/W Revision	Prior to A.02.00

Stimulus/Response

The Stimulus-Response setting for sweep time rules provides different sweep time settings, for the case where the analyzer is sweeping in concert with a source. These modified rules take two forms:

1. Sweeping along with a swept source, which allows faster sweeps than the normal case because the RBW and VBW filters do not directly interact with the Span. We call this "Swept Tracking"
2. Sweeping along with a stepped source, which usually slows the sweep down because it is necessary to wait for the stepped source and the analyzer to settle at each point. We call this "Stepped Tracking"

The analyzer chooses one of these methods based on what kind of a source is connected or installed; it picks Swept Tracking if there is no source in use.

As always, when the X-series analyzer is in Auto Sweep Time, the sweep time is estimated and displayed in the Sweep/Control menu as well as in the annotation at the bottom of the displayed measurement; of course, since this can be dependent on variables outside the analyzer's control, the actual sweep time may vary slightly from this estimate.

You can always choose a shorter sweep time to improve the measurement throughput, (with some potential unspecified accuracy reduction), but the Meas Uncal indicator will come on if the sweep time you set is less than the calculated Auto Sweep time. You can also select a longer sweep time, which can be useful (for example) for obtaining accurate insertion loss measurements on very narrowband filters. The number of measurement points can also be reduced to speed the measurement (at the expense of frequency resolution).

Key Path	Sweep/Control, Sweep Setup, Sweep Time Rules
Example	:SWE:TIME:AUTO:RUL SRES
Couplings	Automatically selected when the Source is on (Source Mode not set to OFF). If directly selected sets AUTO to Off
Readback	SR
Initial S/W Revision	Prior to A.02.00

Sweep Type

Chooses between the FFT and Sweep types of sweep.
Sweep Type refers to whether or not the instrument is in Swept or FFT analysis. When in Auto, the selection of sweep type is governed by two different sets of rules, depending on whether you want to optimize for dynamic range or for speed.

FFT "sweeps" should not be used when making EMI measurements; therefore, when a CISPR detector (Quasi Peak, EMI Average, RMS Average) is selected for any active trace (one for which Update is on), the FFT key in the Sweep Type menu is grayed out, and the Auto Rules only choose Swept. If Sweep Type is manually selected to be FFT, the CISPR detectors are all grayed out.

FFT sweeps will never be auto-selected when Screen Video, Log Video or Linear Video are the selected Analog Output.

Key Path	Sweep/Control, Sweep Setup
Remote Command	$[$:SENSe] $:$ SWEep:TYPE FFT ISWEep $[$:SENSe]:SWEep:TYPE?
Notes	For a backward compatibility, the following remote parameters AUTO SWP will be supported by the [:SENSe]:SWEep:TYPE command.
Dependencies	In Zero Span, this key is irrelevant and cannot be accessed (because the whole Sweep Setup menu is grayed out in Zero Span), however its settings can be changed remotely with no error indication. When Gate is on, Gate Method selection affects Sweep Type: Method FFT\&Sweep menu FFT - Swept grayed out and rules choose FFT Video - FFT grayed out and rules choose Swept LO - FFT grayed out and rules choose Swept
Preset	AUTO
Backwards Compatibility SCPI	[:SENSe]:SWEep:TYPE AUTO sets sweep type Auto to On [:SENSe]:SWEep:TYPE SWP selects sweep type Swept
Initial S/W Revision	Prior to A.02.00

Auto

When in Auto, the selection of sweep type is governed by two different sets of rules, depending on whether you want to optimize for dynamic range or for speed. These rules are chosen under the Sweep Type Rules key.

Key Path	Sweep/Control, Sweep Setup, Sweep Type

Sweep/Control

| Remote Command | [:SENSe]:SWEep:TYPE:AUTO OFF\|ON|0|1
 [:SENSe]:SWEep:TYPE:AUTO? |
| :--- | :--- |
| Example | :SWE:TYPE:AUTO ON |
| Couplings | Pressing Auto Couple always sets Sweep Type to Auto.
 Swept is always chosen whenever any form of Signal ID is on, or the Source
 Mode is set to Tracking,or any EMI detector is selected. |
| Preset | ON |
| State Saved | Saved in instrument state |
| Initial S/W Revision | Prior to A.02.00 |

Swept

Manually selects swept analysis, so it cannot change automatically to FFT.

Key Path	Sweep/Control, Sweep Setup, Sweep Type
Example	SWE:TYPE SWE
Dependencies	Grayed out while in Gated FFT (meaning Gate is ON and Gate Method is FFT). If this key is selected, the gate method Gated FFT is grayed out.
Couplings	This selection is chosen automatically if any of the CISPR detectors is chosen for any active trace, in which case the FFT Sweep Type selection is also grayed out.
State Saved	Saved in instrument state
Readback	Swept
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

FFT

Manually selects FFT analysis, so it cannot change automatically to Swept.

Key Path	Sweep/Control, Sweep Setup, Sweep Type
Example	SWE:TYPE FFT

Dependencies	When a CISPR detector (Quasi Peak, EMI Average, RMS Average) is selected for any active trace, the FFT key is grayed out. If Sweep Type is manually selected to be FFT, the CISPR detectors are all grayed out. If this key is selected, all of the gate Methods except Gated FFT are grayed out. If Manual FFT is selected, the Tracking Source Mode key is grayed out. When Source Mode is set to Tracking, Manual FFT is grayed out. If Manual FFT is selected, the Signal ID key is grayed out. When Signal ID is on, Manual FFT is grayed out. Grayed out while in Gated LO (meaning Gate is ON and Gate Method is LO). Grayed out while in Gated Video (meaning Gate is ON and Gate Method is Video).
State Saved	Saved in instrument state
Readback	FFT
Initial S/W Revision	Prior to A.02.00

Sweep Type Rules

Selects which set of rules will be used for automatically choosing the Sweep Type when Sweep Type is in Auto.

Key Path	Sweep/Control, Sweep Setup
Remote Command	[:SENSe] :SWEep:TYPE:AUTO:RULes SPEed\|DRANge $[$:SENSe] : SWEep:TYPE:AUTO: RULes?
Dependencies	In Zero Span, this key is irrelevant and cannot be accessed (because the whole Sweep Setup menu is grayed out in Zero Span), however its settings can be changed remotely with no error indication.
Preset	DRANge
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Auto

This selection is automatically chosen when Auto Couple is pressed. When in Auto, the Sweep Type Rules are set to Best Dynamic Range. It seems like a very simple Auto function but the use of this construct allows a consistent statement about what the Auto Couple key does.

Key Path	Sweep/Control, Sweep Setup, Sweep Type Rules

Sweep/Control

| Remote Command | $[$:SENSe]:SWEep:TYPE:AUTO:RULes:AUTO[:STATe] OFF\|ON|0|1
 [:SENSe]:SWEep:TYPE:AUTO:RULes:AUTO[:STATe]? |
| :--- | :--- |
| Example | :SWE:TYPE:AUTO:RUL:AUTO ON |
| Couplings | Pressing Auto Couple always sets Sweep Type Rules to Auto. |
| Preset | ON |
| State Saved | Saved in instrument state |
| Initial S/W Revision | Prior to A.02.00 |

Best Dynamic Range

This selection tells the analyzer to choose between swept and FFT analysis with the primary goal of optimizing dynamic range. If the dynamic range is very close between swept and FFT, then it chooses the faster one. This auto selection also depends on RBW Type.

In determining the Swept or FFT setting, the auto rules use the following approach:

- If the RBW Filter Type is Gaussian use the RBW for the Normal Filter BW and if that RBW > 210 Hz , use swept; for RBW <= 210 Hz , use FFT
- If the RBW Filter Type is Flat Top, use the same algorithm but use 420 Hz instead of 210 Hz for the transition point between Swept and FFT
- If any of the CISPR detectors is chosen for any active trace, always use Swept.

Key Path	Sweep/Control, Sweep Setup, Sweep Type Rules
Example	SWE:TYPE:AUTO:RUL DRAN sets the auto rules to dynamic range.
Couplings	Directly selecting this setting sets AUTO to OFF.
Readback	Dynamic Range
Initial S/W Revision	Prior to A.02.00

Best Speed

This selection tells the analyzer to choose between FFT or swept analysis based on the fastest analyzer speed.

Key Path	Sweep/Control, Sweep Setup, Sweep Type Rules
Example	SWE:TYPE:AUTO:RUL SPE sets the rules for the auto mode to speed
Couplings	Directly selecting this setting sets AUTO to OFF.
Readback	Speed.
Initial S/W Revision	Prior to A.02.00

FFT Width

This menudisplays and controls the width of the FFT's performed while in FFT mode. The "FFT width"
is the range of frequencies being looked at by the FFT, sometimes referred to as the "chunk width" -- it is not the resolution bandwidth used when performing the FFT.

It is important to understand that this function does not directly set the FFT width, it sets the limit on the FFT Width. The actual FFT width used is determined by several other factors including the Span you have set. Usually the instrument picks the optimal FFT Width based on the current setup; but on occasion you may wish to limit the FFT Width to be narrower than that which the instrument would have set.

NOTE

This function does not allow you to widen the FFT Width beyond that which the instrument might have set; it only allows you to narrow it. You might do this to improve the dynamic range of the measurement or eliminate nearby spurs from your measurement.

Note that the FFT Width setting will have no effect unless in an FFT sweep.
See "More Information" on page 808

Key Path	Sweep/Control, Sweep Setup
Remote Command	[:SENSe]:SWEep:FFT:WIDTh <real> [:SENSe]:SWEep:FFT:WIDTh?
Example	SWE:FFT:WIDT 167 kHz sets this function to " $<167.4 \mathrm{kHz}$ "
Notes	The parameter is in units of frequency. For values sent from SCPI, the analyzer chooses the smallest value that is at least as great as the requested value. Examples: Parameter 3.99 kHz is sent over SCPI. Analyzer chooses 4.01 kHz Parameter 4.02 kHz is sent over SCPI. Analyzer chooses 28.81 kHz Parameter 8 MHz is sent over SCPI. Analyzer chooses 10 MHz
Dependencies	In some models, the analog prefilters are not provided. In these models the FFT Width function is always in Auto. The FFT Width key is blanked in these models, and the SCPI commands are accepted without error but have no effect. In Zero Span, this key is irrelevant and cannot be accessed (because the whole Sweep Setup menu is grayed out in Zero Span). However, its settings can be changed remotely with no error indication.
Couplings	The FFT Width affects the ADC Dither function (see Meas Setup key) and the point at which the instrument switches from Swept to FFT acquisition.
Preset	The Preset is Auto, but Preset will also pick Best Dynamic Range and hence this function will be set to \sim Maximum
State Saved	Saved in instrument state
Min	4.01 kHz

Sweep/Control

Max	The maximum available FFT width is dependent on the IF Bandwidth option. The maximimum available width is: Option B10, $10 \mathrm{MHz} ;$ Option B25, 25 MHz, Option B40, 40 MHz.
Backwards Compatibility SCPI	[:SENSe]:SWEep:FFT:SPAN:RATio <integer> [:SENSe]:SWEep:FFT:SPAN:RATio? The behavior of the analyzer when it receives this command is to compute the "intended segment width" by dividing the Span by the FFTs/Span parameter, then converting this intended width to an actual width by using the largest available FFT Width that is still less than the intended segment width. The "Span" used in this computation is whatever the Span is currently set to, whether a sweep has been taken at that Span or not.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

Key Path	Sweep/Control, Sweep Setup		
Remote Command	[:SENSe]:SWEep:FFT:WIDTh:AUTO OFF\|ON	0	1 [:SENSe]:SWEep:FFT:WIDTh:AUTO?
Example	:SWE:FFT:WIDT:AUTO ON		
Couplings	Pressing Auto Couple always sets FFT Width to Auto.		
Preset	ON		
State Saved	Saved in instrument state		
Initial S/W Revision	Prior to A.02.00		

More Information

An FFT measurement can only be performed over a limited span known as the "FFT segment". Several segments may need to be combined to measure the entire span. For advanced FFT control in the X-Series, you have direct control over the segment width using the FFT Width control. Generally, in automatic operation, the X-Series sets the segment width to be as wide as possible, as this results in the fastest measurements.

However, in order to increase dynamic range, most X-series models provide a set of analog prefilters that precede the ADC. Unlike swept measurements, which pass the signal through a bandpass before the ADC, FFT measurements present the full signal bandwidth to the ADC, making them more susceptible to overload, and requiring a lower signal level. The prefilters act to alleviate this phenomenon - they allow the signal level at the ADC to be higher while still avoiding an ADC overload, by eliminating signal power outside the bandwidth of interest, which in turn improves dynamic range.

Although narrowing the segment width can allow higher dynamic ranges some cases, this comes at the expense of losing some of the speed advantages of the FFT, because narrower segments require more acquisitions and proportionately more processing overhead.

However, the advantages of narrow segments can be significant. For example, in pulsed-RF measurements such as radar, it is often possible to make high dynamic range measurements with signal levels approaching the compression threshold of the analyzer in swept spans (well over 0 dBm), while resolving the spectral components to levels below the maximum IF drive level (about -8 dBm at the input mixer). But FFT processing experiences overloads at the maximum IF drive level even if the RBW is small enough that no single spectral component exceeds the maximum IF drive level. If you reduce the width of an FFT, an analog filter is placed before the ADC that is about 1.3 times as wide as the FFT segment width. This spreads out the pulsed RF in time and reduces the maximum signal level seen by the ADC. Therefore, the input attenuation can be reduced and the dynamic range increased without overloading the ADC.

Further improvement in dynamic range is possible by changing the FFT IF Gain (in the Meas Setup menu of many measurements). If the segments are reduced in width, FFT IF Gain can be set to High, improving dynamic range.

Depending on what IF Bandwidth option you have ordered, there can be up to three different IF paths available in FFT sweeps, as seen in the diagram below:

The 10 MHz path is always used for Swept sweeps. It is always used for FFT sweeps as well, unless the user specifies $\sim 25 \mathrm{MHz}$ in which case the 25 MHz path will be used for FFT sweeps, or $\sim 40 \mathrm{MHz}$, in which case the 40 MHz path will be used for FFT sweeps. Note that, although each of these keys picks the specified path, the analyzer may choose an FFT width less than the full IF width, in order to optimize speed, trading off acquisition time versus processing time.

Pause/Resume

Pauses a measurement after the current data acquisition is complete.
When Paused, the label on the key changes to Resume. Pressing Resume un-pauses the measurement.

Sweep/Control

When you are Paused, pressing Restart, Single or Cont does a Resume.

Key Path	Sweep/Control
Remote Command	: INITiate:PAUSe
Dependencies	Grayed out in Measurements that do not support Pausing. Blanked in Modes that do not support Pausing.
Initial S/W Revision	Prior to A.02.00

Key Path	Sweep/Control
Remote Command	: INITiate: RESume
Dependencies	Grayed out in Measurements that do not support Pausing. Blanked in Modes that do not support Pausing.
Initial S/W Revision	Prior to A.02.00

Gate

Accesses a menu that enables you to control the gating function. The Gate functionality is used to view signals best viewed by qualifying them with other events.

Gate setup parameters are the same for all measurements - they do not change as you change measurements. Settings like these are called "Meas Global" and are unaffected by Meas Preset.

Note that Sweep Time autocoupling rules and annotation are changed by Gate being on.

Key Path	Sweep/Control
Scope	Meas Global
Readback	The state and method of Gate, as [Off, LO] or [On, Video]. Note that for measurements that only support gated LO, the method is nonetheless read back, but always as LO.
Initial S/W Revision	Prior to A.02.00

Gate On/Off

Turns the gate function on and off.
When the Gate Function is on, the selected Gate Method is used along with the gate settings and the signal at the gate source to control the sweep and video system with the gate signal. Not all measurements allow every type of Gate Methods.

When Gate is on, the annunciation in the measurement bar reflects that it is on and what method is used, as seen in the following "Gate: LO" annunciator graphic.

Time 5.200 ms

Key Path	Sweep/Control, Gate		
Remote Command	[:SENSe]:SWEep:EGATe[:STATe] OFF\|ON	0	1 [:SENSe]:SWEep:EGATe[:STATe]?
Example	SWE:EGAT ON SWE:EGAT?		
Dependencies	The function is unavailable (grayed out) and Off when: - Gate Method is LO or Video and FFT Sweep Type is manually selected. - Gate Method is FFT and Swept Sweep Type is manually selected. - Marker Count is ON. The following are unavailable whenever Gate is on: - FFT under Sweep Type when Method=LO or Video or Swept under Sweep Type when Method=FFT - Marker Count While Gate is on, the Auto Rules for Sweep Type are modified so that the choice agrees with the Gate Method: i.e., FFT for Method = FFT and Swept for Method $=$ LO or Video. The Gate softkey and all SCPI under the [:SENSe]:SWEep:EGATe SCPI node are grayed out when Source Mode is Tracking with an external source. This is because the Gate circuitry is used to sync the external source. If the Tracking Source is turned on, the Gate is turned off.		
Couplings	When Meas Method is RBW or FAST, this function is unavailable and the key is grayed out. Whenever Gate is on, Meas Method, RBW or FAST is unavailable and keys for those are grayed out. When Gate is on, Offset Res BW and Offset Video BW are ignored (if you set these values) and the measurement works as if all Offset Res BW and all Offset Video BW are coupled with the Res BW and the Video BW under the BW menu. When Gate is on, the Offset BW key in the Offset/Limit menu is grayed out.		
Preset	Off		
State Saved	Saved in instrument state		
Range	On\|Off		
Backwards Compatibility SCPI	[:SENSe]:SWEep:TIME:GATE[:STATe]		
Initial S/W Revision	Prior to A.02.00		

Sweep/Control

Gate View On/Off

Turning on Gate View in the Swept SA measurement provides a single-window gate view display..
Turning on Gate View in other measurements shows the split-screen Gate View. In these measurements, when the Gate View is on, the regular view of the current measurement traces and results are reduced vertically to about 70% of the regular height. The Zero Span window, showing the positions of the Gate, is shown between the Measurement Bar and the reduced measurement window. By reducing the height of the measurement window, some of the annotation on the Data Display may not fit and is not shown.

Key Path	Sweep/Control, Gate		
Remote Command	[:SENSe]:SWEep:EGATe:VIEW ON\|OFF	1	0 [:SENSe]:SWEep:EGATe:VIEW?
Example	SWE:EGAT:VIEW ON turns on the gate view.		
Dependencies	In the Swept SA measurement: In Gate View, the regular Sweep Time key is grayed out . When pressed, the grayed out key puts up the informational message "Use Gate View Sweep Time in the Gate menu." In the other measurements: When you turn Gate View on, the lower window takes on the current state of the instrument. Upon leaving Gate View, the instrument takes on the state of the lower window. When you turn Gate View on, the upper window Sweep Time is set to the gate view sweep time.		
Couplings	These couplings apply to the Swept SA measurement: - When Gate View is turned on, the instrument is set to Zero Span. - Gate View automatically turns off whenever a Span other than Zero is selected. - Gate View automatically turns off ifyou pressthe Last Span key while in Gate View, and the instrument returns to the Span it was in before entering Gate View (even if that is Zero Span). When Gate View is turned on, the sweep time used is the gate view sweep time. This is set according to the rules in "Gate View Sweep Time" on page 815. - When Gate View is turned off, Sweep Time is set to the normal Swept SA measurement sweep time. - If Gate View is on and Gate is off, then turning on Gate turns off Gate View.		
Preset	OFF		
State Saved	Saved in instrument state		
Range	On\|Off		

Initial S/W Revision	Prior to A.02.00

A sample of the Gate View screen in the Swept SA measurement is shown in the following graphic :

A sample of the Gate View screen in other measurements is shown in the following graphic . This example is for the ACP measurement:

Sweep/Control

Turning Gate View off returns the analyzer to the Normal measurement view.
In the Swept SA, the normal measurement view is the single-window Swept SA view. When returning to this view, the Swept SA measurement returns to the Span it was in before entering Gate View (even if that is Zero Span).

The Gate View window is triggered from the Gate Source, with zero trigger delay. Also, when updating the Gate View window, the Gate itself must not operate. So it is internally shut off while the gate view window is being updated. For the Swept SA measurement, this means that the Gate is internally shut off whenever the gate view window is displayed. The measurement bar and softkeys continue to show the Trigger source for the main sweep window and give no indication that the Gate is shut off or that the Gate View window is triggered from the Gate Source.

When in Gate View, vertical lines are displayed in the Gate View window as follows:

- Green lines are displayed at the gate edges as follows: in Edge Gate, a line is shown for Delay and one for the end of the Gate period (defined by Length, even in FFT. In Level Gate a line is shown only for Delay. You can adjust the position of the green lines by adjusting the gate length and the gate delay. These lines update in the Gate View window as the active function changes, even if the window is not being updated. In Gated LO and Gated Video, these lines are positioned relative to the delay reference line (not relative to 0 time). In Gated FFT, their location is relative to the left edge of the screen.
- A blue line is displayed showing the delay reference, that is, the reference point for the Gate Delay within the Zero Span window. The blue line represents where (in time) the effective location of the gate start would be if the gate were programmed to zero delay.
- The second blue line is labeled "MIN FAST" as shown in the figure above because it represents the
minimum Gate Delay for fast Gated LO operation. This line is only displayed in Gated LO. You cannot scroll (knob) or decrement (down key) the Gate Delay to less than that represented by the position of this line, it can only be set below this position manually, although once there it can be moved freely with the knob while below the line.
- A yellow line in the Gated Video case only, is displayed at $\mathrm{B}_{\text {length }}$, where $\mathrm{B}_{\text {length }}$ is the display point (bucket) length for the swept trace, which is given by the sweep time for that trace divided by number of Points -1 . So it is referenced to 0 time, not to the delay reference. This line is labeled NEXT PT (it is not shown in the figure above because the figure above is for Gated LO). The yellow line represents the edge of a display point (bucket). Normally in Gated Video, the bucket length must be selected so that it exceeds the off time of the burst. There is another way to use the analyzer in Gated Video measurements, and that is to set the bucket width much shorter than the off time of the burst. Then use the Max Hold trace function to fill in "missing" buckets more slowly. This allows you to see some of the patterns of the Gated Video results earlier, though seeing a completely filled-in spectrum later.

Gate View Sweep Time

Controls the sweep time in the Gate View window. To provide an optimal view of the gate signal, the analyzer initializes Gate View Sweep Time based on the current settings of Gate Delay and Gate Length.

Key Path	Sweep/Control, Gate
Remote Command	[:SENSe]:SWEep:EGATe:TIME <time> [:SENSe]:SWEep:EGATe:TIME?
Example	SWE:EGAT:TIME 500 ms
Dependencies	Gate View Sweep Time is initialized: On Preset (after initializing delay and length). Every time the Gate Method is set/changed. Additionally, in the Swept SA measurement, whenever you do a Preset, or leave Gate View, the analyzer remembers the Gate Delay and Gate Length settings. Then, when returning to Gate View, if the current Gate Delay and/or Gate Length do not match the remembered values Gate View Sweep Time is re-initialized. 1. Compute the location of the "gate stop" line, which you know is at time $t=$ $\mathrm{t}_{\text {min }}+$ GateDelay + GateLength.
Preset	$519.3 \mu \mathrm{~s}$ WiMAX OFDMA: 5 ms GSM/EDGE: 1 ms
State Saved	Saved in instrument state
Min	$1 \mu \mathrm{~s}$
Max	6000 s
Initial S/W Revision	Prior to A. 02.00

Sweep/Control

Gate Delay

Controls the length of time from the time the gate condition goes True until the gate is turned on.

Key Path	Sweep/Control, Gate
Remote Command	[:SENSe] :SWEep:EGATe:DELay <time> [:SENSe]:SWEep:EGATe: DELay?
Example	SWE:EGAT:DELay 500ms SWE:EGAT:DELay?
Notes	Units of time are required or no units; otherwise an invalid suffix error message will be generated. See error -131.
Preset	57.7 us WiMAX OFDMA: 71 us GSM/EDGE: 600 us
State Saved	Saved in instrument state
Min	0.0 us
Max	100 s
Backwards Compatibility SCPI	[:SENSe]:SWEep:TIME:GATE:DELay
Initial S/W Revision	Prior to A.02.00

Gate Length

Controls the length of time that the gate is on after it opens.

Key Path	Sweep/Control, Gate
Remote Command	[:SENSe] : SWEep : EGATe: LENGth <time> [:SENSe] : SWEep:EGATe: LENGth?
Example	SWE:EGAT:LENG 1 SWE:EGAT:LENG?
Notes	Units of time are required or no units; otherwise an invalid suffix error message will be generated.
Dependencies	Grayed out when Gate Method is set to FFT in which case the label changes to that shown below. Gate Length $(=1.83 / R B W)$ 2.8 ms

Preset	461.6 us WiMAX OFDMA: 50 us GSM/EDGE: 200 us
State Saved	Saved in instrument state
Min	100 ns
Max	5 s
Backwards Compatibility SCPI	[:SENSe]:SWEep:TIME:GATE:LENGth
Initial S/W Revision	Prior to A.02.00

Method

This lets you choose one of the three different types of gating.
Not all types of gating are available for all measurements.

Key Path	Sweep/Control, Gate	
Remote Command	[:SENSe]:SWEep:EGATe:METHod LO\|VIDeo	FFT [:SENSe]:SWEep:EGATe:METHod?
Example	SWE:EGAT:METH FFT	
Preset	LO	
State Saved	Saved in instrument state	
Initial S/W Revision	Prior to A.02.00	

LO

When Gate is set to On, the LO sweeps whenever the gate conditions as specified in the Gate menu are satisfied by the signal at the Gate Source.

This form of gating is more sophisticated, and results in faster measurements. With Gated LO, the analyzer only sweeps while the gate conditions are satisfied. This means that a sweep could take place over several gate events. It would start when the gate signal goes true and stop when it goes false, and then continue when it goes true again. But since the LO is sweeping as long as the gate conditions are satisfied, the sweep typically finishes much more quickly than with Gated Video.

When in zero span, there is no actual sweep performed. But data is only taken while the gate conditions are satisfied. So even though there is no sweep, the gate settings will impact when data is acquired.

Key Path	Sweep/Control, Gate, Method
Dependencies	Key is unavailable when Gate is On and FFT Sweep Type manually selected. When selected, Sweep Type is forced to Swept and the FFT key in Sweep Type is grayed out.
Readback	LO

Sweep/Control

Initial S/W Revision	Prior to A.02.00

Video

When Gate is set to On, the video signal is allowed to pass through whenever the gate conditions as specified in the Gate menu are satisfied by the signal at the Gate Source.

This form of gating may be thought of as a simple switch, which connects the signal to the input of the spectrum analyzer. When the gate conditions are satisfied, the switch is closed, and when the gate conditions are not satisfied, the switch is open. So we only look at the signal while the gate conditions are satisfied.

With this type of gating, you usually set the analyzer to sweep very slowly. In fact, a general rule is to sweep slowly enough that the gate is guaranteed to be closed at least once per data measurement interval (bucket). Then if the peak detector is used, each bucket will represent the peak signal as it looks with the gate closed.

Key Path	Sweep/Control, Gate, Method
Dependencies	Key is unavailable when Gate is On and FFT Sweep Type manually selected. When selected, Sweep Type is forced to Swept and the FFT key in Sweep Type is grayed out
Readback	Video
Initial S/W Revision	Prior to A.02.00

FFT

When Gate is set to On, an FFT is performed whenever the gate conditions as specified in the Gate menu are satisfied by the signal at the Gate Source. This is an FFT measurement which begins when the gate conditions are satisfied. Since the time period of an FFT is approximately $1.83 / \mathrm{RBW}$, you get a measurement that starts under predefined conditions and takes place over a predefined period. So, in essence, this is a gated measurement. You have limited control over the gate length but it works in FFT sweeps, which the other two methods do not.

Gated FFT cannot be done in zero span since the instrument is not sweeping. So in zero span the Gated LO method is used. Data is still only taken while the gate conditions are satisfied, so the gate settings do impact when data is acquired.

The Gate Length will be $1.83 /$ RBW.
This is a convenient way to make a triggered FFT measurement under control of an external gating signal.

Key Path	Sweep/Control, Gate

Dependencies	Key is unavailable when Gate is On and Swept Sweep Type manually selected. Key is unavailable when gate Control is set to Level. When selected, Sweep Type is forced to FFT and the Swept key in Sweep Type is grayed out Forces Gate Length to 1.83/RBW
Readback	FFT
Initial S/W Revision	Prior to A.02.00

Gate Source

The menus under the Gate Source key follow the same pattern as those under the Trigger key, with the exception that neither Free Run nor Video are available as Gate Source selections. Any changes to the settings in the setup menus under each Gate Source selection key (for example: Trigger Level) also affect the settings under the Trigger menu keys. Note that the selected Trigger Source does not have to match the Gate Source.

Key Path	Sweep/Control, Gate		
Remote Command	[:SENSe] : SWEep:EGATe: SOURce EXTernal1\|EXTernal2 \|LINE	FRAMe	RFBurst [:SENSe] : SWEep:EGATe: SOURce?
Dependencies	In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" error.		
Preset	EXTernal 1 GSM/EDGE: FRAMe		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.03.00		

Control Edge/Level

Sets the method of controlling the gating function from the gating signal.

Edge

In Edge triggering, the gate opens (after the Delay) on the selected edge (for example, positive) of the gate signal and closes on the alternate edge (for example, negative).

Level

In Level triggering, the gate opens (after the Delay) when the gate signal has achieved a certain level and stays open as long as that level is maintained.

Key Path	Sweep/Control, Gate

Sweep/Control

Remote Command	[:SENSe]:SWEep:EGATe:CONTrol EDGE\|LEVel [:SENSe]:SWEep:EGATe:CONTrol?
Example	SWE:EGAT:CONT EDGE
Dependencies	If the Gate Method is FFT the Control key is grayed out and Edge is selected. If the Gate Source is TV, Frame or Line, the Control key is grayed out and Edge is selected.
Preset	EDGE
State Saved	Saved in instrument state
Backwards Compatibility SCPI	[:SENSe]:SWEep:TIME:GATE:TYPE
Initial S/W Revision	Prior to A.02.00

Gate Holdoff

Lets you increase or decrease the wait time after a gate event ends before the analyzer will respond to the next gate signal.

After any Gate event finishes, the analyzer must wait for the sweep system to settle before it can respond to another Gate signal. The analyzer calculates a "wait time," taking into account a number of factors, including RBW and Phase Noise Optimization settings. The goal is to achieve the same accuracy when gated as in ungated operation. The figure below illustrates this concept:

When Gate Holdoff is in Auto, the wait time calculated by the analyzer is used. When Gate Time is in Manual, the user may adjust the wait time, usually decreasing it in order to achieve greater speed, but at the risk of decreasing accuracy.

When the Method key is set to Video or FFT, the Gate Holdoff function has no effect.

In measurements that do not support Auto, the value shown when Auto is selected is "---" and the manually set holdoff is returned to a query.

Key Path	Sweep/Control, Gate		
Remote Command	[:SENSe]:SWEep:EGATe:HOLDoff <time> [:SENSe]:SWEep:EGATe:HOLDoff? [:SENSe]:SWEep:EGATe:HOLDoff:AUTO OFF\|ON	0	1 [:SENSe]:SWEep:EGATe:HOLDoff:AUTO?
Example	SWE:EGAT:HOLD 0.0002 SWE:EGAT:HOLD? SWE:EGAT:HOLD:AUTO ON SWE:EGAT:HOLD:AUTO?		
Couplings	When Gate Holdoff is Auto, the Gate Holdoff key shows the value calculated by the analyzer for the wait time. Pressing the Gate Holdoff key while it is in Auto and not selected, causes the key to become selected and allows the user to adjust the value. If the value is adjusted, the setting changes to Man. Pressing the Gate Holdoff key, while it is in Auto and selected, does not change the value of Gate Holdoff, but causes the setting to change to Man. Now the user can adjust the value. Pressing the key while it is in Man and selected, cause the value to change back to Auto. Pressing the key while it is in Man and not selected, causes the key to become selected and allows the user to adjust the value. When Method is set to Video or FFT, the Gate Holdoff function has no effect.		
Preset	Auto Auto/On		
State Saved	Saved in instrument state		
Min	$1 \mu \mathrm{sec}$		
Max	1 sec		
Initial S/W Revision	Prior to A.02.00		

Gate Delay Compensation

This function allows you to select an RBW-dependent value by which to adjust the gate delay, to compensate for changes in the delay caused by RBW effects.

Youcan select between uncompensated operation and two types of compensation, Delay Until RBW Settled and Compensate for RBW Group Delay.

Sweep/Control

See "More Information" on page 822

Key Path	Sweep/Control, Gate	
Scope	Meas Global	
Remote Command	[:SENSe]:SWEep: EGATe: DELay: COMPensation:TYPE OFF\|SETTled	GDELay [:SENSe] : SWEep:EGATe: DELay: COMPensation:TYPE?
Example	SWE:EGAT:DEL:COMP:TYPE SETT SWE:EGAT:DEL:COMP:TYPE?	
Notes	Although this function is Meas Global, there are some measurements that do not support this function. In those measurements the operation will be Uncompensated. Going into one of those measurements will not change the Meas Global selection; it will simply display the grayed-out menu key with "Uncompensated" showing as the selection. This is a non-forceful grayout, so the SCPI command is still accepted. If Gate Delay Compensation is not supported at all within a particular mode, the key is not displayed, and if the SCPI command is sent while in a measurement within that mode, an "Undefined Header" message is generated.	
Readback text	Measurements that do not support this function include: Swept SA	
Initial S/W Revision	TD-SCDMA mode: Compensate for RBW Group Delay	
Preset	All other modes: Delay Until RBW Settled	

More Information

Selecting Uncompensated means that the actual gate delay is as you sets it.
Selecting Delay Until RBW Settled causes the gate delay to be increased above the user setting by an amount equal to 3.06/RBW. This compensated delay causes the GATE START and GATE STOP lines on the display to move by the compensation amount, and the actual hardware gate delay to be increased by the same amount. All the other gate lines (for example, MIN FAST) are unaffected. If the RBW subsequently changes, the compensation is readjusted for the new RBW. The value shown on the Gate Delay key does NOT change.

Delay Until RBW Settled allows excellent measurements of gated signals, by allowing the IF to settle following any transient that affects the burst. Excellent measurements also require that the analysis region not extend into the region affected by the falling edge of the burst. Thus, excellent measurements
can only be made over a width that declines with narrowing RBWs. Therefore, for general purpose compensation, you will still want to change the gate length with changes in RBW even if the gate delay is compensated.

Selecting Compensate for RBW Group Delay causes the gate delay to be increased above the user setting by an amount equal to 1.81 RBW. This compensated delay causes the GATE START, GATE STOP lines on the display to move by the compensation amount, and the actual hardware gate delay to be increased by the same amount. All the other gate lines (for example, MIN FAST) are unaffected. If the RBW subsequently changes, the compensation is readjusted for the new RBW. The value shown on the Gate Delay key does NOT change. Compensate for RBW Group Delay also includes gate length compensation; the gate length itself is adjusted as necessary to attempt to compensate for delay effects imposed by the RBW.

Compensate for RBW Group Delay is similar to Delay Until RBW Settled, but compensates for the group delay of the RBW filter, rather than the filter settling time. As the RBW gets narrow, this can allow the settling tail of the RBW to affect the beginning part of the gated measurement, and allow the beginning of the RBW settling transient to affect the end of the gated measurement. These two effects are symmetric because the RBW response is symmetric. Because the gate length is not automatically compensated, some users might find this compensation to be more intuitive than compensation for RBW settling.

Min Fast Position Query (Remote Command Only)

This command queries the position of the MIN FAST line, relative to the delay reference (REF) line. See section "Gate View On/Off" on page 812. If this query is sent while not in gate view, the MinFast calculation is performed based on the current values of the appropriate parameters and the result is returned. Knowing this value lets you set an optimal gate delay value for the current measurement setup.

Remote Command	[:SENSe]:SWEep:EGATe:MINFast?
Example	SWE:EGAT:MIN?
Initial S/W Revision	Prior to A.02.00

Points

Sets the number of points taken per sweep, and displayed in the traces. The current value of points is displayed parenthetically, next to the sweep time in the lower-right corner of the display. Using more points provides greater resolution; using fewer points compacts the data and decreases the time required to access a trace over the remote interface.

Increasing the number of points does not increase the sweep time; however, it can slightly impact the trace processing time and therefore the overall measurement speed. Decreasing the number of points does not decrease the sweep time, but it may speed up the measurement, depending on the other sweep settings (for example, in FFT sweeps). Fewer points will always speed up the I/O.

Due to minimum sweep rate limitations of the hardware, the minimum sweep time available to the user will increase above its normal value of 1 ms as the number of sweep points increases above 15001.

Changing the number of sweep points has several effects on the analyzer. The sweep time resolution will change. Trace data for all the traces will be cleared and, if Sweep is in Cont, a new trace taken. If any trace is in average or hold, the averaging starts over.

Sweep/Control

When in a split screen display each window may have its own value for points.
When sweep points is changed, an informational message is displayed, "Sweep points changed, all traces cleared."

Key Path	Sweep/Control
Remote Command	[:SENSe]:SWEep:POINts <integer> [:SENSe]:SWEep:POINts?
Example	SWE:POIN 5001 SWE:POIN?
Dependencies	- Neither the knob nor the step keys can be used to change this value. If it is tried, a warning is given. - Grayed out in measurements that do not support swept - Blanked in modes that do not support swept. - Grayed out if Normalize is on; you can't change the number of sweep points with Normalize on, as it will erase the reference trace.
Couplings	- When Source Mode is set to Tracking, and Stepped Tracking is used (as with option ESC), 201 source steps are used to achieve optimal speed. The number of sweep points in the analyzer is then set to match the number of steps in the source. When Source Mode is set to Off, the previous number of points (the value that existed when Source Mode was Off previously) is restored, even if the user has changed the Points value while the Source Mode was set to Tracking. - Whenever the number of sweep points change: - All trace data is erased - Any traces with Update Off will also go to Display Off (like going from View to Blank in the older analyzers) - Sweep time is re-quantized - Any limit lines that are on will be updated - If averaging/hold is on, averaging/hold starts over
Preset	1001
State Saved	Saved in instrument state
Min	Normally the minimum is 1 , but in Tracking Source Mode, the minimum value of Points is 101 . If you go into Tracking Source Mode with fewer points than 101, it sets Points to 101 .
Max	40001, or the maximum number of points supported by the source in Tracking Source mode, whichever is less
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A. 02.00

Zoom Points

In the Trace Zoom View of the Swept SA measurement, the Points key changes to Zoom Points whenever the focus (thick green border) ison the bottom window. Zoom Points controls how many points are displayed in the Zoom Window and hence indirectly controls the Zoom Span.

Key Path	Sweep
Remote Command	[:SENSe] : SWEep:TZOom: POINts <integer> $[: S E N S e]: S W E e p: T Z O o m: P O I N t s ? ~$
Example	SWE:TZO:POIN 5001
Dependencies	Only appears in the Trace Zoom View of the Swept SA measurement. If the SCPI command is sent in other Views, gives an error.
Couplings	Zoom Points is coupled to Zoom Span and Sweep Points; if Zoom Span changes, Zoom Points will change but Sweep Points will not; if Sweep Points changes, Zoom Points will change but Zoom Span will not. Zoom Span is directly coupled to Zoom Points; if Zoom Points changes, Zoom Span will change but Sweep Points will not.
Preset	On entry to Trace Zoom, 10\% of the number of points in the upper window.
State Saved	Saved in instrument state
Min	1
Max	Number of points in top window
Initial S/W Revision	A.07.01

Abort (Remote Command Only)

This command is used to stop the current measurement. It aborts the current measurement as quickly as possible, resets the sweep and trigger systems, and puts the measurement into an "idle" state. If the analyzer is in the process of aligning when ABORt is sent, the alignment finishes before the abort function is performed. So ABORt does not abort an alignment.

If the analyzer is set for Continuous measurement, it sets up the measurement and initiates a new data measurement sequence with a new data acquisition (sweep) taken once the trigger condition is met.

If the analyzer is set for Single measurement, it remains in the "idle" state until an :INIT:IMM command is received.

Remote Command	$:$ ABORt
Example	$:$ ABOR

Sweep/Control

Notes	If :INITiate:CONTinuous is ON, then a new continuous measurement will start immediately; with sweep (data acquisition) occurring once the trigger condition has been met. If :INITiate:CONTinuous is OFF, then :INITiate:IMMediate is used to start a single measurement; with sweep (data acquisition) occurring once the trigger condition has been met.
Dependencies	For continuous measurement, ABORt is equivalent to the Restart key. Not all measurements support the abort command.
Status Bits/OPC dependencies	The STATus:OPERation register bits 0 through 8 are cleared. The STATus:QUEStionable register bit 9 (INTegrity sum) is cleared. Since all the bits that feed into OPC are cleared by the ABORt, the ABORt will cause the *OPC query to return true.
Initial S/W Revision	Prior to A.02.00

Trigger

Accesses a menu of keys to control the selection of the trigger source and the setup of each of the trigger sources. The analyzer is designed to allow triggering from a number of different sources, for example, Free Run, Video, External, RF Burst, and so forth.

The TRIG:SOURCe command (below) will specify the trigger source for the currently selected input (RF or I/Q). If you change inputs, the new input remembers the trigger source it was last programmed to for the current measurement, and uses that trigger source. You can directly set the trigger source for each input using the TRIGger:RF:SOURce and TRIGger:IQ:SOURce commands (later in this section).

Note the inclusion of the <measurement> parameter in the command below. Because each measurement remembers its own Trigger Source, the command must be qualified with the measurement name. Note that for the Swept SA measurement this is not the case; for backwards compatibility, no <measurement> parameter is used when setting the Trigger Source for the Swept SA measurement.
See "Trigger Source Presets" on page 829
See "RF Trigger Source" on page 832
See "I/Q Trigger Source" on page 833
See "More Information" on page 834

Key Path	Front-panel key														
Remote Command	:TRIGger:<measurement>[:SEQuence]:SOURce EXTernal1\|EXTernal2	IMMediate	LINE	FRAMe	RFBurst	VIDeo	IF	ALARm	LAN	IQMag	IDEMod	QDEMod	IINPut	QINPut	AIQMag :TRIGger:<measurement>[:SEQuence]:SOURce?
Example	TRIG:ACP:SOUR EXT1 Selects the external 1 trigger input for the ACP measurement and the selected input TRIG:SOUR VID Selects video triggering for the SANalyzer measurement in the Spectrum Analyzer mode. For SAN, do not use the <measurement> keyword.														

Trigger

Notes	Not all measurements have all the trigger sources available to them. Check the trigger source documentation for your specific measurement to see what sources are available. Not all trigger sources are available for each input. See the "RF Trigger Source" on page 832 and "I/Q Trigger Source" on page 833 commands for detailed information on which trigger sources are available for each input. Other trigger-related commands are found in the INITiate and ABORt SCPI command subsystems. *OPC should be used after requesting data. This will hold off any subsequent changes to the selected trigger source, until after the sweep is completed and the data is returned. Available ranges and presets can vary from mode to mode.
Dependencies	In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" message.
Preset	See table below
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Backwards Compatibility SCPI	[:SENSe]:<measurement>:TRIGger:SOURce This backwards compatibility command does not apply to the Swept SA measurement, for that just use :TRIGger:SOURCe This backwards compatibility command does not apply to the monitor spectrum, log plot and spot frequency measurements at all. The backwards Compatibility SCPI command, [:SENSe]:ACPR:TRIGger:SOURce, is provided to support the same functionality as [:SENSe]:ACPr:TRIGger:SOURce (PSA W-CDMA, PSA cdma2000 and PSA 1xEVDO) due to the fact that the ACPr node conflicts with the ACPower node. In earlier instruments, the parameter IF was used by apps for the video trigger, so using the IF enum selects video triggering. Sending IF in the command causes VID to be returned to a query.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Trigger Source Presets

Here are the Trigger Source Presets for the various measurements:

Meas	Mode	Preset for RF	Preset for IQ	Notes
Swept SA	SA	IMM	IQ not supported	
CHP	SA, WCDMA, C2K, WIMAX OFDMA, 1xEVDO, DVB-T/H, DTMB, LTE, LTETDD, CMMB, ISDB-T, Digital Cable TV	IMM	IQ not supported	
OBW	SA, WCDMA, C2K, WIMAX OFDMA, TD-SCDMA, 1xEVDO, LTE, LTETDD, CMMB, ISDB-T	1xEVDO: EXT1 others: IMM	IQ not supported	For 1 xEVDO mode, the trigger source is coupled with the gate state, as well as the gate source. When the trigger source changes to RFBurst, External1 or External2, the gate state is set to on, and the gate source is set identically with the trigger source. When the trigger source changes to IMMediate, VIDeo, LINE, FRAMe or IF, the gate state is set to off.
CCDF	SA, WCDMA, C2K, WIMAXOFDMA , TD-SCDMA, 1xEV-DO, DVB-T/H, DTMB, LTE, LTETDD, CMMB, ISDB-T, Digital Cable TV	WIMAXOFDMA : RFBurst LTETDD: BTS: External 1 MS: Periodic Timer TD-SCDMA and 1xEV-DO: BTS: External 1 MS: RFBurst SA, WCDMA, C2K, LTE, CMMB, ISDB-T, DVB-T/H, DTMB, Digital Cable TV: IMMediate	TD-SCDMA and 1xEV-DO: BTS: External 1 MS: IQMag LTETDD: BTS: External 1 MS: Periodic Timer Others: IMM	For TD-SCDMA: Trigger source is coupled with radio device. When radio device changes to BTS, trigger source will be changed to EXTernal1. When radio device changes to MS, trigger source will be set as RFBurst for RF or IQ Mag for BBIQ. When TriggerSource is RFBurst or IQ Mag, Measure Interval is grayed out.

Trigger

Meas	Mode	Preset for RF	Preset for IQ	Notes
ACP	SA, WCDMA, C2K, WIMAX OFDMA, TD-SCDMA, 1xEVDO, DVB-T/H, DTMB, LTE, LTETDD, CMMB, ISDB-T, Digital Cable TV	IMM	IQ not supported	
Tx Power	$\begin{aligned} & \text { SA, GSM, } \\ & \text { TD-SCDMA } \end{aligned}$	SA, GSM: RFBurst TD-SCDMA: EXTernal	IMM	TD-SCDMA doesn't support the Line and Periodic Timer parameters. When the mode is TD-SCDMA, if the Radio Device is switched to BTS, the value will be changed to External 1 and if the Radio device is switched to MS, the value will be changed to RFBurst
SPUR	SA, WCDMA, C2K, WIMAX OFDMA, TD-SCDMA,1xE V-DO, DVB-T/H, LTE, LTETDD	IMM	IQ not supported	
SEM	SA, WCDMA, C2K, WIMAX OFDMA, TD-SCDMA, 1xEVDO, DVB-T/H, DTMB, LTE, LTETDD, CMMB, ISDB-T, Digital Cable TV	1xEVDO(BTS): EXTernal1 All others: IMMediate	IQ not supported	
CDP	WCDMA	IMM	IMM	
RHO	WCDMA	IMM	IMM	
PCON	WCDMA	IMM	IMM	
QPSK	WCDMA, C2K, 1xEVDO	All except CDMA1xEVDO: IMMediate CDMA1xEVDO: EXT1	IMM	
MON	All except SA and BASIC	IMM	IQ not supported	

Trigger

Meas	Mode	Preset for RF	Preset for IQ	Notes
WAV		LTETDD: BTS: External 1 MS: Periodic Timer GSM/EDGE: RFBurst All others: IMMediate	LTETDD: BTS: External 1 MS: Periodic Timer GSM/EDGE: IQMag All others: IMMMediate	
PVT	WIMAXOFDMA	RFB	IMM	
EVM	$\begin{aligned} & \text { WIMAXOFDMA } \\ & \text {, DVB-T/H, } \\ & \text { DTMB, LTE, } \\ & \text { LTETDD, } \\ & \text { CMMB, ISDB-T, } \\ & \text { Digital Cable TV } \end{aligned}$	All but CMMB: IMM CMMB: Periodic Timer	All but CMMB: IMM CMMB: External 1	LTE, LTETDD supports Free Run, Video and External 1 only.
SPEC	BASIC	IMM	IMM	
LOG Plot	PN	IMM	IQ not supported	
Spot Freq	PN	IMM	IQ not supported	
GMSK PVT	EDGE/GSM	RFB	IMM	
GMSK PFER	EDGE/GSM	RFB	IQMag	
GMSK ORFS	EDGE/GSM	RF Burst	IQ not supported	
EDGE PVT	EDGE/GSM	RFB	IMM	
$\begin{aligned} & \text { EDGE } \\ & \text { EVM } \end{aligned}$	EDGE/GSM	RFB	IQMag	
EDGE ORFS	EDGE/GSM	Periodic Timer	IQ not supported	
Combine d WCDMA	WCDMA	IMM	IQ not supported	
Combine d GSM	EDGE/GSM	RFB	IQ not supported	

Trigger

Meas	Mode	Preset for RF	Preset for IQ	Notes
List Power Step	WCDMA, EDGE/GSM	IMM	IQ not supported	
Transmit On/Off Power	LTETDD	LTETDD: BTS: External 1 MS: Periodic Timer	LTETDD: BTS: External 1 MS: Periodic Timer	
Transmit Analysis	BLUETOOTH	RFB	IQ not supported	
Adjacent Channel Power	BLUETOOTH	IMM	IQ not supported	
LE In-band Emission s	BLUETOOTH	IMM	IQ not supported	
EDR In-band Spurious Emission s	BLUETOOTH	Periodic Timer	IQ not supported	

RF Trigger Source

The RF Trigger Source command selects the trigger to be used for the specified measurement when RF is the selected input. The RF trigger source can be queried and changed even while another input is selected, but it is inactive until RF becomes the selected input.

Note the inclusion of the <measurement> parameter in the command below. Because each measurement remembers its own Trigger Source, the command must be qualified with the measurement name. Note that for the Swept SA measurement this is not the case; for backwards compatibility, no <measurement> parameter is used when setting the Trigger Source for the Swept SA measurement.

| Remote Command | ```:TRIGger:<measurement>[:SEQuence]:RF:SOURce EXTernal1\|EXTernal2|IMMediate|LINE|FRAMe|RFBurst|VIDeo| IF|ALARm|LAN :TRIGger:<measurement>[:SEQuence]:RF:SOURce?``` |
| :---: | :---: |
| Example | TRIG:ACP:RF:SOUR EXT1
 Selects the external 1 trigger input for the ACP measurement and the RF input TRIG:RF:SOUR VID
 Selects video triggering for the SANalyzer measurement and the RF input. For SAN, do not use the <measurement> keyword. |

Notes	Not all measurements have all the trigger sources available to them. Check the trigger source documentation for your specific measurement to see what sources are available. Not all trigger sources are available for each input. For the RF Trigger Source, the following trigger sources are available: - IMMediate - free run triggering - VIDeo - triggers on the video signal level - LINE - triggers on the power line signal - EXTernal1 - triggers on an externally connected trigger source marked "Trigger 1 In" on the rear panel - EXTernal2 - triggers on an externally connected trigger source marked "Trigger 2 In" on the front panel. In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" message - RFBurst - triggers on the bursted frame - FRAMe - triggers on the periodic timer - IF (video) - same as video, for backwards compatibility only - ALARm - LXI Alarm - LAN - LXI LAN event *OPC should be used after requesting data. This will hold off any subsequent changes to the selected trigger source, until after the sweep is completed and the data is returned. Available ranges, and presets can vary from mode to mode.
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Backwards Compatibility SCPI	In earlier instruments, the parameter IF was used by apps for the video trigger, so using the IF enum selects video triggering. Sending IF in the query returns the VID enum.
Initial S/W Revision	Prior to A.02.00

I/Q Trigger Source

This command selects the trigger to be used for the specified measurement when I/Q (which requires option BBA) is the selected input. The I/Q trigger source can be queried and changed even while another

Trigger

input is selected, but it is inactive until I/Q becomes the selected input.

| Remote Command | ```:TRIGger:<measurement>[:SEQuence]:IQ:SOURce EXTernal1\|EXTernal2|IMMediate|IQMag|IDEMod|QDEMod|IINPu t|QINPut|AIQMag :TRIGger:<measurement>[:SEQuence]:IQ:SOURce?``` |
| :---: | :---: |
| Example | TRIG:WAVeform:SOUR IQM
 Selects I/Q magnitude triggering for the IQ Waveform measurement and the I/Q input |
| Notes | Not all measurements have all the trigger sources available to them. Check the trigger source documentation for your specific measurement to see what sources are available.
 Not all trigger sources are available for each input. For the I/Q Trigger
 Source, the following trigger sources are available:
 - IMMediate - free run triggering
 - EXTernal1 - triggers on an externally connected trigger source on the rear panel
 - EXTernal2 - triggers on an externally connected trigger source on the front panel
 - IQMag - triggers on the magnitude of the I/Q signal
 - IDEMod - triggers on the I/Q signal's demodulated I voltage
 - QDEMod - triggers on the I/Q signal's demodulated Q voltage
 - IINPut - triggers on the I channel's ADC voltage
 - QINPut - triggers on the Q channel's ADC voltage
 - AIQMag - triggers on the magnitude of the auxiliary receiver channel I/Q signal
 *OPC should be used after requesting data. This will hold off any subsequent changes to the selected trigger source, until after the sweep is completed and the data is returned.
 Available ranges, an from mode to mode.d presets can vary |
| Status Bits/OPC dependencies | The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears. |
| Initial S/W Revision | Prior to A.02.00 |

More Information

The trigger menus let you select the trigger source and trigger settings for a sweep or measurement. In triggered operation (basically, any trigger source other than Free Run), the analyzer will begin a sweep or
measurement only with the selected trigger conditions are met, generally when your trigger source signal meets the specified trigger level and polarity requirements. (In FFT measurements, the trigger controls when the data acquisition begins for FFT conversion.)

For each of the trigger sources, you may define a set of operational parameters or settings which will be applied when that source is selected as the current trigger source. Examples of these settings are Trigger Level, Trigger Delay, and Trigger Slope. You may apply different settings for each source; so, for example, you could have a Trigger Level of 1 v for External 1 trigger and -10 dBm for Video trigger.

Once you have established the settings for a given trigger source, they generally will remain unchanged for that trigger source as you go from measurement to measurement within a Mode (although the settings do change as you go from Mode to Mode). Furthermore, the trigger settings within a Mode are the same for the Trigger menu, the Gate Source menu, and the Sync Source menu that is part of the Periodic Timer Trigger Setup menu. That is, if Ext1 trigger level is set to 1v in the Trigger menu, it will appear as 1 v in both the Gate Source and the Sync Source menus. For these reasons the trigger settings commands are not qualified with the measurement name, the way the trigger source commands are.

The settings setup menu can be accessed by pressing the key for the current trigger source a second time. For example, one press of Video selects the Video trigger as the source. The Video key becomes highlighted and the hollow arrow on the key turns black. Now a second press of the key takes you into the Video Trigger Setup menu.

Trigger Setup Parameters:

The following examples show trigger setup parameters using an external trigger source.
Example 1 illustrates the trigger conditions with negative slope and no trigger occurs during trigger Holdoff time.

Example 2 illustrates the trigger conditions with positive slope, trigger delay, and auto trigger time.

Trigger

Free Run

Pressing this key, when it is not selected, selects free-run triggering. Free run triggering occurs immediately after the sweep/measurement is initiated.

Key Path	Trigger
Example	TRIG:SOUR IMM Swept SA measurement TRIG:<meas>:SOUR IMM Measurements other than Swept SA
State Saved	Saved in instrument state
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Video (IF Envelope)

Pressing this key, when it is not selected, selects the video signal as the trigger. The Video trigger condition is met when the video signal (the filtered and detected version of the input signal, including both RBW and VBW filtering) crosses the video trigger level.

NOTE

When the detector selected for all active traces is the average detector, the video signal for triggering does not include any VBW filtering.

The video trigger level is shown as a labeled line on the display. The line is displayed as long as video is the selected trigger source.

Pressing this key, when it is already selected, accesses the video trigger setup functions.

Key Path	Trigger
Example	TRIG:SOUR VID Swept SA measurement TRIG:<meas $>: S O U R ~ V I D ~ M e a s u r e m e n t s ~ o t h e r ~ t h a n ~ S w e p t ~ S A ~$
Notes	Log Plot and Spot Frequency measurements do not support Video Trigger
Dependencies	Video trigger is allowed in average detector mode.
State Saved	Saved in instrument state
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.

Trigger

Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the video signal trigger. When the video signal crosses this level, with the chosen slope, the trigger occurs. This level is displayed with a horizontal line only if Video is the selected trigger source.

Key Path	Trigger, Video
Remote Command	:TRIGger[:SEQuence]:VIDeo:LEVel <ampl> :TRIGger[:SEQuence]:VIDeo:LEVel?
Example	TRIG:VID:LEV -40 dBm
Notes	When sweep type = FFT, the video trigger uses the amplitude envelope in a bandwidth wider than the FFT width as a trigger source. This might often be useful, but does not have the same relationship between the displayed trace and the trigger level as in swept triggering. Amplitude Corrections are not taken into account by the Video Trig Level. For example, if you have given yourself effective gain with an amplitude correction factor, the Video Trigger will not fire until you have dropped the trigger line that far below the displayed signal level, rather than simply dropping it down to the displayed signal level. Note that other corrections, specifically External Gain and Ref Level Offset, modify the actual trace data as it is taken and therefore ARE taken into account by Trig Level.
Couplings	This same level is used for the Video trigger source in the Trigger menu and for the Video selection in the Gate Source menu.
Preset	Set the Video Trigger Level -25 dBm on Preset. When the Video Trigger Level becomes the active function, if the value is off screen, set it to either the top or bottom of screen, depending on which direction off screen it was.
State Saved	Saved in instrument state
Min	-170 dBm
Max	+30 dBm
Backwards Compatibility SCPI	:TRIGger[:SEQuence]:IF:LEVel :TRIGger[:SEQuence]:IF:LEVel?
Backwards Compatibility SCPI	For backward compatibility with VSA/PSA comms apps, we need this alias.
Initial S/W Revision	Prior to A.02.00
Default Unit	depends on the current selected Y axis unit

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a

Trigger
falling edge.

Key Path	Trigger, Video
Remote Command	:TRIGger [:SEQuence] :VIDeo:SLOPe POSitive\|NEGative $:$ TRIGger [:SEQuence] :VIDeo:SLOPe?
Example	TRIG:VID:SLOP NEG
Preset	POSitive
State Saved	Saved in instrument state
Backwards Compatibility SCPI	:TRIGger[:SEQuence]:SLOPe :TRIGger[:SEQuence]:IF:SLOPe
Backwards Compatibility SCPI	For backward compatibility, the following commands should update all instances of trigger slope (video/external/line). The query returns the trigger slope setting of the selected trigger source. $: T R I G g e r[: S E Q u e n c e]: S L O P e ~ P O S i t i v e \mid N E G a t i v e ~$
:TRIGger[:SEQuence]:SLOPe?	
For backward compatibility with VSA/PSA comms apps, we need to alias	
$:$:TRIGger[:SEQuence]:IF:SLOPe NEGative\|POSitive	
$: T R I G g e r[: S E Q u e n c e]: I F: S L O P e ? ~$	

Trig Delay

Controls a time delay during that the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in the time domain or FFT, but not in swept spans.

Key Path	Trigger, Video		
Remote Command	```:TRIGger[:SEQuence]:VIDeo:DELay <time> :TRIGger[:SEQuence]:VIDeo:DELay? :TRIGger[:SEQuence]:VIDeo:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:VIDeo:DELay:STATe?```
Example	TRIG:VID:DEL:STAT ON TRIG:VID:DEL 100 ms		
Notes	Video trigger delay may be set to negative values, in time domain, FFT and even swept. It makes intuitive sense in time domain and works well in FFT mode where the bandwidth of the filter before the video trigger is about 1.25 span. In swept spans, negative settings of Trig Delay are treated as a zero setting within the internal hardware and the advisory message "Neg. Trig Delay unavailable in Swept Mode, zero delay used." is generated when such a delay is set.		

Preset	Off, 1 us		
State Saved	Saved in instrument state		
Min	-150 ms		
Max	+500 ms		
Backwards Compatibility SCPI	:TRIGger[:SEQuence]:IF:DELay :TRIGger[:SEQuence]:DELay		
Backwards Compatibility SCPI	For backward compatibility with VSA/PSA comms apps, we need to alias Video trigger to :TRIGger[:SEQuence]:IF:DELay <time> :TRIGger[:SEQuence]:IF:DELay? For backward compatibility, the following commands should update all instances of trigger delay (not including RF Burst). The query returns the video trigger delay settings of the selected trigger source. :TRIGger[:SEQuence]:DELay <time> :TRIGger[:SEQuence]:DELay? :TRIGger[:SEQuence]:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:DELay:STATe? Also, the legacy ESA command for trigger offset, TRIGger[:SEQuence]:OFFSet, is supported (see section "Trigger Offset (Remote Command Only)" on page 887). The offset specified by this commands is remembered by the analyzer and added to the video trigger delay whenever the value is sent to the hardware, when in zero span and in a Res $B W>=1 \mathrm{kHz}$.
Initial S/W Revision	Prior to A.02.00		
Default Unit	S		

Line

Pressing this key, when it is not selected, selects the line signal as the trigger. A new sweep/measurement will start synchronized with the next cycle of the line voltage. Pressing this key, when it is already selected, access the line trigger setup menu.

Key Path	Trigger
Example	TRIG:SOUR LINE Swept SA measurement TRIG: $<$ meas $>:$ SOUR LINE Measurements other than Swept SA
Dependencies	Line trigger is not available when operating from a "dc power source", for example, when the instrument is powered from batteries.
State Saved	Saved in instrument state

Trigger

Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Line
Remote Command	$:$ TRIGger [:SEQuence] :LINE:SLOPe POSitive \|NEGative $:$ TRIGger[:SEQuence] :LINE:SLOPe?
Example	TRIG:LINE:SLOP NEG
Preset	POSitive
State Saved	Saved in instrument state
Backwards Compatibility SCPI	:TRIGger[:SEQuence]:SLOPe (There are SLOPe backward compatibility commands.)
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT, but not in swept spans.

Key Path	Trigger, Line		
Remote Command	$:$ TRIGger[:SEQuence]:LINE:DELay <time>		
	$:$ TRIGger[:SEQuence]:LINE:DELay?		
	$:$ TRIGger[:SEQuence]:LINE:DELay:STATe OFF\|ON	0	1
	$: T R I G g e r[: S E Q u e n c e]: L I N E: D E L a y: S T A T e ? ~$		
Example	TRIG:LINE:DEL:STAT ON		
	TRIG:LINE:DEL 100 ms		

Notes	Video trigger delay may be set to negative values, in time domain, FFT and even swept. It makes intuitive sense in time domain and works well in FFT mode where the bandwidth of the filter before the video trigger is about 1.25 span. In swept spans, negative settings of Trig Delay are treated as a zero setting within the internal hardware and the advisory message "Neg. Trig Delay unavailable in Swept Mode, zero delay used." is generated when such a delay is set.
Preset	Off, 1.000 us
State Saved	Saved in instrument state
Min	-150 ms
Max	500 ms Backwards Compatibility SCPI There are DELay backward compatibility commands described in video, Section "Trig Delay " on page 838) $: T R I G g e r[: S E Q u e n c e]: D E L a y ~$ (Also, the legacy ESA command for trigger offset, TRIGger[:SEQuence]:OFFSet, is supported. See section "Trigger Offset (Remote Command Only)" on page 887. The offset specified by this commands is remembered by the analyzer and added to the line trigger delay whenever the value is sent to the hardware, when in zero span and in a Res BW >= 1 kHz.) Initial S/W Revision Default UnitPrior to A.02.00

External 1

Pressing this key, when it is not selected, selects an external input signal as the trigger. A new sweep/measurement will start when the external trigger condition is met using the external 1 input connector on the rear panel.

Pressing this key, when it is already selected, accesses the external 1 trigger setup menu.

Key Path	Trigger
Example	TRIG:SOUR EXT1 Swept SA measurement TRIG:<meas $>: S O U R ~ E X T 1 ~ M e a s u r e m e n t s ~ o t h e r ~ t h a n ~ S w e p t ~ S A ~$
Dependencies	Grayed out if in use by Point Trigger in the Source Setup menu. Forced to Free Run if already selected and Point Trigger is set to External 1.
State Saved	Saved in instrument state

Trigger

Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets the value where the external 1 trigger input will trigger a new sweep/measurement.

Key Path	Trigger, External 1
Remote Command	:TRIGger[:SEQuence] :EXTernal1:LEVel <level> $:$ TRIGger[:SEQuence] :EXTernal1:LEVel?
Example	TRIG:EXT1:LEV 0.4 V
Couplings	This same level is used for the Ext1 trigger source in the Trigger menu, for the Ext1 selection in the Periodic Timer sync source (in the Trigger menu and in the Gate Source menu), and also for the Ext1 selection in the Gate Source menu.
Preset	1.2 V
State Saved	Saved in instrument state
Min	-5 V
Max	5 V
Backwards Compatibility SCPI	$:$ TRIGger[:SEQuence]:EXTernal:LEVel
(For backward compatibility, EXTernal should also work.)	
Initial S/W Revision	Prior to A.02.00
Default Unit	V

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, External 1
Remote Command	:TRIGger[:SEQuence] :EXTernal1:SLOPe POSitive\|NEGative $: T R I G g e r[: S E Q u e n c e]: E X T e r n a l 1: S L O P e ? ~$
Example	TRIG:EXT1:SLOP NEG
Couplings	This same slope is used in the Ext1 selection for the trigger source in the Trigger menu and for the period timer sync source (in the Trigger menu and in the Gate Source menu).

Preset	POSitive
State Saved	Saved in instrument state
Backwards Compatibility SCPI	For backward compatibility, EXTernal should also work. Also, there are SLOPe backward compatibility cmds described in Video section "Trig Slope " on page 837 :TRIGger[:SEQuence]:SLOPe
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT, but not in swept spans.

Key Path	Trigger, External 1
Remote Command	:TRIGger [:SEQuence] : EXTernal1:DELay <time> $:$ TRIGger [:SEQuence] :EXTernal1:DELay? $:$ TRIGger [:SEQuence] :EXTernal1:DELay:STATe OFF \mid ON $\|0\| 1$ $: T R I G g e r[: S E Q u e n c e]: E X T e r n a l 1: D E L a y: S T A T e ? ~$
Example	TRIG:EXT1:DEL:STAT ON TRIG:EXT1:DEL 100 ms
Notes	Video trigger delay may be set to negative values, in time domain, FFT and even swept. It makes intuitive sense in time domain and works well in FFT mode where the bandwidth of the filter before the video trigger is about 1.25 span. In swept spans, negative settings of Trig Delay are treated as a zero setting within the internal hardware and the advisory message "Neg. Trig Delay unavailable in Swept Mode, zero delay used." is generated when such a delay is set.
Preset	Off, 1.000 us
State Saved	Saved in instrument state
Min	-150 ms
Max	+500 ms

Trigger

Backwards Compatibility SCPI	For backward compatibility, EXTernal should also work. Also, there are DELay backward compatibility commands described in video section "Trig Delay " on page 838 :TRIGger[:SEQuence]:DELay Also, the legacy ESA command for trigger offset, TRIGger[:SEQuence]:OFFSet, is supported (see section "Trigger Offset (Remote Command Only)" on page 887). The offset specified by this commands is remembered by the analyzer and added to the external1 trigger delay whenever the value is sent to the hardware, when in zero span and in a Res BW >=1 kHz.
Initial S/W Revision	Prior to A.02.00
Default Unit	s

External 2

Pressing this key, when it is not selected, selects an external input signal as the trigger. A new sweep/measurement will start when the external trigger condition is met using the external 2 input connector. The external trigger 2 input connector is on the rear panel.

Pressing this key, when it is already selected, accesses the external 2 trigger setup menu.

Key Path	Trigger
Example	TRIG:SOUR EXT2 Swept SA measurement TRIG:<meas>:SOUR EXT2 Measurements other than Swept SA
Dependencies	In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" message. Grayed out if in use by Point Trigger in the Source Setup menu. Forced to Free Run if already selected and Point Trigger is set to External 2.
State Saved	Saved in instrument state
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Trigger Level

Sets the value where the external 2 trigger input will trigger a new sweep/measurement.

Key Path	Trigger, External 2
Remote Command	:TRIGger [:SEQuence] :EXTernal2:LEVel $:$ TRIGger [:SEQuence] : EXTernal2:LEVel?
Example	TRIG:EXT2:LEV 1.1 V
Couplings	This same level is used for the Ext2 trigger source in the Trigger menu, for the Ext2 selection in the Periodic Timer sync source (in the Trigger menu and in the Gate Source menu), and also for the Ext2 selection in the Gate Source menu.
Preset	1.2 V
State Saved	Saved in instrument state
Min	-5 V
Max	5 V
Initial S/W Revision	Prior to A.02.00
Default Unit	V

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, External 2
Remote Command	:TRIGger [:SEQuence] : EXTernal2:SLOPe POSitive\|NEGative $:$ TRIGger [:SEQuence] : EXTernal2:SLOPe?
Example	TRIG:EXT2:SLOP NEG
Couplings	This same slope is used in the Ext2 selection for the trigger source in the Trigger menu and for the period timer sync source (in the Trigger menu and in the Gate Source menu).
Preset	POSitive
State Saved	Saved in instrument state
Backwards Compatibility SCPI	Also, there are SLOPe backward compatibility commands described in Video, section :TRIGger[:SEQuence]:SLOPe
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT, but not in swept

Trigger
spans.

Key Path	Trigger, External 2		
Remote Command	:TRIGger[:SEQuence]:EXTernal2:DELay <time> :TRIGger[:SEQuence]:EXTernal2:DELay? :TRIGger [:SEQuence]:EXTernal2:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:EXTernal2:DELay:STATe?
Example	TRIG:EXT2:DEL:STAT ON TRIG:EXT2:DEL 100 ms		
Notes	Video trigger delay may be set to negative values, in time domain, FFT and even swept. It makes intuitive sense in time domain and works well in FFT mode where the bandwidth of the filter before the video trigger is about 1.25 span. In swept spans, negative settings of Trig Delay are treated as a zero setting within the internal hardware and the advisory message "Neg. Trig Delay unavailable in Swept Mode, zero delay used." is generated when such a delay is set.		
Preset	Off, 1.000 us		
State Saved	Saved in instrument state		
Min	-150 ms		
Max	500 ms		
Backwards Compatibility SCPI	Also, there are DELay backward compatibility commands described in video section "Trig Delay" on page 838. :TRIGger[:SEQuence]:DELay Also, the legacy ESA command for trigger offset, TRIGger[:SEQuence]:OFFSet, is supported (see section "Trigger Offset (Remote Command Only)" on page 887). The offset specified by this commands is remembered by the analyzer and added to the external2 trigger delay whenever the value is sent to the hardware, when in zero span and in a Res BW >= 1 kHz .		
Initial S/W Revision	Prior to A.02.00		
Default Unit	S		

RF Burst

Pressing this key, when it is not selected, selects the RF Burst as the trigger. A new sweep/measurement will start when an RF burst envelope signal is identified from the signal at the RF Input connector. Pressing this key, when it is already selected, accesses the RF Burst trigger setup menu.

In some models, a variety of burst trigger circuitry is available, resulting in various available burst trigger bandwidths. The analyzer automatically chooses the appropriate trigger path based on the
hardware configuration and other settings of the analyzer.

Key Path	Trigger
Example	TRIG:SOUR RFB Swept SA measurement TRIG:<meas $>:$ SOUR RFB Measurements other than Swept SA
State Saved	Saved in instrument state
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

Absolute Trigger Level

Sets the absolute trigger level for the RF burst envelope.

Key Path	Trigger, RF Burst
Scope	Meas Global
Remote Command	:TRIGger [: SEQuence] : RFBurst : LEVel : ABSolute <ampl> :TRIGger [: SEQuence] : RFBurst : LEVel : ABSolute?
Example	TRIG:RFB:LEV:ABS 10 dBm sets the trigger level of the RF burst envelope signal to the absolute level of 10 dBm
Notes	Sending this command does not switch the setting from relative to absolute; to switch it you need to send the :TRIGger[:SEQuence]:RFBurst:LEVel:TYPE command, below. Amplitude Corrections are not taken into account by the Absolute Trigger Level. For example, if you have given yourself effective gain with an amplitude correction factor, the Absolute Trigger will not fire until you have set the trigger level that far below the displayed signal level, rather than simply to the displayed signal level. This is only true for Amplitude Corrections, not External Gain or Ref Level Offset functions.
If mode is Bluetooth, the default value os -50 dBm.	

Trigger

State Saved	Saved in state
Min	-200 dBm
Max	100 dBm
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00
Default Unit	depends on the current selected Y-Axis unit

Key Path	Trigger, RF Burst
Remote Command	:TRIGger[:SEQuence] :RFBurst:LEVel:TYPE ABSolute\|RELative $:$ TRIGger[:SEQuence] :RFBurst:LEVel:TYPE?
Example	TRIG:RFB:LEV:TYPE REL sets the trigger level type of the RF burst trigger to Relative.
Preset	ABSolute
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.04.00

Relative Trigger Level

Sets the relative trigger level for the RF burst envelope.
In some models, the relative burst trigger function is implemented in hardware. In other models, without the advanced triggering hardware required, the relative burst trigger function is implemented in software in some measurements, and is unavailable in other measurements.

When implemented in software, the relative RF Burst trigger function is implemented as follows:
The measurement starts with the absolute RF Burst trigger setting. If it can not get a trigger with that level, auto trigger fires and the acquisition starts anyway. After the acquisition, the measurement searches for the peak in the acquired waveform and saves it.

Now, in the next cycle of the measurement, the measurement determines a new absolute RF Burst level based on the peak value from the first measurement and the Relative RF Burst Trigger Level (always 0 or negative dB) set by the user. The following formula is used:
absolute RF Burst level = peak level of the previous acquisition + relative RF Burst level
If the new absolute RF Burst level differs from the previous by more than 0.5 dB , the new level is sent to the hardware; otherwise it is not updated (to avoid slowing down the acquisition)

Steps 2 and 3 repeat for subsequent measurements.

Key Path	Trigger, RF Burst

Scope	Meas Global
Remote Command	:TRIGger[:SEQuence]:RFBurst:LEVel:RELative <rel_ampl> :TRIGger[:SEQuence]:RFBurst:LEVel:RELative?
Example	TRIG:RFB:LEV:REL - 10 dB sets the trigger level of the RF burst envelope signal to the relative level of $-10 \mathrm{~dB}$
Notes	Sending this command does not switch the setting from absolute to relative; to switch it you need to send the :TRIGger[:SEQuence]:RFBurst:LEVel:TYPE command, above. The relative trigger level is not available in some measurements. In those measurements the RELative parameter, and the :TRIGger[:SEQuence]:RFBurst:LEVel:TYPE command (above), will generate an error if sent.
Dependencies	This key is grayed out and Absolute Trigger Level selected if the required hardware is not present in your analyzer and the current measurement does not support Relative triggering.
Preset	$\begin{aligned} & -6 \mathrm{~dB} \\ & \text { GSM: }-25 \mathrm{~dB} \end{aligned}$
State Saved	Saved in instrument state
Min	-45 dB
Max	0 dB
Backwards Compatibility SCPI	:TRIGger[:SEQuence]:RFBurst:LEVel Is aliased to: :TRIGger[:SEQuence]:RFBurst:LEVel:RELative because the PSA had ONLY relative burst triggering
Initial S/W Revision	Prior to A. 02.00
Modified at S/W Revision	A.04.00
Default Unit	dB or dBc

Trigger Slope

It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, RF Burst
Remote Command	:TRIGger[:SEQuence] : RFBurst:SLOPe POSitive\|NEGative $:$ TRIGger[:SEQuence] : RFBurst:SLOPe?
Example	TRIG:RFB:SLOP NEG

Trigger

Couplings	This same slope is used in the RF Burst selection for the trigger source in the Trigger menu and for the period timer sync source (in the Trigger menu and in the Gate Source menu).
Preset	POSitive
State Saved	Saved in instrument state
Backwards Compatibility SCPI	Also, there are SLOPe backward compatibility commands described in Video section "Trig Slope" on page 837 :TRIGger[:SEQuence]:SLOPe
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT, but not in swept spans.

Key Path	Trigger, RF Burst		
Remote Command	```:TRIGger[:SEQuence]:RFBurst:DELay <time> :TRIGger[:SEQuence]:RFBurst:DELay? :TRIGger[:SEQuence]:RFBurst:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:RFBurst:DELay:STATe?```
Example	TRIG:RFB:DEL:STAT ON TRIG:RFB:DEL 100 ms		
Notes	Video trigger delay may be set to negative values, in time domain, FFT and even swept. It makes intuitive sense in time domain and works well in FFT mode where the bandwidth of the filter before the video trigger is about 1.25 span. In swept spans, negative settings of Trig Delay are treated as a zero setting within the internal hardware and the advisory message "Neg. Trig Delay unavailable in Swept Mode, zero delay used." is generated when such a delay is set.		
Preset	Off, 1.000 us		
State Saved	Saved in instrument state		
Min	-150 ms		
Max	500 ms		
Backwards Compatibility SCPI	Also, there are DELay backward compatibility commands described in video section "Trig Delay" on page 838. :TRIGger[:SEQuence]:DELay		
Initial S/W Revision	Prior to A.02.00		
Default Unit	S		

Periodic Timer (Frame Trigger)

Pressing this key, when it is not selected, selects the internal periodic timer signal as the trigger. Triggering occurrences are set by the Period parameter, which is modified by the Sync Source and Offset. Pressing this key, when it is already selected, accesses the periodic timer trigger setup functions.

If you do not have a sync source selected (it is Off), then the internal timer will not be synchronized with any external timing events.

Key Path	Trigger
Example	TRIG:SOUR FRAM Swept SA measurement TRIG:<meas $>:$ SOUR FRAM Measurements other than Swept SA
State Saved	Saved in instrument state
Readback	[Sync: <value of Sync Source>], for example, [Sync: External 1]
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Periodic Timer Triggering:

This feature selects the internal periodic timer signal as the trigger. Trigger occurrences are set by the Periodic Timer parameter, which is modified by the Sync Source and Offset.

The figure below shows the action of the periodic timer trigger. Before reviewing the figure, we'll explain some uses for the periodic trigger.

A common application is measuring periodic burst RF signals for which a trigger signal is not easily available. For example, we might be measuring a TDMA radio which bursts every 20 ms . Let's assume that the 20 ms period is very consistent. Let's also assume that we do not have an external trigger source available that is synchronized with the period, and that the signal-to-noise ratio of the signal is not high enough to provide a clean RF burst trigger at all of the analysis frequencies. For example, we might want to measure spurious transmissions at an offset from the carrier that is larger than the bandwidth of the RF burst trigger. In this application, we can set the Periodic Timer to a 20.00 ms period and adjust the offset from that timer to position our trigger just where we want it. If we find that the 20.00 ms is not exactly right, we can adjust the period slightly to minimize the drift between the period timer and the signal to be measured.

A second way to use this feature would be to use Sync Source temporarily, instead of Offset. In this case, we might tune to the signal in a narrow span and use the RF Burst trigger to synchronize the periodic timer. Then we would turn the sync source off so that it would not mis-trigger. Mis-triggering can occur when we are tuned so far away from the RF burst trigger that it is no longer reliable.

A third example would be to synchronize to a signal that has a reference time element of much longer period than the period of interest. In some CDMA applications, it is useful to look at signals with a short periodicity, by synchronizing that periodicity to the "even-second clock" edge that happens every two

Trigger

seconds. Thus, we could connect the even-second clock trigger to Ext1 and use then Ext1 as the sync source for the periodic timer.

The figure below illustrates this third example. The top trace represents the even-second clock. It causes the periodic timer to synchronize with the leading edge shown. The analyzer trigger occurs at a time delayed by the accumulated offset from the period trigger event. The periodic timer continues to run, and triggers continue to occur, with a periodicity determined by the analyzer time base. The timer output (labeled "late event") will drift away from its ideal time due to imperfect matching between the time base of the signal being measured and the time base of the analyzer, and also because of imperfect setting of the period parameter. But the synchronization is restored on the next even-second clock event. ("Accumulated offset" is described in the in the Offset function section.)

Period

Sets the period of the internal periodic timer clock. For digital communications signals, this is usually set to the frame period of your current input signal. In the case that sync source is not set to OFF, and the external sync source rate is changed for some reason, the periodic timer is synchronized at the every external synchronization pulse by resetting the internal state of the timer circuit.

Key Path	Trigger, Periodic Timer
Remote Command	:TRIGger[:SEQuence] :FRAMe:PERiod <time> $:$ TRIGger [:SEQuence] :FRAMe:PERiod?
Example	TRIG:FRAM:PER 100 ms
Dependencies	The invalid data indicator turns on when the period is changed, until the next sweep/measurement completes.
Couplings	The same period is used in the Gate Source selection of the period timer.
Preset	GSM: 4.615383 State Saved
Saved in instrument state	
Min	100.000 ns
	559.0000 ms

Initial S/W Revision	Prior to A.02.00
Default Unit	S

Offset

Adjusts the accumulated offset between the periodic timer events and the trigger event. Adjusting the accumulated offset is different than setting an offset, and requires explanation.

The periodic timer is usually not synchronized with any external events, so the timing of its output events has no absolute meaning. Since the timing relative to external events (RF signals) is important, you need to be able to adjust (offset) it. However, you have no direct way to see when the periodic timer events occur. All that you can see is the trigger timing. When you want to adjust the trigger timing, you will be changing the internal offset between the periodic timer events and the trigger event. Because the absolute value of that internal offset is unknown, we will just call that the accumulated offset. Whenever the Offset parameter is changed, you are changing that accumulated offset. You can reset the displayed offset using Reset Offset Display. Changing the display does not change the value of the accumulated offset, and you can still make additional changes to accumulated offset.

To avoid ambiguity, we define that an increase in the "offset" parameter, either from the knob or the SCPI adjust command, serves to delay the timing of the trigger event.

Key Path	Trigger, Periodic Timer
Remote Command	:TRIGger [:SEQuence] :FRAMe : OFFSet <time> :TRIGger [: SEQuence] :FRAMe: OFFSet?
Example	TRIG:FRAM:OFFS 1.2 ms
Notes	The front panel interface (for example, the knob), and this command, adjust the accumulated offset, which is shown on the active function display. However, the actual amount sent to the hardware each time the offset is updated is the delta value, that is, the current accumulated offset value minus the previous accumulated offset value. Note that the accumulated offset value is essentially arbitrary; it represents the accumulated offset from the last time the offset was zeroed (with the Reset Offset Display key). Note that this command does not change the period of the trigger waveform. Note also that Offset is used only when the sync source is set to OFF, otherwise delay is used, see section "Trig Delay" on page 857. An increase in the "offset" parameter, either from the knob or the SCPI adjust command, serves to delay the timing of the trigger event.
Notes	When the SCPI command is sent the value shown on the key (and the Active Function, if this happens to be the active function) is updated with the new value. However, the actual amount sent to the hardware is the delta value, that is, the current accumulated offset value minus the previous accumulated offset value. The SCPI query simply returns the value currently showing on the key.
Dependencies	The invalid data indicator turns on when the offset is changed, until the next sweep/measurement completes.

Trigger

Couplings	The same offset is used in the Gate Source selection of the period timer.
Preset	0 s
State Saved	Saved in instrument state
Min	-10.000 s
Max	10.000 s
Initial S/W Revision	Prior to A.02.00
Default Unit	S

Offset Adjust (Remote Command Only)

This remote command does not work at all like the related front panel keys. This command lets you advance the phase of the frame trigger by the amount you specify.

It does not change the period of the trigger waveform. If the command is sent multiple times, it advances the phase of the frame trigger an additional amount each time it is sent. Negative numbers are permitted.

Remote Command	:TRIGger[:SEQuence] :FRAMe : ADJust <time>
Example	TRIG:FRAM:ADJ 1.2 ms
Notes	Note also that Offset is used only when the sync source is set to OFF, otherwise delay is used, see section "Trig Delay" on page 857 An increase in the "offset" parameter, either from the knob or the SCPI adjust command, serves to delay the timing of the trigger event.
Notes	The front panel interface (for example, the knob) and the :TRIG:FRAM:OFFS command adjust the accumulated offset, which is shown on the active function display. However, the actual amount sent to the hardware is the delta value, that is, the current offset value minus the previous offset value. When the SCPI command is sent the value shown on the key (and the Active Function, if this happens to be the active function) is updated by increasing it (or decreasing it if the value sent is negative) by the amount specified in the SCPI command. This is a "command only" SCPI command, with no query.
Dependencies	The invalid data indicator turns on when the offset is changed, until the next sweep/measurement completes.
Couplings	The same offset is used in the Gate Source selection of the period timer.
Preset	0 s
State Saved	Saved in instrument state
Min	-10.000 s
Max	10.000 s
Initial S/W Revision	Prior to A.02.00

Default Unit	S

Reset Offset Display

Resets the value of the periodic trigger offset display setting to 0.0 seconds. The current displayed trigger location may include an offset value defined with the Offset key. Pressing this key redefines the currently displayed trigger location as the new trigger point that is 0.0 s offset. The Offset key can then be used to add offset relative to this new timing.

Key Path	Trigger, Periodic Timer
Remote Command	:TRIGger[:SEQuence] :FRAMe:OFFSet:DISPlay:RESet
Example	TRIG:FRAM:OFFS:DISP:RES
Initial S/W Revision	Prior to A.02.00

Sync Source

Selects a signal source for you to synchronize your periodic timer trigger to, otherwise you are triggering at some arbitrary location in the frame. Synchronization reduces the precision requirements on the setting of the period.

For convenience you may adjust the level and slope of the selected sync source in a conditional branch setup menu accessed from the Sync Source menu. Note that these settings match those in the Trigger and Gate Source menus; that is, each trigger source has only one value of level and slope, regardless of which menu it is accessed from.

Key Path	Trigger, Periodic Timer		
Remote Command	$:$ TRIGger [:SEQuence] : FRAMe: SYNC EXTernal1\|EXTernal2	RFBurst	OFF $:$ TRIGger [:SEQuence] : FRAMe: SYNC?
Example	TRIG:FRAM:SYNC EXT2		
Dependencies	In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" message.		
Preset	Off GSM/EDGE: RFBurst		
State Saved	Saved in instrument state		
Readback	The current setting is read back to this key and it is also Readback to the previous Periodic Timer trigger key.		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.03.00		

Trigger

Off

Turns off the sync source for your periodic trigger. With the sync source off, the timing will drift unless the signal source frequency is locked to the analyzer frequency reference.

Key Path	Trigger, Periodic Timer, Sync Source
Example	TRIG:FRAM:SYNC OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

External 1

Pressing this key, when it is not selected, selects the external input port that you will use for the periodic trigger synchronization. Pressing this key, when it is already selected, accesses the external 1 sync source setup menu.

Key Path	Trigger, Periodic Timer, Sync Source
Example	TRIG:FRAM:SYNC EXT
Couplings	Same as External 1 trigger source.
Readback	External 1
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets the value where the signal at the external 1 trigger input will synchronize with the periodic timer trigger. This same level is used in the Ext1 trigger source in the Trigger menu. See section "Trigger Level " on page 842 for information on this key and the SCPI command.

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge. This same value is used in the Ext1 trigger source in the Trigger menu. See section "Trig Slope " on page 842 for information on this key and the SCPI command

External 2

Pressing this key, when it is not selected, selects the external input port that you will use for the periodic frame trigger synchronization.

Pressing this key, when it is already selected, accesses the external 2 sync source setup menu.

Key Path	Trigger, Periodic Timer, Sync Source
Example	TRIG:FRAM:SYNC EXT2
Dependencies	In some models, there is no second External input. In these models, the External 2 key is blanked and the EXTernal2 parameter will generate a "Hardware missing; Not available for this model number" message.
Couplings	Same as External 2 trigger source.

Readback	External 2
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.03.00

Trigger Level

Sets the value where the signal at the external 2 trigger input will synchronize with the periodic timer trigger. This same level is used in the Ext2 trigger source in the Trigger menu. See section "Trigger Level" on page 845 for information on this key and the SCPI command.

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge. This same value is used in the Ext2 trigger source in the Trigger menu. See section "Trig Slope " on page 845 for information on this key and the SCPI command

RF Burst

Pressing the key once selects the RF burst envelope signal to be used for the periodic timer trigger synchronization.

Press the key a second time to access the RF burst sync source setup menu.

Key Path	Trigger, Periodic Timer, Sync Source
Example	TRIG:FRAM:SYNC RFB
Couplings	Same as RF Burst trigger source.
Readback	RF Burst
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets the trigger level to be used for the RF Burst trigger. This same level is used in the RF Burst trigger source in the Trigger menu. See section "Absolute Trigger Level" on page 847 for information on this key and the SCPI command.

Trig Slope

Controls the RF Burst trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge. This same value is used in the RF Burst trigger source in the Trigger menu. See section "Trigger Slope " on page 849 for information on this key and the SCPI command

Trig Delay

This setting delays the measurement timing relative to the Periodic Timer.

Key Path	Trigger, Periodic Timer

Trigger

Remote Command	$:$ TRIGger[:SEQuence]:FRAMe:DELay <time> $:$ TRIGger[:SEQuence]:FRAMe:DELay? $: T R I G g e r[: S E Q u e n c e]: F R A M e: D E L a y: S T A T e ~ O F F\|O N\| 0 \mid 1 ~$
	$:$ TRIGger[:SEQuence]:FRAMe:DELay:STATe?

Sync Holdoff

Sync Holdoff specifies the duration that the sync source signal must be kept false before the transition to true to be recognized as the sync timing. The periodic timer phase is aligned when the sync source signal becomes true, after the Holdoff time is satisfied.

A holdoff of 2 ms will work with most WiMAX signals, but there may be cases where the burst off duration is less than 1 ms and this value will need to be changed.

Key Path	Trigger, Periodic Timer		
Remote Command	$:$ TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff <time> $:$ TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff? $:$ TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff:STATe OFF\|ON	0	1 $:$ TRIGger[:SEQuence]:FRAMe:SYNC:HOLDoff:STATe?
Preset	On, 1.000 ms		
State Saved	Saved in instrument state		
Min	0 ms		
Max	+500 ms		
Initial S/W Revision	Prior to A.02.00		
Default Unit	s		

LXI Trigger

Pressing this key when it is not selected selects the LXI system as the trigger. Pressing the key when it is already selected accesses the LXI trigger type selection menu, where either LAN Event or Alarm can be chosen. The key is annotated to display which of the two is currently selected.

NOTE
For information about setting up measurements using LXI, refer to the Programmer’s Guide located in your analyzer at: C:/Program Files/Agilent/Signal Analysis/Help/Bookfiles/x_series_prog.pdf. It is also available by selecting the "Additional Documentation" page of the Help.

Key Path	Trigger
Preset	ON
State Saved	Saved in instrument state
Readback	The LXI trigger source that becomes active when this key is selected is displayed. The possible values are "LAN Event" and "Alarm"
Initial S/W Revision	Prior to A.02.00

LAN Event

Pressing this key when it is not selected selects the LAN event system as the LXI trigger. A new sweep/measurement starts when the pre-configured LAN message arrives if the LXI trigger is selected (see "LXI Trigger" on page 858). Pressing this key when it is already selected accesses the LAN trigger setup menu.

NOTE	Pressing this key causes Enabled LXI Alarm Triggers to be ignored, since the
Trigger source is changed to LXI LAN Event.	

Key Path	Trigger, LXI Trigger
Example	TRIG:SOUR LAN Swept SA measurement TRIG:<meas $>:$ SOUR LAN Measurements other than Swept SA
Preset	ON
State Saved	Saved in instrument state
Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Trigger

Disable All

Sets the Enable parameter of every member of the LXI LAN Event list to OFF.

Key Path	Trigger, LXI Trigger, LAN Event
Remote Command	:TRIGger [: SEQuence] : LXI : LAN : DISable :ALL
Example	:TRIG:LXI:LAN:DIS:ALL
Initial S/W Revision	Prior to A.02.00

LAN Event List

After selecting LAN as the trigger source, the user is presented with a list of LXI Trigger LAN Events to be configured. By default, LAN0-LAN7 are available. Using the TRIG:LXI:LAN:ADD and TRIG:LXI:LAN:REM commands, the size of this list can be changed arbitrarily. Pressing a LAN event branches to that event's setup menu.

Key Path	Trigger, LXI Trigger, LAN Event
Remote Command	:TRIGger [: SEQuence] : LXI : LAN : LIST?
Example	:TRIG:LXI:LAN:LIST? Returns the complete list of Trigger LAN Events which is, at minimum: "LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7"
Preset	"LAN0", "LAN1", "LAN2", "LAN3", "LAN4", "LAN5", "LAN6", "LAN7"
State Saved	Saved in instrument state
Readback	Displays the value of the LXI Trigger LAN Event parameter (Enabled\|Disabled).
Initial S/W Revision	Prior to A.02.00

Detection

Pressing this key accesses the Trigger Detection menu.
Selecting "Rise" causes the instrument to trigger on the receipt of a signal low LAN Event followed by a signal high LAN Event.

Selecting "Fall" caused the instrument to trigger on the receipt of a signal high LAN Event followed by a signal low LAN Event.

Selecting "High" causes the instrument to trigger on every signal high LAN Event.
Selecting "Low" causes the instrument to trigger on every signal low LAN Event.

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>		
Remote Command	:TRIGger[:SEQuence] : LXI : LAN[: SET] : DETection "LANEVENT", HIGH\|LOW	RISE	FALL
Example	:TRIG:LXI:LAN:DET "LANO",HIGH		

Notes	If a non existent LAN event is passed in the lanEvent argument, the command is ignored		
Preset	HIGH		
State Saved	Saved in instrument state		
Range	HIGH \| LOW	RISE	FALL
Readback	Currently selected detection type		
Initial S/W Revision	Prior to A.02.00		

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>		
Remote Command	$:$ TRIGger [: SEQuence] : LXI : LAN[:SET] : DETection? "LANEVENT"		
Example	:TRIG:LXI:LAN:DET? "LAN0"?		
Notes	If a non existent LAN event is passed in the lanEvent argument, the command is ignored		
Preset	HIGH		
State Saved	Saved in instrument state		
Range	HIGH \| LOW	RISE	FALL
Readback	Currently selected detection type		
Initial S/W Revision	Prior to A.02.00		

Delay

Sets the amount of delay that should pass between receiving a LXI Trigger LAN Event Trigger and the trigger action. A Delay of 0.0 s indicates that the instrument will trigger as soon as possible after receiving the proper LXI LAN Event.

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>
Remote Command	$:$ TRIGger[:SEQuence] : LXI : LAN[: SET] : DELay "LANEVENT", <time>
Example	:TRIG:LXI:LAN:DEL "LAN0",5S
Preset	0.0 s
State Saved	Saved in instrument state
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>
Remote Command	$:$ TRIGger[:SEQuence] : LXI : LAN[: SET] : DELay? "lanEvent"
Example	:TRIG:LXI:LAN:DEL? "LAN0"

Trigger

Preset	0.0 s
State Saved	Saved in instrument state
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Enabled/Disabled

When the Trigger Source is set to LXI Trigger LAN Event, the instrument triggers upon receiving any event from the LXI Trigger LAN Event List whose Enabled parameter is set to ON.

If the Enabled parameter is set to OFF, the event is ignored.

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>		
Remote Command	$:$ TRIGger[:SEQuence] : LXI : LAN[:SET] : ENABled "LANEVENT", ON\|OFF	1	0
Example	:TRIG:LXI:LAN:ENAB "LAN0",ON		
Preset	OFF		
State Saved	Saved in instrument state		
Range	OFF\|ON $\|0\| 1$		
Initial S/W Revision	Prior to A.02.00		

Key Path	Trigger, LXI Trigger, LAN Event, <lanEvent>		
Remote Command	:TRIGger[:SEQuence] : LXI: LAN[:SET] : ENABled? "LANEVENT"		
Example	:TRIG:LXI:LAN:ENAB? "LAN0"		
Preset	OFF		
State Saved	Saved in instrument state		
Range	OFF\|ON	0	1
Initial S/W Revision	Prior to A.02.00		

Add (Remote Command Only)

Adds the provided string to the list of possible LAN events to trigger on. As new LAN events are added, keys are generated in the LAN source menu. New key panels are generated as the number of possible LAN events increases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LAN source menu.

Remote Command	$:$ TRIGger [:SEQuence]:LXI:LAN:ADD "LANEVENT"
Example	$: T R I G: L X I: L A N: A D D ~ " L A N E V E N T " ~$

Notes	The maximum length of the string is 16 characters. Longer strings are concatenated to 16 characters and added. No event is added if the LAN Event already exists. This command modifies the LXI Trigger LAN Event List Parameter.
State Saved	Saved in instrument state
Range	Uppercase, Lowercase, Numeric, Symbol except for comma or semicolon
Initial S/W Revision	Prior to A.02.00

Remove (Remote Command Only)

Removes the provided string from the list of possible LAN events to trigger on. As LAN events are removed, keys are removed from the LAN source menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LAN source menu. It is not possible to remove the "LAN0" - "LAN7" events.

Remote Command	:TRIGger[:SEQuence] : LXI : LAN : REMove[:EVENt] "LANEVENT"
Example	:TRIG:LXI:LAN:REM "LANEVENT"
Notes	The maximum length of the string is 16 characters. Longer strings are concatenated and the corresponding LAN Event is removed. Nothing happens if the LAN event does not exist. This command modifies the LXI Trigger LAN Event List Parameter.
State Saved	No
Range	Uppercase, Lowercase, Numeric, Symbol except for comma or semicolon
Initial S/W Revision	Prior to A.02.00

Remove All (Remote Command Only)

Clears the list of customer added LAN events that can cause the instrument to trigger. Events LAN0-LAN7 are not affected. As LAN events are removed, keys are removed from the LAN source menu. Key panels are removed as the number of possible LAN events decreases past a multiple of six, and the "More" keys are updated to reflect the new number of key panels in the LAN source menu.

It is not possible to remove the "LAN0" - "LAN7" events.

Remote Command	:TRIGger[:SEQuence] : LXI : LAN: REMove :ALL
Example	:TRIG:LXI:LAN:REM:ALL
Notes	This command modifies the LXI Trigger LAN Event List Parameter.
Initial S/W Revision	Prior to A.02.00

Trigger

Event Filter (Remote Command Only)

Only LXI Trigger LAN Events coming from hosts matching the filter string are processed. There is no front panel access to this command

The syntax for specifying a filter is as follows:
Filter $==($ [host[:port]] | [ALL[:port]] $)$ [,Filter]
Specifying an empty string means that LXI trigger packets are accepted as a Trigger from any port on any host on the network via either TCP or UDP.

Specifying only the port means that any host communicating over that port can send events.
Specifying ALL indicates that UDP multicast packets are accepted if they are directed to the Internet Assigned Numbers Authority (IANA) assigned multicast address on the IANA assigned default port, or the designated port if specified.

Examples:
"192.168.0.1:23"
"agilent.com, soco.agilent.com"
"agilent.com:80, 192.168.0.1"
The TRIGger:LXI:LAN:FILTer command applies only to trigger events and will have no effect on state events, even when both are tied to the same event name (like "LAN0"). Similarly, the LXI:EVENt:INPut:LAN:FILTer command applies only to state events and will have no effect on trigger events.

Remote Command	:TRIGger[:SEQuence]:LXI:LAN[:SET]:FILTer "LANEVENT", "filterString" $: T R I G g e r[: S E Q u e n c e] ~: L X I: L A N[: S E T]: F I L T e r ? ~$
Example	:TRIG:LXI:LAN:FILT "LAN0","agilent.com" $: T R I G: L X I: L A N: F I L T ? ~$
Notes	The maximum length of the string is 45 characters. Nothing happens if the LAN event does not exist.
Preset	"", (empty string)
State Saved	Saved in instrument state
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Count (Remote Command Only)

Returns the number of items in the LXI Trigger LAN Event List.

Remote Command	$:$ TRIGger [:SEQuence] : LXI :LAN:COUNt?
Example	:TRIG:LXI:LAN:COUN?
Initial S/W Revision	Prior to A.02.00

Identifier (Remote Command Only)

Sets the string that is expected to arrive over the LAN for a given Trigger LAN Event to occur. The Identifier is variable to allow for easier system debugging.

Remote Command	:TRIGger[:SEQuence]:LXI:LAN[:SET]:IDENtifier "LANEVENT", "identifier" $:$ TRIGger[:SEQuence] :LXI: LAN[:SET]: IDENtifier? "LANEVENT"
Example	:TRIG:LXI:LAN:IDEN "LAN0","debugstring"
Notes	The maximum length of the string is 16 characters. Nothing happens if the LAN event does not exist. The default value is that the identifier is equivalent to the name of the LAN Event.
State Saved	Saved in instrument state
Range	Uppercase, Lowercase, Numeric, Symbol
Initial S/W Revision	Prior to A.02.00

Configure (Remote Command Only)

Allows the configuration of some of the above parameters from a single SCPI command.

Remote Command	:TRIGger[:SEQuence]:LXI:LAN[:SET]:CONFigure "lanEvent", <enable>, <detection>, <delay>,<filter>,<identifier>
Example	:TRIG:LXI:LAN:CONF "LAN0",1,FALL,0.0,"ALL","debugIdentifier"
Initial S/W Revision	Prior to A.02.00

Alarm

Pressing this key when it is not selected selects the alarm system as the LXI trigger. A new sweep/measurement starts when the configured IEEE 1588 time occurs if the LXI trigger is selected as the active trigger (see "LXI Trigger" on page 858). Pressing this key when it is already selected accesses the alarm source selection menu.

Key Path	Trigger, LXI Trigger
Example	TRIG:ACP:SOUR ALAR
Preset	ON
State Saved	Saved in instrument state

Trigger

Status Bits/OPC dependencies	The Status Operation Register bit 5 "Waiting for Trigger" is set at the same time as the Sweeping or Measuring bit is set. It is cleared when the trigger actually occurs (that is, after the trigger event occurs and all the applicable trigger criteria have been met). A corresponding pop-up message ("Waiting for trigger") is generated if no trigger signal appears after approximately 2 sec. This message goes away when a trigger signal appears.
Initial S/W Revision	Prior to A.02.00

Disable All

This key causes all Alarms in the trigger alarm list to go into the disabled state.
(Enabled $=$ OFF)

Key Path	Trigger, LXI Trigger, Alarm
Remote Command	:TRIGger[: SEQuence] : LXI : ALARm: DISable:ALL
Example	:TRIG:LXI:ALAR:DIS:ALL
Initial S/W Revision	Prior to A.02.00

Alarm List

After selecting Alarm as the trigger source, the user is presented with a list of possible alarms. Pressing an alarm (for example,. "ALARM0") branches to the alarm setup menu.

Key Path	Trigger, LXI Trigger, Alarm
Remote Command	:TRIGger[:SEQuence] : LXI : ALARm: LIST?
Example	:TRIG:LXI:ALAR:LIST? Returns the complete list of Alarm events which is: "ALARM0"
Preset	"ALARM0"
State Saved	Saved in instrument state
Readback	Displays the value of the LXI Trigger Alarm Enabled parameter (Enabled\|Disabled).
Initial S/W Revision	Prior to A.02.00

Date/Time

Absolute alarm time sets an alarm for one specific time using the date and time of day (for example, 12/14/2007 at $11: 45: 15.3456)$. The Date and Time are represented in the instrument's local time. This is the only way to set an alarm from the front panel.

Epoch time is another type of absolute alarm time. A specific time is identified by the number of seconds it occurs after January 1, 1970 00:00:00 in International Atomic Time (TAI). Epoch Time is time zone invariant. Epoch time is only set via remote; see "Epoch Time Value (Remote Command Only)" on page 869.

The date and time the alarm is scheduled to go off is noted on the branch softkey.

NOTE	The Epoch Time Second and Epoch Time Fraction are the ultimate source of alarm information. The Absolute Time and Date may be changed from the front panel without being applied. When querying the Absolute Time and Date parameters from SCPI, if the Absolute Time and Date have not been applied (and therefore do not match the Epoch Time Second and Epoch Time Fraction), the string "(epoch time not set)" is added to the return value.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Readback	Annotated with the date and time the alarm is scheduled to go off.
Initial S/W Revision	Prior to A.02.00

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>, Time
Remote Command	:TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:ABSolu te "alarmEvent","date","time"
Example	:TRIG:LXI:ALAR:TIME:ABS "ALARM0","2007/4/6", "15:45:02.123456"
Notes	"date" is a representation of the date the alarm should occur in the form of "YYYY/MM/DD" where: - YYYY is the four digit representation of year. (for example, 2007) - MM is the two digit representation of month. (for example. 01 to 12) - DD is the two digit representation of day. (for example, 01 to $28,29,30$, or 31 depending on the month and year) "time" is a representation of the time of day the alarm should occur in the form of "HH:MM:SS.SSSSSS" where: - HH is the two digit representation of the hour in 24 hour format - MM is the two digit representation of minute - SS.SSSSSS is a real representing seconds (for example 02.123456)
Preset	Current date at initialization at 00:00:00.000000
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A. 02.00

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>,Time
Remote Command	$:$ TRIGger[:SEQuence] : LXI :ALARm[:SET] :TIME[:VALue] :ABSolu te? "alarmEvent"

Trigger

Example	:TRIG:LXI:ALAR:TIME:ABS? "ALARM0" This query returns data using the following format "YYYY/MM/DD HH:MM:SS.SSSSSS" If the Absolute time has been changed from the front panel, but has not been applied, the return value is of the form "YYYY/MM/DD HH:MM:SS.SSSSSS (epoch time not set)".
Notes	<date> is a representation of the date the alarm should occur in the form of YYYY/MM/DD where: - YYYY is the four digit representation of year. (for example, 2007) - MM is the two digit representation of month. (for example. 01 to 12) - DD is the two digit representation of day. (for example, 01 to $28,29,30$, or 31 depending on the month and year) <time> is a representation of the time of day the alarm should occur in the form of HH:MM:SS.SSSSSS where: - HH is the two digit representation of the hour in 24 hour format - MM is the two digit representation of minute - SS.SSSSSS is a real representing seconds (for example 02.123456)
Preset	Current date at initialization at 00:00:00.000000
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Date

The date the alarm should occur. All absolute alarm time parameters are set using the same SCPI command; however they each have their own front panel control.

When setting alarm values from the front panel, the new alarm time is not registered with the alarm system until the "Set" key is pressed.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>,Time
Preset	Current date
State Saved	Saved in instrument state
Range	current date $-214748 / 12 / 31 . ~ V a l u e s ~ r e p r e s e n t i n g ~ a ~ t i m e ~ i n ~ t h e ~ p a s t ~ r e s u l t ~ i n ~ a n ~$ error.
Initial S/W Revision	Prior to A.02.00

Time

The time of the day, in the instrument's local time (this takes into account time zones and daylight savings time), the alarm should occur. This parameter is based on a 24 hour clock.

All absolute alarm time parameters are set using the same SCPI command; however they each have their own front panel control.

When setting alarm values from the front panel, the new alarm time is not registered with the alarm system until the
"Set" key is pressed.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>,Time
Notes	Uses a 24 hour clock. Values representing a time in the past result in an error. Only valid time values are accepted. The <second> field accepts a decimal number, and is valid to the microsecond position. The <year>, <month>, <hour>, and <minute> fields all accept integers.
Preset	$00: 00: 00.000000$
State Saved	Saved in instrument state
Range	$00: 00: 00.000000-23: 59: 59.999999$
Initial S/W Revision	Prior to A.02.00

Apply

Causes the Absolute Alarm Time values to be converted into an Epoch time (see "Epoch Time Value (Remote Command Only)" on page 869), compared to the current time, and sent to the Alarm Trigger subsystem. This key can only be pressed when the epoch time and the absolute time are out of synch.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>,Time
Notes	Alarm times are settable to microsecond resolution.
Initial S/W Revision	Prior to A.02.00

Epoch Time Value (Remote Command Only)

Sets the LXI Alarm Time. This represents the number of seconds after January 1, 1970 00:00:00, in TAI time, that the alarm should go off.

Remote Command	:TRIGger[:SEQuence] :LXI :ALARm[:SET]:TIME[:VALue] "alarmEvent",<seconds>, <fractionalSeconds>
Example	:TRIG:LXI:ALAR:TIME "ALARM0",123456.0 S, 0.123456
Notes	Values representing a time in the past result in an error.
Preset	Seconds: The number of whole seconds between Jan 1, 1970 at 00:00:00 (in TAI time) and the current date at initialization at 00:00:00 (in TAI time) FractionalSeconds: 0
State Saved	Saved in instrument state
Range	Seconds: Epoch time of current date at 00:00:00 (in TAI time) - $253402300800 ~+~ n u m b e r ~ o f ~ s e c o n d s ~ l o c a l ~ t i m e ~ z o n e ~ o f f s e t ~ f r o m ~ U T C ~$
FractionalSeconds: 0.0 - 0.999999	

Trigger

Remote Command	:TRIGger[:SEQuence] : LXI :ALARm[:SET] :TIME[:VALue]?
Example	:TRIG:LXI:ALAR:TIME?
Notes	Values representing a time in the past result in an error.
Preset	Seconds: The number of whole seconds between Jan 1, 1970 at 00:00:00 (in TAI time) and the current date at initialization at 00:00:00 (in TAI time) FractionalSeconds: 0
State Saved	Saved in instrument state
Range	Seconds: Epoch time of current date at 00:00:00 (in TAI time) - $253402300800 ~+~ n u m b e r ~ o f ~ s e c o n d s ~ l o c a l ~ t i m e ~ z o n e ~ o f f s e t ~ f r o m ~ U T C ~$
FractionalSeconds: $0.0-0.999999$	

Epoch Time Seconds (Remote Command Only)

Sets the seconds portion of the LXI Alarm time. This represents the number of seconds after January 1, 1970 00:00:00 (in TAI time) that the alarm should go off.

Values must be in the form of whole seconds; decimal values result in an error.

Remote Command	:TRIGger[:SEQuence] : LXI : ALARm[:SET] :TIME : SEConds "alarmEvent",<seconds>
Example	:TRIG:LXI:ALAR:TIME:SEC "ALARM0",123456.0 S
Notes	Values representing a time in the past result in an error. Values containing a decimal portion result in an error.
Preset	The number of whole seconds between Jan 1, 1970 at 00:00:00 (in TAI time) and the current date at initialization at 00:00:00 (in TAI time)
State Saved	Saved in instrument state
Range	Epoch time of current date at 00:00:00 (in TAI time) - 253402300800 + number of seconds local time zone offset from UTC
Initial S/W Revision	Prior to A.02.00

Remote Command	:TRIGger[:SEQuence] : LXI :ALARm[:SET] :TIME : SEConds? "alarmEvent"
Example	:TRIG:LXI:ALAR:TIME:SEC "ALARM0"?
Notes	Values representing a time in the past result in an error. Values containing a decimal portion result in an error.
Preset	The number of seconds between Jan 1, 1970 at 00:00:00 (in TAI time) and the current date at initialization at 00:00:00 (in TAI time)
State Saved	Saved in instrument state

Range	Epoch time of current date at 00:00:00 (in TAI time) $-253402300800+$ number of seconds local time zone offset from UTC
Initial S/W Revision	Prior to A.02.00

Epoch Time Fraction (Remote Command Only)

Sets the sub-second value of the Epoch time.

Remote Command	$:$ TRIGger[:SEQuence]:LXI:ALARm[:SET]:TIME[:VALue]:FRACti on "alarmEvent",<fractionalSeconds>
Example	:TRIG:LXI:ALAR:TIME:FRAC "ALARM0",0.123456 S
Notes	Values representing a time in the past result in an error.
Preset	0
State Saved	Saved in instrument state
Range	$0.0-0.999999$
Initial S/W Revision	Prior to A.02.00

Remote Command	$:$ TRIGger[:SEQuence] : LXI :ALARm[:SET] :TIME[:VALue] :FRACti on? "alarmEvent"
Example	:TRIG:LXI:ALAR:TIME:FRAC "ALARM0"?
Notes	Values representing a time in the past result in an error.
Preset	0
State Saved	Saved in instrument state
Min	0.0
Max	0.999999
Initial S/W Revision	Prior to A.02.00

Relative Time (Remote Command Only)

Sets the values of Epoch Time Seconds and Epoch Time Fraction by adding an offset to the time when the command is issued. For example, if the Relative Time command is issued with an argument of 60s, the alarm will occur 1 minute in the future.

Remote Command	$:$ TRIGger[:SEQuence] :LXI:ALARm[:SET]:TIME[:VALue] :RELati ve "alarmEvent",<seconds>
Example	$:$ TRIG:LXI:ALAR:TIME:REL "ALARM0",60.0s
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Trigger

Remote Command	$:$ TRIGger[:SEQuence] : LXI :ALARm[:SET] :TIME[:VALue] :RELati ve? "alarmEvent"
Example	:TRIG:LXI:ALAR:TIME:REL "ALARM0"?
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A. 02.00

Period

Sets the amount of time that should elapse between alarms in a repeating alarm trigger.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Remote Command	$:$ TRIGger[:SEQuence] : LXI :ALARm[:SET] : PERiod "alarmEvent", <seconds>
Example	:TRIG:LXI:ALAR:PER "ALARM0",1.2345 s
Notes	A period of 0.0s effectively causes the trigger to occur only once, since all repetitions are fired simultaneously
Preset	0.0 s
State Saved	Saved in instrument state
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Remote Command	:TRIGger [:SEQuence] : LXI : ALARm[: SET] :PERiod? "alarmEvent"
Example	:TRIG:LXI:ALAR:PER "ALARM0"?
Notes	A period of 0.0s effectively causes the trigger to occur only once, since all repetitions are fired simultaneously
Preset	0.0 s
State Saved	Saved in instrument state
Range	$0.0-1.7976931348623157 \times 10308$ (Max Double)
Initial S/W Revision	Prior to A.02.00

Repetitions

Sets the number of times a repeating alarm should fire once the initial alarm time has occurred.

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Remote Command	$:$ TRIGger[:SEQuence] : LXI:ALARm[:SET] :REPeat "alarmEvent", <repetitions>

Example	$:$ TRIG:LXI:ALAR:REP "ALARM0",10
Notes	A repetition value of 0 means infinite repetitions (zero is a special case, triggers at the given period indefinitely) A repetition value of 1 means 1 trigger only, not the intial trigger + 1 repeat
Preset	1
State Saved	Saved in instrument state
Range	$1-2,147,483,647$
Initial S/W Revision	Prior to A.02.00

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Remote Command	:TRIGger[:SEQuence] : LXI : ALARm[: SET] : REPeat? "alarmEvent"
Example	:TRIG:LXI:ALAR:REP "ALARM0",10
Preset	1
State Saved	Saved in instrument state
Min	1
Max	$2,147,483,647$
Initial S/W Revision	Prior to A.02.00

Enabled

If Enabled is set to ON and the trigger source is set to ALARm, this alarm causes the instrument to trigger.
If Enabled is set to OFF, this alarm is ignored

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>		
Remote Command	:TRIGger[:SEQuence] : LXI : ALARm[: SET] : ENABled "alarmEvent", ON\|OFF	1	0
Example	:TRIG:LXI:ALAR:ENAB "ALARM0",ON		
Preset	OFF		
State Saved	Saved in instrument state		
Range	$1 \mid 0$		
Initial S/W Revision	Prior to A.02.00		

Key Path	Trigger, LXI Trigger, Alarm, <alarmEvent>
Remote Command	$:$ TRIGger[:SEQuence] : LXI :ALARm[:SET] : ENABled? "alarmEvent"

Trigger

Example	$:$ TRIG:LXI:ALAR:ENAB "ALARM0"?
Preset	OFF
State Saved	Saved in instrument state
Range	$1 \mid 0$
Initial S/W Revision	Prior to A.02.00

Configure (Remote Command Only)

Allows the configuration of some of the above parameters from a single SCPI command.

Remote Command	:TRIGger[:SEQuence]:LXI:ALARm[:SET]:CONFigure "alarmEvent", <enable>, <epochSeconds>, <epochFraction>, <period>, <repeat>
Example	:TRIG:LXI:ALAR:CONF "ALARM0",1,1000000.0,0.123456,1.2,3
Initial S/W Revision	Prior to A.02.00

Count (Remote Command Only)

Returns the number of alarms in the LXI Trigger Alarm List.

Remote Command	:TRIGger1\|TRIGger [:SEQuence] : LXI : ALARm: COUNt?
Example	:TRIG:LXI:ALAR:COUN?
Initial S/W Revision	Prior to A.02.00

Baseband I/Q

Pressing this key when it is not selected selects Baseband I/Q as the trigger. Pressing the key when it is already selected accesses the Baseband I/Q trigger type selection menu. The key is annotated to display which of the Baseband I/Q trigger types is currently selected.

Key Path	Trigger
State Saved	Saved in instrument state
Readback	The Baseband I/Q trigger source that becomes active when this key is selected is displayed. The possible values are "I/Q Mag", "I", "Q", "Input I", "Input Q", and "Aux I/Q Mag".
Initial S/W Revision	Prior to A.02.00

I/Q Mag

Pressing this key, when it is not selected, selects the I/Q magnitude signal as the trigger. The I/Q
Magnitude trigger condition is met when the I/Q magnitude crosses the I/Q magnitude trigger level. The
magnitude is measured at the output of the main I/Q digital receiver.

Key Path	Trigger, Baseband I/Q
Example	TRIG: $<$ meas $>:$ SOUR IQM
Readback Text	I/Q Mag
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the I/Q magnitude trigger. When the signal crosses this level, with the chosen slope, the trigger occurs. If the specific Measurement displays the signal from the chosen sampling point a green line will be displayed to indicate the trigger level.

Key Path	Trigger, Baseband I/Q, I/Q Mag
Remote Command	$:$ TRIGger [:SEQuence] : IQMag : LEVel <ampl > $:$ TRIGger [:SEQuence] : IQMag : LEVel?
Example	TRIG:IQM:LEV -30 dBm
Notes	The I/Q reference impedance is used for converting between power and voltage.
Preset	-25 dBm
State Saved	Saved in instrument state
Range	-200 dBm to 100 dBm
Readback Text	<level> dBm
Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband I/Q, I/Q Mag
Remote Command	:TRIGger[:SEQuence] : IQMag:SLOPe POSitive I NEGative $:$ TRIGger [:SEQuence] : IQMag: SLOPe?
Example	TRIG:IQM:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trigger

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, I/Q Mag		
Remote Command	:TRIGger[:SEQuence]:IQMag:DELay <time> :TRIGger[:SEQuence]:IQMag:DELay? :TRIGger[:SEQuence]:IQMag:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:IQMag:DELay:STATe?
Example	TRIG:IQM:DEL 10 ms TRIG:IQM:DEL:STAT ON		
Preset	$\begin{aligned} & 1 \text { us } \\ & \text { OFF } \end{aligned}$		
State Saved	Saved in instrument state		
Range	-2.5 s to +10 s		
Initial S/W Revision	Prior to A. 02.00		

I (Demodulated)

Pressing this key, when it is not selected, selects the main receiver's output I voltage as the trigger. The I (Demodulated) trigger condition is met when the I voltage crosses the I voltage trigger level.

Key Path	Trigger, Baseband I/Q
Example	TRIG: $<$ meas $>:$ SOUR IDEM
Readback Text	I
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the I (Demodulated) trigger. When the signal crosses this level, with the chosen slope, the trigger occurs. If the specific Measurement displays the signal from the chosen sampling point a green line will be displayed to indicate the trigger level.

Key Path	Trigger, Baseband IIQ, I (Demodulated)
Remote Command	$:$ TRIGger [:SEQuence] : IDEMod: LEVel <voltage> $:$ TRIGger [:SEQuence] : IDEMod: LEVel?
Example	TRIG:IDEM:LEV 0.5 V
Preset	0.25 V
State Saved	Saved in instrument state

Range	-1 to 1 V
Readback Text	0.1 of displayed unit (V, mV, etc.)
Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband I/Q, I (Demodulated)
Remote Command	:TRIGger[:SEQuence] : IDEMod:SLOPe POSitive I NEGative $:$ TRIGger[:SEQuence] : IDEMod: SLOPe?
Example	TRIG:IDEM:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, I (Demodulated)		
Remote Command	:TRIGger[:SEQuence]:IDEMod:DELay <time> :TRIGger[:SEQuence]:IDEMod:DELay? :TRIGger[:SEQuence]:IDEMod:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:IDEMod:DELay:STATe?
Example	TRIG:IDEM:DEL 10 ms TRIG:IDEM:DEL:STAT ON		
Preset	1 us OFF		
State Saved	Saved in instrument state		
Range	-2.5 s to +10 s		
Initial S/W Revision	Prior to A.02.00		

Q (Demodulated)

Pressing this key, when it is not selected, selects the main receiver's output Q voltage as the trigger. The

Trigger

Q (Demodulated) trigger condition is met when the Q voltage crosses the Q voltage trigger level.

Key Path	Trigger, Baseband I/Q
Example	TRIG:<meas $>:$ SOUR QDEM
Readback Text	Q
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the Q (Demodulated) trigger. When the signal crosses this level, with the chosen slope, the trigger occurs. If the specific Measurement displays the signal from the chosen sampling point a green line will be displayed to indicate the trigger level.

Key Path	Trigger, Baseband I/Q, Q (Demodulated)
Remote Command	$:$ TRIGger [: SEQuence] : QDEMod : LEVel <voltage> $:$ TRIGger [:SEQuence] : QDEMod : LEVel?
Example	TRIG:QDEM:LEV 0.5 V
Preset	0.25 V
State Saved	Saved in instrument state
Range	-1 to 1 V
Readback Text	0.1 of displayed unit (V, mV, etc.)
Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband I/Q, Q (Demodulated)
Remote Command	:TRIGger[:SEQuence] : QDEMod:SLOPe POSitive I NEGative :TRIGger[:SEQuence] : QDEMod:SLOPe?
Example	TRIG:QDEM:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger
criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, Q (Demodulated)		
Remote Command	:TRIGger[:SEQuence]:QDEMod:DELay <time> :TRIGger[:SEQuence]:QDEMod:DELay? :TRIGger[:SEQuence]:QDEMod:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:QDEMod:DELay:STATe?
Example	TRIG:QDEM:DEL 10 ms TRIG:QDEM:DEL:STAT ON		
Preset	1 us OFF		
State Saved	Saved in instrument state		
Range	-2.5 s to +10 s		
Initial S/W Revision	Prior to A.02.00		

Input I

Pressing this key, when it is not selected, selects the I channel's ADC voltage as the trigger. The Input I trigger condition is met when the voltage crosses the trigger level.

Key Path	Trigger, Baseband I/Q
Example	TRIG: $<$ meas $>:$ SOUR IINP
Readback Text	Input I
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the Input I trigger. When the signal crosses this level, with the chosen slope, the trigger occurs.

Key Path	Trigger, Baseband I/Q, Input I
Remote Command	$:$ TRIGger [:SEQuence] : IINPut : LEVEl <voltage> $:$ TRIGger [:SEQuence] : IINPut : LEVel?
Example	TRIG:IINP:LEV 0.5 V
Preset	0.25 V
State Saved	Saved in instrument state
Range	-1 to 1 V
Readback Text	0.1 of displayed unit (V, mV, etc.)

Trigger

Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband IIQ, Input I
Remote Command	:TRIGger [:SEQuence] : IINPut : SLOPe POSitive I NEGative $:$ TRIGger [:SEQuence] : IINPut : SLOPe?
Example	TRIG:IINP:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, Input I		
Remote Command	:TRIGger[:SEQuence]:IINPut:DELay <time> :TRIGger[:SEQuence]:IINPut:DELay? :TRIGger[:SEQuence]:IINPut:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:IINPut:DELay:STATe?
Example	TRIG:IINP:DEL 10 ms TRIG:IINP:DEL:STAT ON		
Preset	$\begin{aligned} & 1 \text { us } \\ & \text { OFF } \end{aligned}$		
State Saved	Saved in instrument state		
Range	-2.5 s to +10 s		
Initial S/W Revision	Prior to A.02.00		

Input Q

Pressing this key, when it is not selected, selects the Q channel's ADC voltage as the trigger. The Input Q trigger condition is met when the voltage crosses the trigger level.

Key Path	Trigger, Baseband I/Q
Example	TRIG: $<$ meas $>:$ SOUR QINP

Readback Text	Input Q
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the Input Q trigger. When the signal crosses this level, with the chosen slope, the trigger occurs.

Key Path	Trigger, Baseband I/Q, Input Q
Remote Command	:TRIGger [:SEQuence] : QINPut : LEVel <voltage> $:$ TRIGger [:SEQuence] : QINPut : LEVel?
Example	TRIG:QINP:LEV 0.5 V
Preset	0.25 V
State Saved	Saved in instrument state
Range	-1 to 1 V
Readback Text	0.1 of displayed unit (V, mV, etc.)
Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband IIQ, Input Q
Remote Command	:TRIGger[:SEQuence] : QINPut : SLOPe POSitive I NEGative $:$ TRIGger[:SEQuence] : QINPut : SLOPe?
Example	TRIG:QINP:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, Input Q

Trigger

| Remote Command | :TRIGger[:SEQuence]:QINPut:DELay <time>
 :TRIGger[:SEQuence]:QINPut:DELay?
 :TRIGger[:SEQuence]:QINPut:DELay:STATe OFF\|ON|0|1
 :TRIGger[:SEQuence]:QINPut:DELay:STATe? |
| :---: | :---: |
| Example | TRIG:QINP:DEL 10 ms TRIG:QINP:DEL:STAT ON |
| Preset | $1 \text { us }$
 OFF |
| State Saved | Saved in instrument state |
| Range | -2.5 s to +10 s |
| Initial S/W Revision | Prior to A.02.00 |

Auxiliary Channel I/Q Mag

Pressing this key, when it is not selected, selects the Auxiliary Channel I/Q magnitude signal as the trigger. The Auxiliary Channel I/Q Magnitude trigger condition is met when the auxiliary receiver's I/Q magnitude output crosses the Auxiliary I/Q magnitude trigger level.

Key Path	Trigger, Baseband I/Q
Example	TRIG:<meas $>:$ SOUR AIQM
Readback Text	Aux I/Q Mag
Initial S/W Revision	Prior to A.02.00

Trigger Level

Sets a level for the I/Q magnitude trigger. When the signal crosses this level, with the chosen slope, the trigger occurs.

Key Path	Trigger, Baseband I/Q, Aux Channel I/Q Mag
Remote Command	$:$ TRIGger [:SEQuence] : AIQMag:LEVel <ampl > $:$ TRIGger[:SEQuence] : AIQMag:LEVel?
Example	TRIG:AIQM:LEV -30 dBm
Notes	The I/Q reference impedance is used for converting between power and voltage.
Preset	-25 dBm
State Saved	Saved in instrument state
Range	-200 dBm to 100 dBm
Readback Text	<level> dBm

Initial S/W Revision	Prior to A.02.00

Trig Slope

Controls the trigger polarity. It is set positive to trigger on a rising edge and negative to trigger on a falling edge.

Key Path	Trigger, Baseband I/Q, Aux Channel I/Q Mag
Remote Command	:TRIGger[:SEQuence] :AIQMag:SLOPe POSitive I NEGative :TRIGger[:SEQuence] :AIQMag:SLOPe?
Example	TRIG:AIQM:SLOP POS
Preset	POSitive
State Saved	Saved in instrument state
Initial S/W Revision	Prior to A.02.00

Trig Delay

Controls a time delay during which the analyzer will wait to begin a sweep after meeting the trigger criteria. You can use negative delay to pre-trigger the instrument in time domain or FFT.

Key Path	Trigger, Baseband I/Q, Aux Channel I/Q Mag		
Remote Command	:TRIGger[:SEQuence]:AIQMag:DELay <time> :TRIGger[:SEQuence]:AIQMag:DELay? :TRIGger[:SEQuence]:AIQMag:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:AIQMag:DELay:STATe?
Example	TRIG:AIQM:DEL 10 ms TRIG:AIQM:DEL:STAT ON		
Preset	1 us OFF		
State Saved	Saved in instrument state		
Range	-2.5 s to +10 s		
Initial S/W Revision	Prior to A.02.00		

Trigger Center Frequency

This key sets the center frequency to be used by the auxiliary receiver.

Key Path	Trigger, Baseband I/Q, Aux Channel I/Q Mag
Remote Command	$:$ TRIGger[:SEQuence] : AIQMag: CENTer <freq>
	$:$ TRIGger [:SEQuence] :AIQMag: CENTer?

Trigger

Example	:TRIG:AIQM:CENT 10 MHz
Notes	Trigger CF $+1 / 2$ Trigger BW $<$ Max Trigger CF $-1 / 2$ Trigger BW $>$ Min
Preset	0 Hz
State Saved	Saved in instrument state
Range	-40 MHz to 40 MHz
Initial S/W Revision	Prior to A.02.00

Trigger Bandwidth

This key sets the information bandwidth used by the auxiliary receiver for the Auxiliary Channel I/Q Magnitude trigger.

Key Path	Trigger, Baseband I/Q, Aux Channel I/Q Mag
Remote Command	:TRIGger[:SEQuence]:AIQMag:BANDwidth <freq> :TRIGger[:SEQuence]:AIQMag:BANDwidth?
Example	:TRIG:AIQM:BAND 8 MHz
Notes	The combined sample rate for the main and auxiliary receivers cannot exceed $100 \mathrm{MSa} / \mathrm{sec}$. The bandwidth available to the Trigger BW is limited to what is available after the main receiver's bandwidth (Info BW, sometimes pre-FFT BW) is set. Because of this limitation, the Max is not always achievable. The combination of Trigger Center Freq and Trigger BW is also limited: Trigger CF $+1 / 2$ Trigger BW $<$ Max Trigger CF $-1 / 2$ Trigger BW $>$ Min
Preset	Bandwidth option dependent: No Opt: 10 MHz Opt B25: 25 MHz Opt S40: 40 MHz
State Saved	Saved in instrument state
Range	10 Hz to Maximum
Initial S/W Revision	Prior to A.02.00

Auto/Holdoff

Opens up a menu that lets you adjust Auto Trigger and Trigger Holdoff parameters

Key Path	Trigger

Readback line	Displays a summaryof the Auto Trig and Holdoff settings, in square brackets First line: Auto Off or Auto On Second Line:"Hldf" followed by:
	• If Holdoff is Off, readback Off • If Holdoff On and Type = Normal, readback value • If Holdoff On and Type = Above, readback value followed by AL - If Holdoff On and Type = Below, readback value followed by BL
	• If Holdoff Type selection is not supported by the current measurement, Holdoff Type is always Normal
Initial S/W Revision	A. 02.00

Auto Trig

Sets the time that the analyzer will wait for the trigger conditions to be met. If they are not met after that much time, then the analyzer is triggered anyway.

Key Path	Trigger, Auto/Holdoff
Remote Command	$:$ TRIGger [:SEQuence] : ATRigger <time> $:$ TRIGger [:SEQuence] : ATRigger? $: T R I G g e r[: S E Q u e n c e] ~: ~ A T R i g g e r ~: S T A T e ~ O F F\|O N\| 0 \mid 1 ~$ $: T R I G g e r[: S E Q u e n c e] ~: ~ A T R i g g e r ~: S T A T e ? ~$
Example	TRIG:ATR:STAT ON TRIG:ATR 100 ms
Notes	The "time that the analyzer will wait" starts when the analyzer is ready for a trigger, which may be hundreds of ms after the data acquisition for a sweep is done. The "time" ends when the trigger condition is satisfied, not when the delay ends.
Preset	Off, 100 ms
State Saved	Saved in instrument state
Min	1 ms
Max	100 s
Initial S/W Revision	Prior to A.02.00
Default Unit	s

Trig Holdoff

Sets the holdoff time between triggers. When the trigger condition is satisfied, the trigger occurs, the delay begins, and the holdoff time begins. New trigger conditions will be ignored until the holdoff time

Trigger

expires. For a free-running trigger, the holdoff value is the minimum time between triggers.

Key Path	Trigger, Auto/Holdoff		
Remote Command	$:$ TRIGger[:SEQuence] :HOLDoff <time> $:$ TRIGger[:SEQuence] :HOLDoff? $:$ TRIGger[:SEQuence] :HOLDoff:STATe OFF\|ON	0	1 $:$ TRIGger[:SEQuence] :HOLDoff:STATe?
Example	TRIG:HOLD:STAT ON TRIG:HOLD 100 ms		
Preset	Off, 100 ms		
State Saved	Saved in instrument state		
Min	0 s		
Max	0.5 s		
Initial S/W Revision	Prior to A.02.00		
Default Unit	s		

Holdoff Type

Lets you set the Trigger Holdoff Type.

NOTE

Holdoff Type is not supported by all measurements. If the current measurement does not support it, this key will be blank and the Holdoff Type will be Normal. If the Holdoff Type SCPI is sent while in such a measurement, the SCPI will be accepted and the setting remembered, but it will have no effect until a measurement is in force that supports Holdoff Type.

Trigger Holdoff Type functionality:

- NORMal

This is the "oscilloscope" type of trigger holdoff, and is the setting when the Holdoff Type key does not appear. In this type of holdoff, no new trigger will be accepted until the holdoff interval has expired after the previous trigger.

- ABOVe

If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

- BELow

If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses
the threshold (with negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Trigger, Auto/Holdoff	
Remote Command	$:$ TRIGger[:SEQuence] : HOLDoff:TYPE NORMal\|ABOVe	BELOW $:$ TRIGger[:SEQuence] : HOLDoff:TYPE?
Example	TRIG:HOLD:TYPE NORM	
Preset	All modes but GSM/EDGE: Normal GSM/EDGE: Below	
State Saved	Saved in instrument state	
Initial S/W Revision	A.02.00	

Trigger Offset (Remote Command Only)

ESA Backwards Compatibility command

| Remote Command | ```:TRIGger[:SEQuence]:OFFSet <time> :TRIGger[:SEQuence]:OFFSet? :TRIGger[:SEQuence]:OFFSet:STATe OFF\|ON|0|1 :TRIGger[:SEQuence]:OFFSet:STATe?``` |
| :---: | :---: |
| Example | TRIG:OFFS ON TRIG:OFFS -100 ms |
| Notes | These are ESA commands for trigger offset that allowed you to use a positive or negative delay when in zero span and in a Res BW $>=1 \mathrm{kHz}$. For ESA compatibility, X-series analyzers keep track of this offset and add it to the Trigger Delay for line, video or external whenever the value is sent to the hardware, if in Zero Span and RBW >= 1 kHz . |
| Preset | Off, 0 s |
| State Saved | Saved in instrument state |
| Min | -11 s |
| Max | $+11 \mathrm{~s}$ |
| Initial S/W Revision | Prior to A.02.00 |

Trigger

View/Display

The View/Display key opens up the Display Menu (common to most measurments) and the View menu for the current measurement.

Some measurements have simple View menus, or even no View menu, others provide many different Views.

Views are different ways of looking at data, usually different ways of looking at the same data, especially when the data represents a time record that is being digitally processed with an FFT and/or other digital signal processing algorithms.

Key Path	Front-panel key
Initial S/W Revision	Prior to A.02.00

Display

The Display menu is common to most measurements, and is used for configuring items on the display. Some Display menu settings apply to all the measurements in a mode, and some only to the current measurement. Those under the System Display Settings key apply to all measurements in all modes.

Key Path	Display
Key Path	Front Panel Key
Initial S/W Revision	Prior to A.02.00

Annotation

Turns on and off various parts of the display annotation. The annotation is divided up into four categories:

1. Meas Bar: This is the measurement bar at the top of the screen. It does not include the settings panel or the Active Function. Turning off the Meas Bar turns off the settings panel and the Active Function. When the Meas Bar is off, the graticule area expands to fill the area formerly occupied by the Meas Bar.
2. Screen Annotation: this is the annotation and annunciation around the graticule, including any annotation on lines (such as the display line, the threshold line, etc.) This does NOT include the marker number or the N dB result. When off, the graticule expands to fill the entire graticule area.
3. Trace annotation: these are the labels on the traces, showing their detector (or their math mode).
4. Active Function annotation: this is the active function display in the meas bar, and all of the active function values displayed on softkeys.

See the figure below. Each type of annotation can be turned on and off individually.

View/Display

Key Path	View/Display, Display
Initial S/W Revision	Prior to A.02.00

Meas Bar On/Off

This function turns the Measurement Bar on and off, including the settings panel. When off, the graticule area expands to fill the area formerly occupied by the Measurement Bar.

Key Path	View/Display, Display, Annotation		
Remote Command	:DISPlay: ANNotation:MBAR[:STATe] OFF\|ON	0	1 $:$ DISPlay: ANNotation:MBAR[:STATe]?
Example	DISP:ANN:MBAR OFF		
Dependencies	Grayed out and forced to OFF when System Display Settings, Annotation is set to Off.		

Preset	On
	This should remain Off through a Preset when System Display Settings, Annotation is set to Off.
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Screen

This controls the display of the annunciation and annotation around the graticule, including any annotation on lines (such as the display line, the threshold line, etc.) and the y-axis annotation. This does NOT include marker annotation (or the N dB result). When off, the graticule expands to fill the entire graticule area, leaving only the 1.5% gap above the graticule as described in the Trace/Detector chapter.

Key Path	View/Display, Display, Annotation
Remote Command	:DISPlay: ANNotation:SCReen[:STATe] OFF $\|0 N\| 0 \mid 1$ $:$ DISPlay: ANNotation:SCReen[:STATe]?
Example	DISP:ANN:SCR OFF
Dependencies	Grayed out and forced to OFF when System Display Settings, Annotation is set to Off.
Preset	On This should remain Off through a Preset when System Display Settings, Annotation is set to Off
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Trace

Turns on and off the labels on the traces, showing their detector (or their math mode) as described in the Trace/Detector section.

If trace math is being performed with a trace, then the trace math annotation will replace the detector annotation.

Key Path	View/Display, Display, Annotation		
Remote Command	:DISPlay: ANNotation:TRACe[:STATe] ON\|OFF	1	0 :DISPlay:ANNotation:TRACe[:STATe]?
Example	DISP:ANN:TRAC OFF		
Preset	Off		
State Saved	Saved in instrument state.		
Initial S/W Revision	Prior to A.02.00		

View/Display

Active Function Values On/Off

Turns on and off the active function display in the Meas Bar, and all of the active function values displayed on the softkeys.

Note that all of the softkeys that have active functions have these numeric values blanked when this function is on. This is a security feature..

Key Path	View/Display, Display, Annotation
Remote Command	:DISPlay: ACTivefunc[:STATe] ON \mid OFF $\|1\| 0$:DISPlay: ACTivefunc[:STATe]?
Example	DISP:ACT OFF
Dependencies	Grayed out and forced to OFF when System Display Settings, Annotation is set to Off.
Preset	On This should remain Off through a Preset when System Display Settings, Annotation is set to Off
State Saved	Saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Title

Displays menu keys that enable you to change or clear a title on your display.

Key Path	View/Display, Display
Initial S/W Revision	Prior to A.02.00

Change Title

Writes a title into the "measurement name" field in the banner, for example, "Swept SA".
Press Change Title to enter a new title through the alpha editor. Press Enter or Return to complete the entry. Press ESC to cancel the entry and preserve your existing title.

The display title will replace the measurement name. It remains for this measurement until you press Change Title again, or you recall a state, or a Preset is performed. A title can also be cleared by pressing Title, Clear Title.

NOTE

Notice the inclusion of the <measurement> parameter in the command below. Because each measurement remembers the Display Title, the command must be qualified with the measurement name. For the Swept SA measurement this is not the case; for backwards compatibility, no <measurement> parameter is used when changing the Display Title for the Swept SA measurement.

Key Path	View/Display, Display, Title		
Mode	All		
Remote Command	:DISPlay : <measurement> : ANNotation:TITLe: DATA <string> :DISPlay : <measurement> : ANNotation:TITLe: DATA?		
Example	DISP:ANN:TITL:DATA "This Is My Title" This example is for the Swept SA measurement in the Spectrum Analyzer mode. The SANalyzer <measurement> name is not used. DISP:ACP:ANN:TITL:DATA "This Is My Title"		
This example is for Measurements other than Swept SA.			
Both set the title to: This Is My Title		,	Pressing this key cancels any active function.
:---			
When a title is edited the previous title remains intact (it is not cleared) and the			
cursor goes at the end so that characters can be added or BKSP can be used to			
go back over previous characters.	$	$	No title (measurement name instead)
:---	:---		
Preset	Saved in instrument state.		
State Saved	Prior to A.02.00		
Initial S/W Revision			

View/Display

Clear Title

Clears a title from the front-panel display. Once cleared, the title cannot be retrieved. After the title is cleared, the current Measurement Name replaces it in the title bar.

Key Path	View/Display, Display, Title
Example	DISP:ANN:TITL:DATA "" clears any existing title characters.
Notes	Use the :DISPlay:ANNotation:TITLe:DATA <string> command with an empty string.
Preset	Performed on Preset.
Initial S/W Revision	Prior to A.02.00

Graticule

Pressing Graticule turns the display graticule On or Off. It also turns the graticule y-axis annotation on and off.

Key Path	View/Display, Display		
Remote Command	:DISPlay:WINDow[1] :TRACe:GRATicule:GRID[:STATe] OFF\|ON	0	1 :DISPlay:WINDow[1]:TRACe:GRATicule:GRID[:STATe]?
Example	DISP:WIND:TRAC:GRAT:GRID OFF		
Notes	The graticule is the set of horizontal and vertical lines that make up the grid/divisions for the x-axis and y-axis.		
Preset	On		
State Saved	saved in instrument state		
Initial S/W Revision	Prior to A.02.00		

Display Line

Activates an adjustable horizontal line that is used as a visual reference line. The line's vertical position corresponds to its amplitude value. The value of the display line (for example, "-20.3 dBm") appears above the line itself on the right side of the display in the appropriate font.

The display line can be adjusted using the step keys, knob, or numeric keypad. The unit of the Display Line is determined by the \mathbf{Y} axis unit setting under Amplitude. If more than one window has a display line, the display line of the selected window is controlled.

If the display line is off the screen, it shows as a line at the top/bottom of the screen with an arrow pointing up or down. As with all such lines (Pk Thresh, Trigger Level, etc.) it is drawn on top of all traces.

The display line is unaffected by Auto Couple.

Key Path	View/Display, Display

| Remote Command | :DISPlay:WINDow[1]:TRACe:Y:DLINe <ampl>
 $:$ DISPlay:WINDow[1]:TRACe:Y:DLINe?
 $:$ DISPlay:WINDow[1]:TRACe:Y:DLINe:STATe OFF\|ON|0|1
 $:$:DISPlay:WINDow[1]:TRACe:Y:DLINe:STATe? |
| :--- | :--- |
| Example | DISP:WIND:TRAC:Y:DLIN:STAT ON
 DISP:WIND:TRAC:Y:DLIN:STAT -32 dBm |
| Preset | Set the Display Line to Off and -25 dBm on Preset. When the Display Line
 goes from Off to On, if it is off screen, set it to either the top or bottom of
 screen, depending on which direction off screen it was.
 The Display Line's value does not change when it is turned off. |
| State Saved | Saved in instrument state. |
| Min | $-\infty$ (minus infinity) in current units |
| Max | $+\infty$ (plus infinity) in current units |
| Initial S/W Revision | Prior to A.02.00 |
| Default Unit | Depends on the current selected Y axis unit |

System Display Settings

These settings are "Mode Global" - they affect all modes and measurements and are reset only by Restore Misc Defaults or Restore System Defaults under System.

Key Path	View/Display, Display
Initial S/W Revision	Prior to A.02.00

Annotation Local Settings

This is a Mode Global override of the meas local annotation settings. When it is All Off, it forces Screen Annotation, Meas Bar, Trace, and Active Function Values settings to be OFF for all measurements in all modes. This provides the security based "annotation off" function of previous analyzers; hence it uses the legacy SCPI command.

When it is All Off, the Screen, Meas Bar, Trace, and Active Function Values keys under the Display, Annotation menu are grayed out and forced to Off. When Local Settings is selected, you are able to set the local annotation settings on a measurement by measurement basis.

Key Path	View/Display, Display, System Display Settings		
Remote Command	:DISPlay:WINDow[1]:ANNotation[:ALL] OFF \|ON	0	1
	:DISPlay:WINDow[1] : ANNotation[:ALL]?		
Example	:DISP:WIND:ANN OFF		
Preset	On (Set by Restore Misc Defaults)		

View/Display

State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Theme

This key allows you to change the Display theme. This is similar to the Themes selection under Page Setup and Save Screen Image. The four themes are detailed below.

Key Path	View/Display, Display, System Display Settings		
Remote Command	: DISPlay: THEMe TDColor \|TDMonochrome	FCOLor	FMONochrome $:$ DISPlay: THEMe?
Example	DISP:THEM TDM sets the display theme to 3D Monochrome.		
Notes	TDColor - 3D is the standard color theme with filling and shading TDMonochrome - is similar to 3D color, but only black is used FCOLor - flat color is intended for inkjet printers to conserve ink. It uses a white background instead of black. FMONochrome - is like flat color, but only black is used		
Preset	TDColor (Set by Restore Misc Defaults)		
State Saved	Not saved in instrument state.		
Initial S/W Revision	Prior to A.02.00		

Backlight

Accesses the display backlight on/off keys. This setting may interact with settings under the Windows "Power" menu.

When the backlight is off, pressing ESC, TAB, SPACE, ENTER, UP, DOWN, LEFT, RIGHT, DEL, BKSP, CTRL, or ALT turns the backlight on without affecting the application. Pressing any other key will turn backlight on and could potentially perform the action as well.

Key Path	View/Display, Display, System Display Settings
Remote Command	:DISPlay: BACKlight ON OFF :DISPlay: BACKlight?
Preset	ON (Set by Restore Misc Defaults)
Initial S/W Revision	Prior to A.02.00

On

Turns the display backlight on.

Key Path	View/Display, Display, System Display Settings, Backlight
Example	DISP:BACK ON

Readback	On
Initial S/W Revision	Prior to A.02.00

Off

Turns the display backlight off.

Key Path	View/Display, Display, System Display Settings, Backlight
Example	DISP:BACK OFF
Readback	Off
Initial S/W Revision	Prior to A.02.00

Backlight Intensity

An active function used to set the backlight intensity. It goes from 0 to 100 where 100 is full on and 0 is off. This value is independent of the values set under the Backlight on/off key.

Key Path	View/Display, Display, System Display Settings
Remote Command	:DISPlay:BACKlight: INTensity <integer> :DISPlay:BACKlight: INTensity?
Example	DISP:BACK:INT 50
Preset	100 (Set by Restore Misc Defaults)
Min	0
Max	100
Initial S/W Revision	Prior to A.02.00

Full Screen

When Full Screen is pressed the measurement window expands horizontally over the entire instrument display. The screen graticule area expands to fill the available display area.

It turns off the display of the softkey labels, however the menus and active functions still work. (Though it would obviously be very hard to navigate without the key labels displayed.) Pressing Full Screen again while Full Screen is in effect cancels Full Screen.
Note that the banner and status lines are unaffected. You can get even more screen area for your data display by turning off the Meas Bar (in the Display menu) which also turns off the settings panel.

Full Screen is a Meas Global function. Therefore it is cancelled by the Preset key.

Key Path	Display		
Remote Command	:DISPlay:FSCReen[:STATe] OFF\|ON	0	1
	$:$ DISPlay:FSCReen[:STATe]?		

View/Display

Preset	Off
State Saved	Not saved in instrument state.
Backwards Compatibility SCPI	:DISPlay:MENU[:STATe] OFF $\|\mathrm{ON}\| 0 \mid 1$
Backwards Compatibility SCPI	DISPlay:MENU[:STATe] emulates ESA full screen functionality, which is the same as the FSCReen command in PSA except that the sense of on/off is reversed (that is, OFF means the menus are OFF) and the default is ON.
Initial S/W Revision	Prior to A.02.00

Display Enable (Remote Command Only)

Turns the display on/off, including the display drive circuitry. The backlight stays lit so you can tell that the instrument is on. The display enable setting is mode global. The reasons for turning the display off are three:

- To increase speed as much as possible by freeing the instrument from having to update the display
- To reduce emissions from the display, drive circuitry
- For security purposes

If you have turned off the display:

- and you are in local operation, the display can be turned back on by pressing any key or by sending the SYSTem:DEFaults MISC command or the DISPlay:ENABle ON (neither *RST nor SYSTem:PRESet enable the display.)
- and you are in remote operation, the display can be turned back on by pressing the Local or Esc keys or by sending the SYSTem:DEFaults MISC command or the DISPlay:ENABle ON (neither *RST nor SYSTem:PRESet enable the display.)
and you are using either the SYSTem:KLOCk command or GPIB local lockout, then no front-panel key press will turn the display back on. You must turn it back on remotely.

Remote Command	:DISPlay:ENABle OFF \mid ON $\|0\| 1$ $:$ DISPlay:ENABle?
Example	DISP:ENAB OFF
Couplings	DISP:ENAB OFF turns Backlight OFF and DISP:ENAB ON turns Backlight ON. However, settings of Backlight do not change the state of DISP:ENAB
Preset	On Set by SYST:DEF MISC, but Not affected by *RST or SYSTem:PRESet.
State Saved	Not saved in instrument state.
Initial S/W Revision	Prior to A.02.00

Common Measurement Functions 2

The key and command descriptions in this section describe functions that operate identically in multiple measurements and/or modes. This section is a library of functions that is referenced by many measurements and modes

To find the exact description and parameters for functions in a specific measurement, always look in the measurement section of this documentation. Pressing the front-panel key or softkey and then pressing the green Help key also provides the correct information.

NOTE

If you want to print the documentation, be sure to select this section and the measurement of interest to ensure having all the information you need. See "Printing Acrobat Files" on page 99 for further instructions about printing.

AMPTD Y Scale (Amplitude)

This menu has controls for the input signal conditioning as well as the Y-scaling of trace data. Input signal conditioning actually affect the input signal and the associated measurement quality, whereas Y-scaling is non-destructive of data. Even if the data is scaled so as to be clipped or completely off the display, the marker readouts are still correct and accurate data may still be retrieved via SCPI.

Key Path	Front Panel
Initial S/W Revision	Prior to A.02.00

Range

The Range setting represents the amplitude of the largest sinusoidal signal that could be present within the IF without being clipped by the ADC. For signals with high peak-to-rms ratios, the range may need to exceed the rms signal power by a fair amount to avoid clipping.

Key Path	AMPTD/YScale
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$[:$ SENSe] :POWer [:RF]: RANGe <real> $[: S E N S e]: P O W e r[: R F]: R A N G e ? ~$
Example	POW:RANG 25 POW:RANG?
Notes	The parameter is interpreted as dBm
Preset	20
State Saved	Saved in instrument state.
Min	depends on model and preamp options

Common Measurement Functions 2

Max	depends on model and preamp options
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Y Axis Scaling

Y axis scaling allows you to view the entire range of the data or zoom in on a range of interest. Scaling does not affect measurement setup, and rescaling can be done at any time on paused or complete measurements and the results of the rescaling are immediately visible. Y scaling can be made to track range setting for convenience in setting up measurements.

Key Path	AMPTD Y-Scale
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Select Trace

This function is a duplicate of the same function found on the Trace/Detector menu. The Select Trace key is also located here to allow you to conveniently choose which trace the Y scaling applies.

See "Select Trace" on page 967 for details.

Key Path	AMPTD Y-Scale, Y Axis Scaling
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Y Auto Scale

This immediate action key causes the Y reference value and Scale per Division to change so as to display the full trace without clipping.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay:<meas>:TRACe[1]\|2	3	4:Y[:SCALe] : AUT0 : ONCE					
Example	:DISP:VECT:TRAC1:Y:AUTO:ONCE							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Y Reference Value

This function controls the Y value of the selected trace at the Reference Position. It has no effect on hardware input settings.

See "Y Reference: Position" on page 902 for more details.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	$:$ DISPlay: <meas> :TRACe[1]\|2	3	4:Y[:SCALe] :RLEVel <real> $:$ DISPlay : <meas> : TRACe[1]\|2	3	4:Y[:SCALe] :RLEVel?			
Example	DISP:VECT:TRAC:Y:RLEV 20 DISP:VECT:TRAC:Y:RLEV?							
Couplings	None. This does not affect any hardware input settings.							
Preset	Depends on trace							
State Saved	Saved in instrument state.							
Min	$-9.9 E+37$							
Max	$9.9 E+37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Y Scale Per Division

This controls the Y scale per division of the selected trace.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay : <meas> :TRACe[1]\|2	3	4:Y[:SCALe] :PDIVision <real> $:$ DISPlay : <meas> : TRACe[1]\|2	3	4:Y[:SCALe] :PDIVision?			
Example	DISP:VECT:TRAC:Y:PDIV 10 DISP:VECT:TRAC:Y:PDIV?							
Couplings	None.							
Preset	Depends on trace							
State Saved	Saved in instrument state.							

Common Measurement Functions 2

Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Couple Ref to Range

When Couple Ref to Range is on, a Y scaling is adjusted when the Range changes. For example, on traces with Y units of dBm , the reference value changes by the same amount in dB as the Range does. On a trace with Y units of Volts, the Per Division setting changes by a factor of approx. 1.25 when the Range changes by 2 dB . This function may be turned on or off on for each individual trace.

Key Path	AMPTD/YScale								
Mode	VSA, LTE, LTETDD, IDEN								
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk	
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:Y[:SCALe]:RLEVel:AUTO OFF	ON	0	1 :DISPlay:<meas>:TRACe[1]	2	3	4:Y[:SCALe]:RLEVel:AUT0?```
Example	DISP:VECT:TRAC1:Y:RLEV:AUTO ON DISP:VECT:TRAC1:Y:RLEV:AUTO?								
Notes	Range coupling is not available for Phase and Group delay traces.								
Preset	1								
State Saved	Saved in instrument state.								
Range	On \| Off								
Initial S/W Revision	Prior to A.02.00								
Modified at S/W Revision	A.02.00								

Y Reference: Position

This determines the position of the reference line for Y scaling for the selected trace. It may be set to the top, bottom, or center of the grid.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

| Remote Command | ```:DISPlay:<meas>:TRACe[1]\|2|3|4:Y[:SCALe]:RPOSition TOP|CENTer|BOTTom :DISPlay:<meas>:TRACe[1]|2|3|4:Y[:SCALe]:RPOSition?``` |
| :---: | :---: |
| Example | DISP:VECT:TRAC1:Y:RPOS TOP DISP:VECT:TRAC1:Y:RPOS? |
| Couplings | Changing trace format or data can affect this. Each format "remembers" its reference position. |
| Preset | Depends on trace format and trace data. Top for LogMag or most LinearMag traces, middle for Real, Imaginary, Vector displays, Eye diagrams, Phase, Delay, Bottom for Linear Mag EVM |
| State Saved | Saved in instrument state. |
| Range | Top\|Ctr|Bottom |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Y Unit Preference

This determines the preferred Y unit for the selected trace. You can select Peak, RMS, Power units, or an automatic selection. The automatic selection is to show Power units for frequency domain data and Peak units for time domain data.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay : <meas> :TRACe[1]\|2	3	4:Y:UNIT:PREFerence AUT0\|PEAK	RMS	POWer	MRMS $:$ DISPlay : <meas> :TRACe[1]\|2	3	4:Y:UNIT : PREFerence?
Example	DISP:VECT:TRAC1:Y:UNIT:PREF PEAK DISP:VECT:TRAC1:Y:UNIT:PREF?							
Preset	AUTO							
State Saved	Saved in instrument state.							
Range	AUTO\|PEAK	RMS	POW	MRMS				
Readback Text	Auto\|Peak	RMS	Power	mRMS				
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

The following SCPI only command can be used to determine exactly which Y unit was chosen based on

Common Measurement Functions 2

the setting of the above:

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas>:TRACe[1]\|2	3	4:Y:UNIT?					
Example	DISP:VECT:TRAC1:Y:UNIT?							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Y Log Ratio

This property is only used if the Trace Format is set to LogMag (Linear Unit). In this format type, you set the Y Log Ratio instead of Y Scale Per Division to determine Y scaling. It sets the ratio of the top of the Y axis to the bottom.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas> :TRACe[1]\|2	3	4:Y:LRATio <real> $:$ DISPlay : <meas> : TRACe[1] \|2	3	4:Y:LRATio?			
Example	DISP:VECT:TRAC1:Y:LRAT 10000 DISP:VECT:TRAC1:Y:LRAT?							
Notes	This is grayed out if the trace format is not Log Mag (linear unit).							
Preset	100000							
State Saved	Saved in instrument state.							
Min	1.001							
Max	$100 e 6$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Vector Horiz Center

The Vector trace formats are I-Q and Constellation. When you are in one of these formats you set the vertical (imaginary) axis scaling with the Y Reference Value, Y Reference Position, and Y Scale Per Division properties. The scaling of the horizontal axis is set so as to maintain an aspect ratio of 1:1. The

Vector Horiz Center property is used to set the position of the origin.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas> :TRACe[1]\|2	3	4:VHCenter <real> :DISPlay : <meas $>:$ TRACe[1] $\|2\| 3 \mid 4:$ VHCenter?					
Example	DISP:DDEM:TRAC1:VHC 0.2 DISP:DDEM:TRAC1:VHC?							
Preset	0							
State Saved	Saved in instrument state.							
Min	$-9.9 e 37$							
Max	$9.9 e 37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Copy Y Scale

This front-panel only function copies the following Y scaling information from the selected trace to another:

- Y reference Position
- Y Reference Value
- Y Unit Preference
- Vector Horiz Center
- Couple Ref to Range
- Y Log Ratio
- Y Reference Line

Key Path	AMPTD Y-Scale, Y Axis Scaling
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Common Measurement Functions 2

Reference Line

This controls whether the Y reference line is visible or not.

Key Path	AMPTD/YScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay $:<$ meas $>:$ TRACe[1] \|2	3	4:RLINe OFF	ON	0	1 :DISPlay: <meas $>$:TRACe[1] \|2	3	4:RLINe?
Example	DISP:VECT:TRAC1:RLIN ON DISP:VECT:TRAC1:RLIN?							
Preset	OFF							
State Saved	Saved in instrument state.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

BW (Bandwidth)

The BW key allows you to control the resolution bandwidth of the spectrum measurement result, as well as the shape of the resolution bandwidth filter (controlled by the FFT windowing function).

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Res BW

This key allows you to select the resolution bandwidth of the measurement. Res BW is mathematically related to Time length and Window type, so changing one of these, directly or indirectly, must change at least one other.

Res BW and Time length are related by the following equation:
Res BW = ENBW / T
where:
ENBW is the normalized effective noise bandwidth of the Window. See "FFT Window" on page 909 for more details).

T is the time record length.
Therefore, if you change Res BW, Main Time must also change, and vice versa. (If the Gate function is on, then it is Gate Length, not Main Time, that is related to Res BW by the above equation.)

For convenience, Res BW is by default also coupled to Span (but not vice versa). This coupling may be turned off. See "Res BW Coupling" on page 907 for more details.

Limits:

The minimum Res Bw to Span ratio is related to the maximum Main Time length, and is given by:

```
ENBW / 409600
ENBW / (Freq Points - 1)
```

if Freq points state parameter is set to Auto if Freq points parameter is manually set

The maximum Res BW to Span ratio is related to the minimum time record size (16 points for most windows, 17 points for Flat Top), and is given by:

ENBW / 12.5
(ENBW / 13.28125 for Flat Top window)
See the "Main Time" on page 973 topic for more on relationships between Res BW and time.

Key Path	BW			
Mode	VSA			
Measurement	<meas>:=VECTor\|ADEMod	IPOWer	IDEMod	MOTotalk
Remote Command	$[:$ SENSe] : <meas> : BANDwidth\|BWIDth[:RESolution] <bandwidth> $[:$ SENSe] : <meas> : BANDwidth\|BWIDth[:RESolution]?			
Example	VECT:BWID 200 KHZ VECT:BWID?			
Notes	Key blanked in any other measurement than Vector or Analog Demod			
Couplings	Changing Main Time or Gate Length changes Res BW. See Res BW Coupling for other changes that can affect (or be affected by) Res BW			
Preset	300 kHz			
State Saved	Saved in instrument state.			
Min	$-9.9 e 37$			
Max	$9.9 e 37$			
Initial S/W Revision	Prior to A.02.00			
Modified at S/W Revision	A.02.00			

Res BW Coupling

This property controls how Res BW is affected by other parameters. The three possible settings are:
Span: (default) This setting keeps the ratio of Res BW:Span constant whenever the Span is changed. However, you can change the Res BW at will, and doing so establishes a new Res BW:Span ratio.

Common Measurement Functions 2

Min: This setting is only available when the Freq Points property is manually set, and is disabled (forceful grey out) when Freq Points is Auto. It maintains the RBW at the minimum possible value given the settings for Freq Points, Span, and Window. Res BW coupling is changed from Min to Span if you manually set Res BW.

Fixed: This setting attempts to keep the Res BW setting fixed as Span, Freq Points, or FFT Window type change. Changing FFT Window will cause Main Time (or Gate) length to change in order to keep the Res BW Fixed. Res BW coupling is forced to Fixed mode any time you turn time the Gate function on or manually set Main Time length. See "Main Time" on page 973 for details.

If a requested change to Res BW or Time Length (Main or Gate) would cause the Res BW to go outside the minimum or maximum Res BW: Span limits (see the main Res BW section for specifics), the Res BW is clipped at the appropriate limit. The Time length is then set to according to the limited Res BW.

In Fixed coupling mode, if increasing the Span would cause the new Res BW:Span to drop below the minimum, or if decreasing Span would cause the new Res BW: span to exceed the maximum, the requested Span is accepted and then the Res BW is changed to the limiting value. The associated Time length is updated.

In Fixed or Span coupling, increasing Freq Points does not cause the Main (or Gate) Time Length to increase. It only adds zero padding to the array that is used in the FFT to calculate the Spectrum. Therefore, it will not affect Res BW. If decreasing Freq Points decreases the maximum time length below the current Main Time, then the Main Time length is clipped to the new limits. If Gating is on, the Gate Delay is first limited, then the Gate Length. The Res BW is then updated as a result of the Time changes.

In Fixed or Span coupling, changing the Window Type will not affect RBW unless it falls outside the limits calculated using the new window. Then the Res BW is clipped at the appropriate limit. The associated Time length is also updated.

Key Path	BW			
Mode	VSA			
Measurement	<meas>:=VECTor\|ADEMod	IPOWer	IDEMod	MOTotalk
Remote Command	```[:SENSe]:<meas>:BANDwidth\|BWIDth[:RESolution]:COUPle SPAN	MIN	FIXed [:SENSe]:<meas>:BANDwidth	BWIDth[:RESolution]:COUPle?```
Example	VECT:BWID:COUP FIX VECT:BWID:COUP?			
Notes	Blanked when in any other measurement than Vector or Analog Demod MIN is not available if Freq Points is set to Auto and trying to set it generates error -221 Settings conflict			
Couplings	See narrative above table and also Res BW section			
Preset	SPAN			
State Saved	Saved in instrument state.			
Range	Span \| Min	Fixed		

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

FFT Window

This key allows you to choose the Window function that is applied to the time data prior to the FFT calculation used for Spectrum and PSD displays. Four windows are available.

Window name	Common usage	Normalized ENBW (Hz-s)
Uniform	Transient or self-windowing signals, signals that are periodic within a time record length.	1.0
Hanning	Frequency resolution	1.5
Gaussian	High dynamic range	2.21536
Flat Top	High amplitude accuracy	3.8194

The normalized ENBW is the equivalent noise bandwidth, that is, the width of a rectangular filter that passes the same amount of white noise as the window. It is used to define the resolution bandwidth.

Key Path	BW							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	[:SENSe]:<meas>:FFT:WINDow[:TYPE] UNIForm\|HANNing	GAUSsian	FLATtop [:SENSe]:<meas>:FFT:WINDow[:TYPE]?					
Example	VECT:FFT:WIND GAUS VECT:FFT:WIND?							
Couplings	See Res BW and Res BW Coupling sections							
Preset	FLAT							
State Saved	Saved in instrument state.							
Range	Uniform \| Hanning	Gaussian (High Dyn Rng)	Flat Top (High Amptd Accy)					
Readback Text	Uniform \| Hanning	Gaussian	Flat Top					
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

FREQ Channel

Frequency parameters for any vector measurement consist of 2 pairs of properties: Center Frequency and

Common Measurement Functions 2

Span or Start Frequency and Stop Frequency. These behave much as they do in any other application, but there is the additional constraint that the span is limited to much less than the center frequency range.

If you change center frequency the start and stop frequencies change by the same amount.
If you change span, start frequency and stop frequency are changed by $1 / 2$ the span change.
If you change start frequency, stop frequency remains fixed and span and center frequency are refigured accordingly. Changing stop frequency has similar behavior.

Limits:

If you change the start frequency such that it will equal or exceed the stop frequency, the new start frequency will be accepted if possible and the stop frequency will be set to min span above the start. Similarly if you attempt to set the stop below the start, the start frequency will move to a min span below the new stop frequency.

If you reduce the start frequency beyond a max span below the stop, the stop frequency will be "dragged along" such that it will be a max span above the new start frequency, and similarly increasing the stop frequency will drag the start frequency along if you attempt to increase the span beyond the maximum.

Stop frequency may be $1 / 2$ span above the maximum center frequency, but frequency-domain traces are blanked above the maximum center frequency.

Start frequency may be $1 / 2$ span below the minimum center frequency, but frequency-domain traces are blanked below the minimum center frequency.

Pressing the Freq hardkey changes the active function to Center Frequency.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Center Freq

Sets the frequency of the display Center.

Key Path	FREQ Channel
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	[:SENSe] : FREQuency: CENTer <freq> [:SENSe] : FREQuency: CENTer?
Example	FREQ:CENT 985 MHZ FREQ:CENT?
Couplings	Start Freq, Stop Freq, and Span. See "FREQ Channel" on page 909 for more details.
Preset	1 GHz

State Saved	Saved in instrument state.
Min	0 Hz
Max	Depends on frequency range option.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Start Freq

Sets the frequency of the display Start.

Key Path	FREQ Channel
Mode	VSA, IDEN
Remote Command	[:SENSe] : FREQuency:STARt <freq> [:SENSe] : FREQuency : STARt?
Example	FREQ:STAR 980 MHz FREQ:STAR?
Couplings	Stop Freq, Center Freq, and Span. See "FREQ Channel" on page 909 for more details.
Preset	Depends on span option. It is 1/2 max span below 1 GHz
State Saved	Saved in instrument state.
Min	$-9.9 e 37$
Max	$9.9 e 37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Stop Freq

Sets the frequency of the display Stop.

Key Path	FREQ Channel
Mode	VSA, IDEN
Remote Command	$[$:SENSe] : FREQuency : STOP <freq> $[$:SENSe] :FREQuency:STOP?
Example	FREQ:STOP 990 MHz FREQ:STOP?
Couplings	Start Freq, Center Freq, and Span. See "FREQ Channel" on page 909 for more details.

Common Measurement Functions 2

Preset	Depends on span option. It is $1 / 2$ max span above 1 GHz
State Saved	Saved in instrument state.
Min	-9.9 e 37
Max	9.9 e 37
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

CF Step

This key controls the amount the center frequency changes if it is the active function and the user presses the Up or Down arrow key. Note: the start and stop frequency also change by the amount of the CF Step if the Up/Down arrow keys are used to change them; but the key is mainly used is in connection with stepping the center frequency, so the legacy key name has been retained. The step size in Auto mode is $1 / 10$ th the span. It can be set to any value in manual mode.

Key Path	FREQ Channel		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	[:SENSe]:FREQuency:CENTer:STEP[:INCRement] <freq> [:SENSe]:FREQuency:CENTer:STEP[:INCRement]? [:SENSe]:FREQuency:CENTer:STEP:AUTO OFF\|ON	0	1 [:SENSe]:FREQuency:CENTer:STEP:AUTO?
Example	FREQ:CENT:STEP 1 MHZ FREQ:CENT:STEP? FREQ:CENT:STEP:AUTO ON FREQ:CENT:STEP:AUTO?		
Couplings	1/10th Span when auto is turned on		
Preset	Depends on span option; 1/10th default span.		
State Saved	Saved in instrument state.		
Min	-9.9e37		
Max	9.9 e 37		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.02.00		

Marker

The Marker hardkey displays the Marker menu. A marker can be placed on a trace to allow the value of the trace data at the marker position to be determined precisely. Markers can also be used in pairs to read the difference (or delta) between two data points. They can also be used to make power calculations over
a band of frequencies or a time interval. See Marker Functions below for more details.
The functions in this menu include a 1-of-N selection of the control mode Normal, Delta, Fixed, or Off for the selected marker. The control mode is described below.

Pressing Marker always makes the selected maker's X position the active function.
If the currently selected marker is Off, pressing Marker sets it to Normal mode and places it at the center of the screen on the currently selected trace.

As a convenience, if there are no markers displayed on the current trace, pressing the marker hardkey (whenever the marker menu is already showing) selects the lowest numbered marker that is currently off and turns it on in normal mode on the selected trace. In other words, pressing the Marker hardkey twice will always turn on a marker on the selected trace if none was turned on before.

For more information see the Analyzer Setup, Marker for a description of this function.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Select Marker

Specifies the selected marker. The selected marker is the one that is affected by the marker position and properties settings, peak search, and other marker functions. Several menus have a Select Marker key for convenience. Marker selection using any one of these is reflected in all others, i.e., there is only one selected marker for the whole measurement. If all markers are off, then marker 1 becomes the selected marker.

As a convenience, if no markers are displayed on the selected trace, selecting a marker that is off automatically turns it on in normal mode on the selected trace.

There is no SCPI function for selecting a marker. Instead, SCPI functions may explicitly include the index of the marker for which they are to apply. (Most SCPI marker functions that affect the state of a marker will also make it the selected marker for front panel commands.)

Key Path	Marker or Marker> or Marker Function
Mode	VSA, LTE, LTETDD, IDEN
State Saved	No
Range	$1\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Control Mode

The control mode of the selected marker is selected by pressing Normal, Delta, Fixed, or Off. The behavior of a marker under each control mode is described below the table. The current control mode is

Common Measurement Functions 2

shown by highlighting the appropriate key.
The SCPI command in the table below selects the marker and sets the marker control mode as described under Normal, Delta, Fixed and Off, below. All interactions and dependencies detailed under the key description are enforced when the remote command is sent.

Key Path	Marker							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> :MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MODE POSition\|DELTa	FIXed	=0FF :CALCulate : <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MODE?					
Example	CALC:VECT:MARK1:MODE POS CALC:VECT:MARK1:MODE?							
Couplings	When Delta mode is selected, or when the mode is changed from Delta to Off, the marker relative to the selected marker may be affected, as described in the text descriptions below.							
Preset	$=$ OFF							
State Saved	Saved in instrument state.							
Range	Normal\|Delta	Fixed	Off					
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Normal (Position)

A marker in normal mode reports the trace data value (Y value) at a particular point on a trace. The marker's absolute X (and Z) position is specified by you in displayed units. The marker symbol appears on the trace at the specified position and tracks the absolute Y value at that position as it changes from scan to scan. The absolute Y value is displayed in the marker readout area. In older instruments this was called Position mode, and the designation may still be used for backward compatibility.

For Control Mode SCPI command information see: "Control Mode" on page 913

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Delta

A marker set to delta mode reports the difference between Y values at two points. A delta marker is
relative to an associated reference marker on the same trace. (The reference marker may be set on the Marker, Properties, Relative To menu). The reference marker is usually fixed, but may also be normal or delta. The X (and Z) position of a delta marker is specified as an offset from the reference marker position. The delta marker symbol tracks the absolute Y value just like a normal marker, but the marker readout displays the difference between the absolute Y values of the delta marker and its reference marker (absolute units are used even if the reference is itself a delta marker). Usually this is a straight difference in the current displayed units. For example, if the trace format is LogMag (dBm), the delta marker displays the difference in dB , thus showing a power ratio. But if the trace format is Real, then the delta marker shows a voltage difference, not a ratio. Exceptions for this are:

- When the trace format is Linear Mag or Log Mag (linear unit) the delta marker displays a voltage ratio, or (if the Y Axis unit is Power) a power ratio, rather than a difference.
- When either the marker or its reference has a marker function turned on, the delta marker always displays a ratio or its decibel equivalent. See Marker Function for more details on how delta markers work with marker functions. The type of ratio calculated (power or voltage) depends on the delta marker units; the reference marker value is converted as needed so it has compatible units.
- When the trace format is Wrap Phase, the delta marker readout is constrained to the wrapped phase display range, which is usually $(-180,+180]$ degrees. For example, if the absolute phase at marker 1 is 170 deg and its reference has phase of -170 deg, the delta will not show 340 deg , but -20 deg . Note that the Wrap Phase display range can be changed (see Trace/Detector, Phase/Delay Properties, Phase/Trellis Offset).

There is no current support for calculating deltas across traces (and this cannot be done at all unless the traces have the same domain and ranges).

By default, the reference marker for marker 1 is marker 2; for marker 2 is 3 and so on, but the reference marker may be changed. See the section on the "Relative To" softkey below.

The following coupling rules apply from the front panel, and also if the equivalent SCPI commands are sent.

Pressing the Delta key causes the selected marker becomes a delta marker if it is not already. Also, the selected marker's reference is affected as follows:

- If the reference marker was off, it is turned on as a fixed marker.
- The reference marker is moved to the trace of the selected marker and set to the same position as the selected marker.
- If the delta marker has a marker function turned on, the reference marker takes on the same function (with the same band limits).

Exception: Pressing Delta when the selected marker's mode is not yet Delta does not move or change a reference marker that is already turned on (Normal, Delta, or Fixed) and on the same trace as the selected marker. It merely changes the selected marker's mode to Delta and shows the current offset between it and the reference. If you press Delta again (when the selected marker is already in Delta mode) then the reference is moved and modified as described above.

When a delta marker is changed to any other control mode, if its reference marker is fixed then the reference marker is also turned off.

If you move a delta marker to a different trace, it is forced to Normal mode, and if its reference is fixed, the reference is turned off.

Common Measurement Functions 2

A delta marker is forced to Normal mode if you turn its reference off, or if you move its reference to another trace. (In the latter case the reference is not turned off even if it is fixed.)

If you change the selected marker's reference (using the Marker, Properties, Relative To) the selected marker is forced to Delta mode. This change of the selected marker to Delta mode causes its new reference's control mode and position to change as described above.

For Control Mode SCPI command information see: "Control Mode" on page 913

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Fixed

Fixed markers are mainly used as reference markers for Delta markers. A fixed marker's X and Y Axis values may be directly or indirectly specified by you, and they remain fixed once specified, i.e. they do not follow the trace data value. These markers are represented on the display by an " X " rather then a diamond. If a marker is changed from off to fixed, the X and Y (and Z) values are chosen to put it in the center of the display. If the marker is changed from some other type to fixed, the current X and Z values of the marker remain unchanged. The Y value is taken from the current trace data value and must be changed manually thereafter.

For Control Mode SCPI command information see: "Control Mode" on page 913

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Off

Turning a marker off makes it invisible, and also its annotation.
Turning a marker on (i.e. changing its control mode from Off to any other control mode) assigns the marker to the currently selected trace.

For Control Mode SCPI command information see: "Control Mode" on page 913

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Coupling of Delta and Reference Markers

The following coupling rules apply from the front panel, and also if the equivalent SCPI commands are sent.

Pressing the Delta key causes the selected marker becomes a delta marker if it is not already. Also, the selected marker's reference is affected as follows:

- If the reference marker was off, it is turned on as a fixed marker.
- The reference marker is moved to the trace of the selected marker and set to the same position as the selected marker.
- If the delta marker has a marker function turned on, the reference marker takes on the same function (with the same band limits).

Exception: Pressing Delta when the selected marker's mode is not yet Delta does not move or change a reference marker that is already turned on (Normal, Delta, or Fixed) and on the same trace as the selected marker. It merely changes the selected marker's mode to Delta and shows the current offset between it and the reference. If you press Delta again (when the selected marker is already in Delta mode) then the reference is moved and modified as described above.

When a delta marker is changed to any other control mode, if its reference marker is fixed then the reference marker is also turned off.

If you move a delta marker to a different trace, it is forced to Normal mode, and if its reference is fixed, the reference is turned off.

A delta marker is forced to Normal mode if you turn its reference off, or if you move its reference to another trace. (In the latter case the reference is not turned off even if it is fixed.)
If you change the selected marker's reference (using the Marker, Properties, Relative To) the selected marker is forced to Delta mode. This change of the selected marker to Delta mode causes its new reference's control mode and position to change as described above.

Marker Position

Marker position is used to select which data point in a trace we want to read out with the marker (or where to locate a fixed marker). The marker position is primarily set in terms of the domain units, not trace points (although it can be set in terms of points via SCPI). The default active function when you press a marker hard key is the X position for the currently selected marker. The exception to this is when the selected marker is fixed. In that case there is no default active function (to prevent inadvertently changing a fixed marker's location).
Marker position is not defined when a marker's control mode is Off. When a marker is turned on in Normal or Delta mode, its X (and Z) values are set to the center of the trace data. If a marker is turned on in Fixed mode, its position is set so that it appears in the middle of the trace grid.

The Marker Position key branches to the Marker Position menu, which allows you to set any position variable relevant to the selected marker's control mode and trace format.

For Normal and Delta markers, usually only Marker X is available. Marker Z is available for trace data with 2-dimensional domain. For Fixed markers, Y may also be set. If the trace format is Vector or Constellation, Marker Y controls the real (horizontal axis) value and Marker Y Imag controls the

Common Measurement Functions 2

imaginary (vertical axis) value. The key (or the keys below it) is grayed out if the selected marker is off.

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker X

This sets the selected marker's X Axis value position in the current X Axis Scale unit. If the control mode is Off, the SCPI command has no effect other than to cause the marker to become selected. Note that the X value may change if the marker is moved to a trace with a different domain.

The Marker X position is absolute if the marker control mode is Normal or Fixed. If the control mode is Delta, then the X position is relative to the reference marker. The valid X positions are the actual data points in the trace; the marker cannot be located between points. If a SCPI command attempts to place the marker between two points, the X value snaps to the closest point.

Note that for Vector or Constellation format, the X axis is perpendicular to the screen (because the screen axes are used to show the real and imaginary parts of the Y value), so adjusting the X value in this case will only cause the marker to move horizontally if the real Y value changes. For Fixed markers on a trace with one of these formats, adjusting the X value will not cause horizontal motion of the marker at all. Instead, you use the Marker Y and Marker Y (imag) controls to move the marker horizontally and vertically.

Key Path	Marker, Marker Position							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: X$ <real> $:$ CALCulate : <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: X ?$							
Example	CALC:VECT:MARK:X 0.325 CALC:VECT:MARK:X?							
Notes	Marker X will not go outside the bounds of the data unless it is Fixed. If you attempt to set it to a value outside the bounds it will be clipped at the closest limit, and error -222 Data Out of Range is generated. If suffix is sent, it must match the X units for the trace the marker is on. Otherwise, error $-138, ~ " S u f f i x ~ n o t ~ a l l o w e d " ~ i s ~ g e n e r a t e d . ~$							
If you try to read or set the position of a Delta marker, remember that the								
position is in relative units.								

Preset	None until marker is turned on.
State Saved	Saved in instrument state.
Min	Depends on trace data
Max	Depends on trace data
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

SCPI only X position commands
Via SCPI , the marker position may also be set or queried in trace points. In this case, the position setting or reading is absolute regardless of control mode.

NOTE The entered value in Trace Points is immediately translated into the current domain units for setting the value of the marker. The marker's value in domain units, NOT trace points, will be preserved if a change is made to the X Axis scale settings. Thus, if you use this command to place a marker on point 500 , which happens at that time to correspond to 13 GHz , and then you change the Start Frequency so that point 500 is no longer 13 GHz , the marker will stay at 13 GHz , NOT at point 500.

If the trace the marker is on has a 2-dimensional domain, then the points are numbered in the following way:

Starting at the minimum X and Z position, this point is numbered 0 . Each time you increment the point number, increment the X value to the next available value. When X reaches the maximum X position, then reset X to the minimum and increment the Z value. Then continue incrementing the X position in the same manner as before.

Note that for symbol tables, which have no axes, incrementing the X position in points moves the marker consecutively through all table entries.

Mode	VSA, LTE, LTETDD, IDEN																				
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk													
Remote Command	:CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12 [:X]:POSition <real> :CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12 [:X]:POSition?
Example	CALC:VECT:MARK:POS 25 CALC:VECT:MARK:POS?																				
Notes	When a marker control mode is changed from off to any other mode, the X position is set to mid-screen.																				
Couplings	Same couplings as for Marker X value																				

Common Measurement Functions 2

Preset	None until marker is turned on.
State Saved	Saved in instrument state.
Min	Depends on trace data
Max	Depends on trace data
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker X Unit may be queried via SCPI

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: UNIT? $?$							
Example	CALC:VECT:MARK:X:UNKIT?							
Notes	Query Only							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Marker Y

This function only affects fixed markers. It allows you to set or read back the selected marker's Y Axis value in the current Y Axis Scale unit. Setting the Y value has no effect (other than to cause the marker to become selected) if the control mode is other than fixed. The query form generates an error if the control mode is Off. Note that the Y value may change if the Y-axis units change, either from a change in format of the trace the marker is on, or if the marker is moved to a different trace.

If the selected marker is on a trace that is displayed with Vector or Constellation format, this function controls only the real part of the Y value (i.e., the horizontal axis value). Use the Marker Y (imag) control to change the imaginary (vertical) value. Marker Y and Marker Y Imag always set or get the rectangular form of Y, regardless of whether the marker readout is polar or rectangular.

Key Path	Marker, Marker Position							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> :MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y$: REAL] <real> [:REAL]?							

Example	CALC:VECT:MARK2:Y 0.325 CALC:VECT:MARK2:Y?
Notes	You cannot set Y unless the marker type is fixed. If the marker becomes fixed after a marker function is turned on, it is set to whatever the Y value was when the marker became fixed. If suffix is sent, it must match the Y units for the trace the marker is on. Otherwise, error -138, "Suffix not allowed" is generated.
Couplings	Changes if marker is relative to a Delta marker that is turned on or re-zeroed (see Coupling of Delta and Reference Markers).
Preset	None until marker is turned on.
State Saved	Saved in instrument state.
Min	$-9.9 E+37$
Max	$9.9 E+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker Y Unit may be queried via SCPI.

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y:$ UNIT?							
Example	CALC:VECT:MARK:Y:UNIT?							
Notes	Query Only							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Marker Y Imag (Imaginary)

This only affects fixed markers and is only available when the trace format is Vector or Constellation. It allows you to set or read back the selected marker's quadrature (imaginary) Y value in the current Y Axis Scale unit. It has no effect (other than to cause the marker to become selected) if the control mode is other than fixed, or if the current trace format is not complex. The query form generates an error if it is used for a marker that is not on a complex trace. Marker Y Imag is not affected by whether the marker readout is polar or rectangular.

Key Path	Marker, Marker Position
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

| Measurement | <meas>: $=$ VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate: <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y:$
 IMAGinary <real>
 :CALCulate: $:$ meas> :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Y:$
 IMAGinary? |
| Example | CALC:DDEM:MARK1:Y:IMAG 0.435
 CALC:DDEM:MARK1:Y:IMAG? |
| Notes | Grayed out unless the marker is fixed and on a vector display.
 If suffix is sent, it must match the Y units for the trace the marker is on.
 Otherwise, an Invalid Suffix error is generated. Otherwise, error -138, "Suffix
 not allowed" is generated. If query is sent while the marker is on a trace
 whose format is not vector or constellation, NaN (9.91E+37) is returned. |
| Preset | None until marker is turned on. |
| State Saved | Saved in instrument state. |
| Min | Depends on trace format |
| Max | Depends on trace format |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Marker Z

For markers on traces with a 2-dimensional domain, this sets the selected markers Z Axis value in the current Z Axis Scale unit. In each case the marker that is addressed becomes the selected marker. It has no effect (other than to cause the marker to become selected) if the control mode is Off, or if the trace has no Z domain. Note that the Z value may change or become irrelevant if the marker is moved to a trace with a different Z domain, or no Z domain.

Note that this Z value is affected if the SCPI command to set marker point position is used.

Key Path	Marker, Marker Position							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate $:<m e a s>: M A R K e r[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z ~$ <real> $: C A L C u l a t e:<m e a s>~: ~ M A R K e r[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z ? ~$							
Example	CALC:OFDM:MARK:Z 12 CALC:OFDM:MARK:Z?							

Notes	Marker Z will not go outside the bounds of the data unless it is Fixed. If you attempt to set it to a value outside the bounds it will be clipped at the closest limit, and error -222 Data Out of Range is generated. If suffix is sent, it must match the Z units for the trace the marker is on. Otherwise, error -138, "Suffix not allowed" is generated.
Couplings	See Coupling at the end of the Control Mode section. See also Couple Markers section.
Preset	None until marker is turned on.
State Saved	Saved in instrument state.
Min	Depends on trace data
Max	Depends on trace data
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker Z Unit may be queried via SCPI.

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> :MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: Z:$ UNIT?							
Example	CALC:OFDM:MARK:Z:UNIT?							
Notes	Query Only							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Marker Properties

The Marker Properties key accesses a menu of common marker properties.

Key Path	Marker
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00

Relative To

This key allows you to specify which marker is used as a reference for the selected marker when the selected marker's control mode is set to Delta. By default, the reference marker is numerically one higher than the selected marker, that is, marker 1 is relative to marker 2, marker 2 to marker 3 , and so on. Marker 12 by default is relative to marker 1. This key allows you to change the reference marker from

Common Measurement Functions 2

the default. Note that a marker cannot be made relative to itself.

Key Path	Marker, Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ REFerence <integer> :CALCulate : <meas> :MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ REFerence?							
Example	CALC:VECT:MARK2:REF 4 CALC:VECT:MARK2:REF?							
Notes	The reference marker cannot be the same value as the selected marker, i.e.,. a marker cannot be relative to itself. The currently selected marker will not be an available choice in the relative to selection (i.e. the selected marker will appear grayed out). When queried a single value will be returned (the specified marker numbers relative marker).							
Couplings	See Coupling of Delta and Reference Markers above. The old reference remains as it was.							
Preset	$2\|3\| 4\|5\| 6\|7\| 8\|9\| 10\|11\| 12 \mid 1$							
State Saved	Saved in instrument state.							
Range	$1\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12$							
Modified at S/W Revision	Prior to A.02.00							

Complex Format

This determines the format for the readout when a marker is placed on a complex display (vector or constellation). The choices are to read out in rectangular or polar coordinates. The readout format applies to the marker display and marker table only; there is no SCPI for reading out the marker value in polar form.

Key Path	Marker, Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

Remote Command	:CALCulate: Cmeas> :MARKer[1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CFORmat RECTangular \mid POLar :CALCulate: $:$ meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CFORmat?
Example	CALC:VECT:MARK1:CFOR RECT CALC:VECT:MARK1:CFOR?
Preset	RECT
State Saved	Saved in instrument state.
Range	Rect\|Polar
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker Trace

This key allows you to determine the trace to which a marker is assigned. By default, when a marker is turned on it is assigned to the currently selected trace. You may change that assignment using this control.

Key Path	Marker, Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ TRACe <integer> $:$ CALCulate : <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ TRACe?							
Example	CALC:VECT:MARK3:TRAC 2 CALC:VECT:MARK3:TRAC?							
Couplings	See Couplings of Delta and Reference Markers above..							
Preset	Marker is assigned to currently selected trace when turned on.							
State Saved	Saved in instrument state.							
Range	Trace 1\|Trace2	Trace 3	Trace 4					
Min	1							
Max	4							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Common Measurement Functions 2

Marker Count

This key enables the frequency counter algorithm on the selected marker. This algorithm can more precisely determine the frequency of a peak. The marker must be on a frequency domain trace, with data coming from hardware. Place the marker on a peak and enable the frequency counter. The marker readout then shows the calculated frequency rather than the marker X position. Only one marker can be counted at any time. Turning on marker count for any marker turns it off for all other markers.

Key Path	Marker, Properties																								
Mode	VSA, IDEN																								
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk																	
Remote Command	```:CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12: FCOunt[:STATe] OFF	ON	0	1 :CALCulate:<meas>:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12: FCOunt[:STATe]?```
Example	CALC:VECT:MARK:FCO ON CALC:VECT:MARK:FCO?																								
Notes	Marker must be on a frequency-domain trace and data must be live, not recorded or simulated.																								
Preset	OFF																								
State Saved	Saved in instrument state.																								
Range	Off\|On																								
Initial S/W Revision	Prior to A.02.00																								
Modified at S/W Revision	A.02.00																								

The frequency counter result must be read back with the following SCPI command. The Marker X query command will only get the marker's data point position, which will not be as accurate as the frequency counter result.

Key Path	SCPI only							
Mode	VSA, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate $:<m e a s>: M A R K e r[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FCOunt: X?							
Example	CALC:VECT:MARK:FCO:X?							
Notes	Query only. If the marker counter result is unavailable, NaN is returned.							
Initial S/W Revision	Prior to A.02.00							

Modified at S/W Revision	A.02.00

Marker Table

When the Marker Table is turned on, the display is split into a measurement window and a marker data display window. For each marker which is on, information is displayed in the data display window, which includes the marker number, control mode, trace number, X axis scale, X axis value, and the Y-axis result. Additional information is shown for markers which have marker functions turned on.

Key Path	Marker							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : MARKer :TABLe[: STATe] OFF\|ON	0	1 $:$ CALCulate : <meas> : MARKer : TABLe[: STATe]?					
Example	CALC:VECT:MARK:TABL ON CALC:VECT:MARK:TABL?							
Preset	OFF							
State Saved	No							
Range	Off\|On							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Couple Markers

Marker Coupling affects all currently displayed markers. In general when coupling is turned on then all Normal or Delta markers with the same (or equivalent) domain as the selected marker move in the same manner as the selected marker. Coupling is relative between markers on the same trace (so that their relative positions in the domain are maintained). Coupling can be absolute between markers on different traces that have equivalent domains. That is, they are forced have the same position in the domain, if possible. (As an example of equivalent domains, demodulated symbol positions can be derived from time by using the current symbol rate). When you move the selected marker, then others on related traces track it. This is to allow you to correlate different measurement results. For example, to you can place a marker at a particular symbol time on an error vector magnitude display, and have tracking markers on the symbol table and pre-demod time trace, showing you the symbol value and the actual time-varying signal value at the same point in time.

Absolute coupling is performed only for the lowest numbered Normal or Delta marker on each trace. All other markers on a trace couple relatively. When you turn on marker coupling, the subset of markers that have the same domain as the selected marker track it and all other markers remain at their current location. The absolutely coupled markers within this subset will be moved at this time to match the domain setting of the selected marker, with the relatively coupled markers following accordingly to maintain offsets within their respective traces. Those markers with different domains remain at their current location. When you select a marker with a different domain than the previously selected marker,

Common Measurement Functions 2

then the subset of markers with that domain go through the same procedure.
Any marker that coupling would move outside its range of X values, will remain at the closest limiting value until the selected marker moves in such a way as to bring the coupled X value back into range. If the coupled markers are on data that do not have the same domain resolution, then they are positioned as close to each other as possible.

If markers change mode or trace, or trace data is changed below them, the coupling rules are immediately applied to the new set.

Key Path	Marker							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : MARKer : COUPle[: STATe] OFF \|ON	0	1 :CALCulate : <meas> : MARKer : COUPle [: STATe]?					
Example	CALC:VECT:MARK:COUP ON CALC:VECT:MARK:COUP?							
Preset	OFF							
State Saved	Saved in instrument state.							
Range	Off\|On							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

All Markers Off

This function turns all markers off and sets the selected marker to 1 .

Key Path	Marker							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer : AOFF							
Example	CALC:VECT:MARK:AOFF:							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Marker -> (Marker To)

The Marker -> hardkey provides access to some convenient functions for copying the marker position to a number of frequency and Y-axis scaling parameters. These functions are available from the front panel
only. No SCPI is provided, because you can already read the marker position via SCPI and then set any frequency or scaling parameter accordingly, with full accuracy.

Pressing the Marker -> hardkey always makes the selected marker's X position the active function.
If the selected marker is off, pressing the Marker -> hardkey turns on the selected marker in normal mode on the currently selected trace.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr -> CF (Center Frequency)

This function sets the center frequency equal to the selected marker's absolute frequency. The marker must be on a frequency-domain trace. The absolute marker frequency is used regardless of whether its control mode is Normal, Delta, or Fixed.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr -> CF Step

This function sets the center frequency step size equal to the selected marker's frequency. The marker must be on a frequency-domain trace. The absolute marker frequency is used regardless of whether its control mode is Normal, Delta, or Fixed.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr -> Start
This function sets the start frequency equal to the selected marker's frequency. The marker must be on a frequency-domain trace. The absolute marker frequency is used regardless of whether its control mode is Normal, Delta, or Fixed.

Common Measurement Functions 2

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr -> Stop

This function sets the stop frequency equal to the selected marker's frequency. The marker must be on a frequency-domain trace. The absolute marker frequency is used regardless of whether its control mode is Normal, Delta, or Fixed.

If the currently selected marker is not on when this key is pressed, it will be turned on at the center of the screen as a normal type marker.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr Delta -> Span

This function sets the start and stop frequencies to equal to the selected marker's frequency and that of its reference. That is, the measurement span is "zoomed in" so that the selected marker and its associated reference appear on the extreme left and right of the display. The marker must be on a frequency-domain trace and its control mode must be Delta.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr -> Ref Lvl

This function sets the Y axis reference value equal to the selected marker's Y value. For example, if the reference position is at the top of the screen, the whole trace is moved up so that the marker appears at the top of the screen. Note that this is a display scaling function only. The input range remains the same.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00

Modified at S/W Revision	A.02.00

Counter -> CF (Center Frequency)

This function copies the frequency of the marker counter to the center frequency. The marker counter function must be on.

Key Path	Marker To
Mode	VSA, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Mkr Delta -> CF (Center Frequency)

This function sets the center frequency equal to the difference in frequency between the selected Delta marker and its reference. The marker must be on a frequency-domain trace and the selected marker's control mode must be Delta.

Key Path	Marker To
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Marker Function

This key accesses a menu of selectable marker functions for VSA based measurements.
Marker Functions perform post-processing operations on marker data. Band Functions are Marker Functions that allow you to define a band of frequencies around the marker. The band defines the region of data used for the numerical calculations. These marker functions also allow you to perform mathematical calculations on trace and marker data and report the results of these calculations in place of the normal marker result.

Unlike regular markers, marker function markers are not placed directly on the trace. They are placed at a location which is relative to the result of the function calculation.

The Marker Function menu gives you access to power calculations in bands of frequencies or time intervals centered on a marker. It also allows you to make calculations like carrier to noise by combining delta markers with marker functions. Marker functions are generally available for time and frequency domain traces, and not for others. If the marker function calculation is undefined for particular trace data, then "---" is shown in place of a number in the result display and marker table, and CALC: $<$ meas $>:$ MARK[n]:Y? will return 9.91E+37 (NaN).

Pressing Marker Function always makes the selected marker's X position the active function.
If the selected marker is off, pressing the Marker Function hardkey turns on the selected marker in

Common Measurement Functions 2

normal mode on the currently selected trace.

Key Path	Marker Function																							
Mode	VSA, LTE, LTETDD, IDEN																							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk																
Remote Command	```:CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12: FUNCtion BPOWer	BDENsity	=OFF :CALCulate:<meas>:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12: FUNCtion?```
Example	CALC:VECT:MARK1:FUNC BPOW CALC:VECT:MARK1:FUNC?																							
Notes	:CALC: <meas $>:$ MARK1:FUNC? returns the current function type for marker 1. To return the result, use :CALC: $<$ meas $>:$ MARK1:Y?																							
Preset	$=\mathrm{OFF}$																							
State Saved	Saved in instrument state.																							
Range	Band Power\|Band Density	Off																						
Initial S/W Revision	Prior to A.02.00																							
Modified at S/W Revision	A.02.00																							

Band/Interval Power

Turns on the Band/Interval Power function for the selected marker. This function calculates the power within the band centered on the marker. The function works generally with frequency spectra, PSD and time traces. On traces where band power is undefined, the result display shows "---" and CALC: $<$ meas $>: M A R K[n]: Y$? will return $9.91 \mathrm{E}+37(\mathrm{NaN})$, although the band interval can still be defined

Frequency-domain data

If the marker is on a frequency-domain trace, the result is total power within the band. This is true whether the underlying trace data is a power spectrum or power spectral density.

Time-domain data

If the marker is on a time-domain trace, the result is average power within the time interval, that is, the power at each time sample in the time interval is calculated, the powers are summed and the total divided by the number of samples.

Key Path	Marker Function
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00

Modified at S/W Revision	A.02.00

Band Power Calculation

A band/interval power calculation result may be shown in dBm, dBVrms, Watts, Volts RMS Squared or Volts RMS. The table below shows the choice of display units if Band Power Calculation is set to Mean, depending on the current format and Y units of the trace the marker is on.

Trace data type	Trace Format	Y Unit	Result format
Spectrum, PSD, Time record	LogMag (dB)	Auto, Power	dBm
		Peak, RMS	dBVrms
		mRMS	dBmVrms
	Linear Mag, Real, Imag, Log Mag (lin)	Auto, Peak, RMS, mRMS	Vrms^2
	Linear Mag, Real, Imag, Log Mag(lin)	Power	W
	Wrap Phase, Unwrap Phase, Delay	Any	Vrms^2
	Vector, Constellation, Eye, Trellis	Any	blanked
Dimensionless (e.g.,	LogMag (dB)	Any	dBrms
response, various Demodulation error types)	Linear Mag, Real, Imag, Wrap Phase, Unwrap Phase, Delay, Log Mag (lin)	Any	$\mathrm{rms} \wedge 2$
General dimensions(e.g., Hz,	LogMag (dB)	Any	dB <unit>rms
	Linear Mag, Real, Imag, Wrap Phase, Unwrap Phase, Delay, Log Mag (lin)	Any	<unit>rms^2

If the Band Power Calculation is set to RMS, then the readout unit does not depend on trace format or Y unit. For Spectrums, PS and Time record traces the displayed unit is "Vrms" For general units, the unit abbreviation is shown followed by "rms".

The Band Power Calculation only controls the readout format for Normal and Fixed markers. For Delta markers, see the discussion below.

Key Path	Marker Function, Band/Interval Power							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

Common Measurement Functions 2

Remote Command	:CALCulate: FUNCtion:BPOWer:CTYPe $\operatorname{MEAN} \mid$ RMS :CALCulate: $:$ meas>:MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:BPOWer:CTYPe?
Example	CALC:VECT:MARK1:FUNC:BPOW:CTYP MEAN CALC:VECT:MARK1:FUNC:BPOW:CTYP?
Preset	MEAN
State Saved	Saved in instrument state.
Range	Mean\|RMS
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Band/Interval Density

This function calculates the average power density within the band centered on the marker. The function works generally with frequency spectra, PSD and time traces. On traces where band power cannot reasonably be defined, the result display shows "---" and CALC:<meas>:MARK[n]:Y? returns NaN (9.91E +37), although the band interval can still be defined.

Frequency-domain data

If the marker is on a frequency-domain trace, the result is the band power (as computed above) divided by the bandwidth over which it is measured. This is true whether the underlying trace data is a power spectrum or power spectral density.

Time-domain data

If the marker is on a time-domain trace, the result is average power within the time interval (as computed above) divided by the equivalent noise bandwidth of the span.

Key Path	Marker Function
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Band Density Calculation

Turns on the Band/Interval Density function for the selected marker. If the selected marker is off, it is turned on in Normal marker mode and located at the center of the screen.

When Band/Interval Density is selected while in the Marker Function Off state, the Band Span or Interval Span is initialized to 5% of the screen width.

If the detector mode for the detector on the marker's trace is set to Auto, the average detector is selected. If the Average type is set to Auto, Power Averaging is selected. Other choices for the detector or Average
type will usually cause measurement inaccuracy.
A band/interval density calculation result may be shown in $\mathrm{dBm} / \mathrm{Hz}$, Volts RMS Squared or Volts RMS. The table below shows the choice of display units if Band Density Calculation is set to Mean, depending on the current format of the trace the marker is on.

Trace data type	Trace Format	Result format
Spectrum, PSD, Time record	LogMag (dB)	$\mathrm{dBm} / \mathrm{Hz}$
	Linear Mag, Real, Imag, Wrap Phase, Unwrap Phase, Delay, Log Mag (lin)	Vrms^2/Hz
	LogMag (dB)	Linear Mag, Real, Imag, Wrap Phase, Unwrap Phase, Delay, Log Mag (lin)
General dimensions(e.g., Hz, \%)	LogMag (dB)	dBrms/Hz
	Linear Mag, Real, Imag, Wrap Phase, Unwrap Phase, Delay, Log Mag (lin)	$<$ dB<unit>rms^2/Hz

If the Band Density Calculation is set to RMS, then the readout unit does not depend on trace format. For Spectrum, PSD and Time record traces the displayed unit is "Vrms/rtHz" For general units, the unit abbreviation is shown followed by "rms/rtHz ".

The Band Density Calculation only controls the readout format for Normal and Fixed markers. For Delta markers, see the discussion below.

Key Path	Marker Function, Band/Interval Power																						
Mode	VSA, LTE, LTETDD, IDEN																						
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk															
Remote Command	```:CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12: FUNCtion:BDENsity:CTYPe MEAN	RMS :CALCulate:<meas>:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12: FUNCtion:BDENsity:CTYPe?```
Example	CALC:VECT:MARK1:FUNC:BDEN:CTYP RMS CALC:VECT:MARK1:FUNC:BDEN:CTYP?																						
Preset	MEAN																						
State Saved	Saved in instrument state.																						
Range	Mean\|RMS																						
Initial S/W Revision	Prior to A.02.00																						

Common Measurement Functions 2

Modified at S/W Revision	A. 02.00

Band Adjust

These keys allow you to define the bandwidth around the marker. The band is always centered on the marker position. Entering the menu always sets Band/Interval Span as the active function

Key Path	Marker Function
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Band/Interval Center

This function defines the center of the band. That is, it allows you to adjust the marker position in absolute units (regardless of whether the marker mode is Normal or Delta).

Key Path	Marker Function, Band Adjust																					
Mode	VSA, LTE, LTETDD, IDEN																					
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk														
Remote Command	```:CALCulate:<meas>:MARKer[1]\|2	3	4	5	6	7	8	9	10	11	12: FUNCtion:BAND:CENTer <real> :CALCulate:<meas>:MARKer[1]	2	3	4	5	6	7	8	9	10	11	12: FUNCtion:BAND:CENTer?```
Example	CALC:VECT:MARK2:FUNC:BAND:CENT 1.23E+09 CALC:VECT:MARK2:FUNC:BAND:CENT?																					
Preset	Center of screen																					
State Saved	Saved in instrument state.																					
Min	$-9.9 \mathrm{E}+37$																					
Max	$9.9 \mathrm{E}+37$																					
Initial S/W Revision	Prior to A.02.00																					
Modified at S/W Revision	A.02.00																					

Band/Interval Span

Sets the width of the span for the selected marker. This function defines the span of frequencies or time. The marker position does not change when you adjust the span.

Key Path	Marker Function, Band Adjust
Mode	VSA, LTE, LTETDD, IDEN

| Measurement | <meas>:=VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate: <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$
 FUNCtion:BAND:SPAN <real>
 :CALCulate: $\mathrm{Cmeas>}:$ MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$
 FUNCtion:BAND:SPAN? |
| Example | CALC:VECT:MARK2:FUNC:BAND:SPAN 1.23E+06
 CALC:VECT:MARK2:FUNC:BAND:SPAN? |
| Preset | When marker turned on, 1/20th of current span or displayed time length |
| State Saved | Saved in instrument state. |
| Min | $-9.9 E+37$ |
| Max | $9.9 E+37$ |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Band/Interval Left

This function adjusts the left side of the band. In order to remain centered in the band, the marker position must also change as you change the left edge. The right edge is unaffected.

Key Path	Marker Function, Band Adjust							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:BAND: LEFT <real> :CALCulate: <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:BAND: LEFT?							
Example	CALC:VECT:MARK2:FUNC:BAND:LEFT $1.23 E+06$ CALC:VECT:MARK2:FUNC:BAND:LEFT?							
Couplings	Changes marker X to keep the marker centered in the band							
Preset	When marker turned on, $1 / 40$ th of current span or displayed time length left of the marker position							
State Saved	Saved in instrument state.							
Min	$-9.9 E+37$							
Max	$9.9 E+37$							
Initial S/W Revision	Prior to A.02.00							

Common Measurement Functions 2

Modified at S/W Revision	A. 02.00

Band/Interval Right

This function adjusts the right side of the band. In order to remain centered in the band, the marker position must also change as you change the right edge. The left edge is unaffected.

Key Path	Marker Function, Band Adjust							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ FUNCtion:BAND:RIGHt <real> :CALCulate: $<m e a s>: M A R K e r[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12: ~$ FUNCtion:BAND:RIGHt?							
Example	CALC:VECT:MARK2:FUNC:BAND:RIGHT $1.23 E+06$ CALC:VECT:MARK2:FUNC:BAND:RIGHT?							
Couplings	Changes marker X to keep the marker centered in the band							
Preset	When marker turned on, $1 / 40$ th of current span or displayed time length right of the marker position							
State Saved	Saved in instrument state.							
Min	$-9.9 E+37$							
Max	$9.9 E+37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Band Power and Delta Markers

When either a Delta marker or its reference has a band power function turned on, the Delta marker readout always shows a ratio calculation. This allows you to perform common calculations like carrier to noise ratio or adjacent channel power ratio. The form of the ratio depends on the main marker function calculation type (Mean or RMS). If the main marker function calculation type is Mean, then when you change the marker to Delta the result will be a power ratio. If the main marker function calculation type is RMS, then the Delta marker result will be a voltage ratio. (If the main marker band power function is off, then the form of the ratio depends on the reference marker calculation type: If it is Mean you get a power ratio, and if it is RMS you get a voltage ratio.)

For example, if the main marker function is Band/Interval Power with a calculation type of Mean and the reference marker function is Band/Interval Power with a calculation type of RMS, then the Delta marker will show the ratio of the main marker "Band/Interval Power Mean" value to the reference marker "Band/Interval Power Mean" (not RMS) value.

A dimensionless ratio (for example Volt/Volt or Watt/Watt) is shown with units of "x". The marker function calculation type will tell you whether the ratio is voltage or power (see above). A dimensionless
power ratio is shown with units of dB if the trace format is Log Mag (dB)
If the reference marker function is Band/Interval Density and the main marker is either Band/Interval Power or its function is turned off, then the ratio is not dimensionless, but has units of Hz (or $\mathrm{dB}-\mathrm{Hz}$) for power calculations, or rtHz for voltage calculations. When the main marker function is Band/Interval Density and the reference is either Band/interval Power or its function is off, the units are $/ \mathrm{Hz}$ (or $\mathrm{dB} / \mathrm{Hz}$) for power calculations, or $/ \mathrm{rtHz}$ for voltage calculations.

Key Path	Marker Function
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Meas Setup

This key accesses a menu of keys that select measurement functions for VSA based Measurements.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Avg Number

This key allows you to turn averaging on or off, and set the number of scans (time records) whose measurement results will be averaged. Averaging can be done over spectrum results (RMS) or over time records (Time). A third kind of pseudo averaging displays the maximum value seen at each spectral line over the specified number of scans. See Average Type for a more detailed description of how measurement results are averaged.) For RMS or Time averaging, the process is similar. Each time an averaged result is displayed, it is the sum of the individual results taken since measurement restart, divided by the number of scans. (For Max averaging, there is no actual summation or division.) The Measurement Bar shows the number of scans and the Avg number setting; for example, if 4 scans have been taken and the Avg Number is 10, the Meas Bar shows "4/10". The measurement continues to take new scans until the number of scans is equal to the Avg Number setting, at which time the measurement stops if Sweep control is in Single Mode. Otherwise, the measurement continues, and the Average Mode setting determines how successive scans are added to the averaged result. See the Average Mode topic for details.

Key Path	Meas Setup, More							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	$<$ meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

Common Measurement Functions 2

| Remote Command | ```[:SENSe]:<meas>:AVERage:COUNt <integer> [:SENSe]:<meas>:AVERage:COUNt? [:SENSe]:<meas>:AVERage[:STATe] OFF\|ON|0|1 [:SENSe]:<meas>:AVERage[:STATe]?``` |
| :---: | :---: |
| Example | VECT:AVER:COUN 20
 VECT:AVER:COUN?
 VECT:AVER ON
 VECT:AVER? |
| Notes | If an averaged measurement is idle because the scan count is equal to the Avg Number, and the Avg Number is increased, the measurement will resume until the new number of averages is satisfied. |
| Preset | 10 OFF IPOW: ON |
| State Saved | Saved in instrument state. |
| Min | 1 |
| Max | 2147483647 |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Average Mode

The Average Mode determines what happens when the Sweep Mode is Continuous and the number of scans processed exceeds the Average Number (see above). If the Sweep Control is in Single mode, this setting has no effect.

When averaging is on and the number of scans is less than or equal to the Avg Number setting, a linear average is calculated as explained in the Avg Number topic. After the scan count exceeds the Avg Number setting, the measurement continues to take new scans. The Measurement Bar average indicator shows " $>\mathrm{N} / \mathrm{N}$ " where N is the Avg Number.

If Average Mode is Exp then new results are averaged in exponentially. In other words, each succeeding average will be the weighted sum of the previous average, weighted by ($\mathrm{N}-1$)/ N , and the new measurement, weighted by $1 / \mathrm{N}$, where N is the Average Number setting. (For Max averaging, no weighting occurs; the result continues to be the max value seen at each spectral line for every previous scan since measurement restart.)

If Average Mode is Repeat, then the average buffer will be cleared after the average counter reaches the Average Number setting, and the average counter will be reset to 0 . Then a new set of averages is taken. The measurement bar therefore continues to show " k / N " in the average indicator, where k is the number of scans since the last time the average buffer was cleared and N is the Avg Number. The averaged result is the sum of the last k results divided by k . (For Max averaging, no sum or division takes place, but the
buffer is cleared as stated above. The averaged result is the max value seen over the last k scans.)

Key Path	Meas Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	$[:$ SENSe $]:<m e a s>~: A V E R a g e: T C O N t r o l ~ E X P o n e n t i a l \mid R E P e a t ~$ $[: S E N S e]:<m e a s>~: ~ A V E R a g e: ~ T C O N t r o l ? ~$							
Example	VECT:AVER:TCON EXP VECT:AVER:TCON?							
Preset	EXP							
State Saved	Saved in instrument state.							
Range	Exp\|Repeat							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Average Setup

This key accesses a menu allowing you to set Averaging parameters for all VSA based measurements.

Key Path	Meas Setup
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Average Type

The Average Type key allows you to select the type of averaging. The table below shows what measurement results are averaged for each average type. This applies in the Vector Measurement.

Average Type	Measurement result averaged
RMS	Spectrum, PSD: Power is averaged for each spectral line (i.e., this is a mean-square average of voltage). For the Spectrum result only, if the display transform is linear or real, the RMS result is displayed.
Time	Main Time: Individual time samples in the current time record are averaged vectorially (not RMS) with corresponding points in previous time records. See "Main Time" on page 973 for more details.
Max	Spectrum, PSD: Not strictly an average. For each spectral line, power from the current measurement is compared to the average buffer value and the maximum is kept in the average buffer.

Common Measurement Functions 2

Some measurement results are inherently averaged, and are not affected by the Average controls. These are: CCDF, CDF, and PDF. They average continuously until the next measurement restart.

Key Path	Meas Setup, Average Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	[:SENSe] : <meas> : AVERage:TYPE RMS\|TIME	MAXimum [:SENSe] : <meas> : AVERage : TYPE?						
Example	VECT:AVER:TYPE RMS VECT:AVER:TYPE?							
Preset	RMS							
State Saved	Saved in instrument state.							
Range	RMS\|Time	Max						
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Fast Average

Fast average controls the display of average data. If fast averaging is off, then the display is updated after each time record is processed. If fast averaging is on, then the display is only updated after every M records, where M is the Update Rate (see below). For example, if the fast average count is 10 , then the running average is only displayed every 10th time record.

Key Path	Meas Setup, Average Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	[:SENSe]:<meas>:AVERage:FAST OFF\|ON	0	1 [:SENSe]:<meas>:AVERage:FAST?					
Example	VECT:AVER:FAST ON VECT:AVER:FAST?							
Preset	OFF							
State Saved	Saved in instrument state.							
Range	On\|Off							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Update Rate

The Update Rate controls how often the display updates when fast averaging is turned on. If the Fast Averaging State is MAX then the display is updated only after the full Average Count is reached. Otherwise, the display is updated whenever the average count is a multiple of the Update Rate..

Key Path	Meas Setup, More, Average Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	[:SENSe]:<meas>:AVERage:FAST:URATe <integer> [:SENSe]:<meas>:AVERage:FAST:URATe? [:SENSe]:<meas>:AVERage:FAST:URATe:AUTO OFF\|ON	0	1 [:SENSe]:<meas>:AVERage:FAST:URATe:AUTO?					
Example	VECT:AVER:FAST:URAT 20 VECT:AVER:FAST:URAT? VECT:AVER:FAST:URAT:AUTO ON VECT:AVER:FAST:URAT:AUTO?							
Preset	10 ON							
State Saved	Saved in instrument state.							
Min	1							
Max	2147483647							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A. 02.00							

PhNoise Opt

Allows you to adjust the LO phase noise optimization to give better close-in phase noise, or better wide-offset phase noise. The definition of what frequency offsets constitute close in or wide offset varies with hardware. (The selection keys provide hardware-specific prompts.)

Key Path	Meas Setup				
Mode	VSA, WIMAXFIXED				
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM
Remote Command	$[:$ SENSe]: <meas> : FREQuency:SYNThesis[:STATe] 1\|2				
	$[:$ SENSe]:<meas> : FREQuency :SYNThesis[:STATe]?				

Common Measurement Functions 2

Example	VECT:FREQ:SYNT 1 VECT:FREQ:SYNT?
Notes	Parameter key: 1 - optimizes phase noise for close-in frequencies 2 - optimizes phase noise for wide-offset frequencies The softkey shows the options more explicitly. For MXA/EXA, the selection keys show the options: Best Close-in ÉŠ Noise [offset < 20 kHz] Best Wide-offset ÉŠ Noise [offset > 30 kHz] For PXA the options are: Best Close-in ÉŠ Noise [offset < 140 kHz] Best Wide-offset ÉŠ Noise [offset > 160 kHz]
Preset	all VXA measurements: Best Wide-offset ÉŠ Noise
WIMAXFIXED EVM measurement: Best Close-in ÉŠ Noise	

Best Close-in Φ Noise

The LO phase noise is optimized for smaller offsets from the carrier, at the expense of phase noise farther out. For MXA, close in means offsets $<20 \mathrm{kHz}$; for PXA, it means offsets $<140 \mathrm{kHz}$.

Key Path	Meas Setup, PhNoise Opt
Mode	VSA, WIMAXFIXED
Example	VECT:FREQ:SYNT 1 VECT:FREQ:SYNT?
Readback	Close-in
Initial S/W Revision	A.04.00

Best Wide-offset Φ Noise

The LO phase noise is optimized for wider offsets from the carrier, at the expense of phase noise closer in. For MXA, wide-offset means offsets > 30 kHz ; for PXA, it means offsets > 160 kHz .

Key Path	Meas Setup, PhNoise Opt
Mode	VSA, WIMAXFIXED
Example	VECT:FREQ:SYNT 2
	VECT:FREQ:SYNT?

Readback	Wide-offset
Initial S/W Revision	A.04.00

Peak Search

The Peak Search hardkey displays a menu that allows markers to be easily moved among peaks on a trace, and also performs the peak search function, as described below. Pressing Peak Search also makes the selected marker's X position the active function.

The peak search function causes the marker to move to the highest point in the trace. The highest point is the point with the largest y-axis value in the current trace format. If the format is complex (vector or constellation) then the point with the highest magnitude is chosen.

Pressing the Peak Search hard key always performs a Peak Search, with one exception: if the Peak Search menu is not showing but the selected marker is on (Normal, Delta, or Fixed), then pressing the Peak Search hardkey only displays the Peak Search menu. This allows you to select one of the other peak search functions without disturbing the selected marker's position. If you want to perform a peak search in this case, press the Peak Search hardkey again.

If the selected marker is Off, then pressing the Peak Search hardkey once not only shows the menu, but it turns on the selected marker in Normal mode, assigns it to the selected trace, and performs a peak search.

If any peak search SCPI command is invoked on a marker that is Off, the marker is first turned on in Normal mode and assigned to the selected trace. Then the peak search is performed.

Key Path	Peak Search (press hardkey twice if menu is not showing)							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum							
Example	CALC:VECT:MARK2:MAX							
Notes	There is no softkey for this function. Instead, you press the Peak Search hardkey twice. (Pressing it once is sufficient if the Peak Search menu is showing, but twice guarantees that the function will be invoked) If peak search function is not invoked (because the response to pressing the hardkey was only to show the menu) then the following message is shown: "Press Peak Search again to perform a Peak Search."							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Next Peak (Next Lower Amptd)

This command moves the marker to the peak next lower in Y value than the peak it is currently on. If the format is complex (vector or constellation) then the marker moves to the closest point that has a lower magnitude than the marker's current position. If this function is invoked via SCPI on a marker that is off,

Common Measurement Functions 2

the result is the same as if you sent a Peak Search command.

Key Path	Peak Search							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum:NEXT							
Example	CALC:VECT:MARK2:MAX:NEXT							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Next Higher Amptd

This command moves the marker to the peak next higher in Y value than the peak it is currently on. . If the format is complex (vector or constellation) then the marker moves to the closest point that has a higher magnitude than the marker's current position. If this function is invoked via SCPI on a marker that is off, the result is the same as if you sent a Peak Search command.

Key Path	Peak Search							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate:<meas> :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum:PREVious							
Example	CALC:VECT:MARK2:MAX:PREV							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Next Right

This command moves the marker to the next peak to the right of its current position. If the format is complex (vector or constellation) then the marker moves forward in time to the next peak. If this function is invoked via SCPI on a marker that is off, the result is the same as if you sent a Peak Search command.

A valid peak is one for which the displayed Y-axis values drop monotonically on both sides of the local maximum at least 4% of the distance between the top and bottom of the display grid before the values begin to rise again.

Key Path	Peak Search
Mode	VSA, LTE, LTETDD, IDEN

| Measurement | <meas>: $=$ VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate: <meas> : MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$
 MAXimum:RIGHt |
| Example | CALC:VECT:MARK2:MAX:RIGH |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A. 02.00 |

Next Left

This command moves the marker to the next peak to the left of its current position. If the format is complex (vector or constellation) then the marker moves back in time to the next peak. If this function is invoked via SCPI on a marker that is off, the result is the same as if you sent a Peak Search command.

A valid peak is one for which the displayed Y-axis values drop monotonically on both sides of the local maximum at least 4% of the distance between the top and bottom of the display grid before the values begin to rise again.

Key Path	Peak Search							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MAXimum: LEFT							
Example	CALC:VECT:MARK2:MAX:LEFT							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Mkr -> CF (Center Frequency)

This key is a duplicate of the key of the same name in the Mkr -> menu. It is placed in this menu as a convenience. See the description in the Marker To section.

Key Path	Peak Search
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Continuous Peak Search

This key turns on Continuous Peak Search for the selected marker. This function be turned on for any marker independently of any other marker. This function moves the marker to the highest point on the trace each time the trace is updated. If the SCPI command refers to a marker that is off, it is turned on in

Common Measurement Functions 2

Normal mode.

It is possible to have Couple Markers and Continuous Peak Search both on. If this is the case, it is recommended that Continuous Peak search be turned on for only one marker in any tracking set (that is, any set of markers with the same or equivalent domain). Otherwise, conflicts over marker position may arise that cause erratic marker movement.

Key Path	Peak Search							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> :MARKer $[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CPSearch[:STATe] ON $\|0 F F\| 1 \mid 0$ $:$ CALCulate : <meas> : MARKer [1] $\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ CPSearch[:STATe]?							
Example	CALC:VECT:MARK1:CPS ON							
Couplings	The Continuous Peak Search key is grayed out when the selected marker is a Fixed marker. Also, if Continuous Peak Search is on and the selected marker becomes a fixed marker, then Continuous Peak Search is turned off and the key grayed out. Continuous Peak Search is turned off when the selected marker is turned off.							
Preset	OFF							
State Saved	Saved in instrument state.							
Range	Off\|On							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Min Search

This command moves the marker to the lowest Y value on the trace. If the format is complex (vector or constellation) then the marker moves to the lowest value in magnitude. If the SCPI command refers to a marker that is off, it is first turned on in Normal mode and then set on the minimum point.

Key Path	Peak Search							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: $<m e a s>: M A R K e r[1]\|2\| 3\|4\| 5\|6\| 7\|8\| 9\|10\| 11 \mid 12:$ MINimum							
Example	CALC:VECT:MARK2:MIN							
Initial S/W Revision	Prior to A.02.00							

Modified at S/W Revision	A.02.00

Mkr -> Ref Lvl (Reference Level)

This function sets the Y axis reference value equal to the selected marker's Y value. For example, if the reference position is at the top of the screen, the whole trace is moved up so that the marker appears at the top of the screen. Note that this is a display scaling function only. The input range remains the same.

Key Path	Peak Search
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Recall

Operation of this key is identical across several measurements. For more details about this key, see "Recall" on page 152.

State

Key Path	Recall
Mode	VSA, LTE, LTETDD, IDEN

Data (Import)

Key Path	Recall
Mode	VSA, LTE, LTETDD, IDEN

Import Trace Data

This selection allows you to import previously saved trace data into a Data Register and optionally display it. Selecting this key displays a menu that allows you to select the destination data register, and also allows you to choose whether or not to display the recalled data in the currently selected trace. After making these selections depress Open... and use the file dialog to select the file you wish to recall.

Recalling trace data into an already used Data Register overwrites the previous data. If the data register is displayed on any trace, the display is updated to reflect the new data.

The SCPI command
:MMEM:LOAD:TRAC:DATA D1|D2|D3|D4|D5|D6,<filename>
recalls data into a specified register, but does not display it in the selected trace. Use the command :DISP:<meas>:TRAC<n>:FEED D1|D2|D3|D4|D5|D6

Common Measurement Functions 2

to display the register in the desired trace.
It is possible to recall trace data saved by other VXA measurements, or measurements made using the LTE, LTETDD, iDEN, or 89601 applications.

Key Path	Recall, Data (Import)										
Mode	VSA, LTE, LTETDD, IDEN										
Remote Command	```:MMEMOry:LOAD:TRACe:DATA D1\|D2	D3	D4	D5	D6,<filename>[,CSV	TXT	SDF	MAT4	MAT	HDF5	BIN]```
Example	:MMEM:LOAD:TRAC:DATA D1,"Trc1.txt",TXT										
Notes	The Open: dialog box has the following filter options when you are recalling trace data:: - CSV (Comma delimited) (*.csv) - SDF (Fast) (*.sdf;*.dat) - Text (Tab delimited) (*.txt) The file must have the same format as that created by the Export Recorded Data command. The SCPI command has an optional file format parameter. If you do not include this parameter in the SCPI command, the file format is determined by the file name extension. If no file extension is recognized, the file is scanned to determine the format. If you are not licensed to recall a particular file type, then error - 203.9010 will be returned. If the file format cannot be determined or the file cannot be recalled successfully, then error -250.5290 is returned. If the recall is successful, then advisory 0.1600 is shown.										
State Saved	No										
Readback	Data 1\|Data 2	Data 3	Data 4	Data 5	Data 6						

Data 1

Selects the Data 1 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Data 2

Selects the Data 2 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Data 3

Selects the Data 3 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Data 4

Selects the Data 4 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Data 5

Selects the Data 5 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Data 6

Selects the Data 6 register as the destination for the imported data

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN

Display in Selected Trace

Allows you to select whether the recalled trace data is to be displayed in the current Trace.

Key Path	Recall, Data (Import), Trace (to)
Mode	VSA, LTE, LTETDD, IDEN
State Saved	No

Open ...

Key Path	Recall, Data (Import)
Mode	VSA, LTE, LTETDD, IDEN

Save

See "Save" on page 169 in the section "Common Measurement Functions" for more information.

Common Measurement Functions 2

State

Key Path	Save
Mode	VSA, LTE, LTETDD, IDEN

Data (Export)

Key Path	Save
Mode	VSA, LTE, LTETDD, IDEN

Export Trace Data

This selection allows you to export trace data with (optional) associated headers. Selecting this key displays a menu that allows you to choose which Trace to save (default is the selected Trace) and whether or not to save headers with the data. The header information is used by the VXA application when saved trace data is recalled, and allows it to be displayed with the same formatting and scaling that it had when saved. If headers are not saved, the scaling and format are set to default values when the trace is recalled. After making these selections, press Save As... and use the file dialog to choose a file name and format for the saved data.

Trace data may be exported in several different formats. Text and comma-separated variable (CSV) formats are useful for viewing the data or importing it to a spreadsheet program. The other formats are binary and thus more compact. Trace data files may be recalled for viewing into other VXA, LTE, LTETDD, iDEN, or 89601 measurements.

Key Path	Save, Data (Export)												
Mode	VSA, LTE, LTETDD, IDEN												
Remote Command	:MMEMory: STORe:TRACe: DATA TRACE1\|TRACE2	TRACE3	TRACE4	TRACE5	TRACE6, "<filename>" [,CSV\|TXT	SDF	MAT4	MAT	HDF5	BIN[,OFF	ON	0	1]]
Example	:MMEM:STOR:TRAC:DATA TRACE1,"TRC1.TXT",TXT,ON												

Notes	The Save As... dialog box has the following format options when you are saving trace data: • CSV (Comma delimited) (*.csv)					
	- SDF (Fast) (*.sdf;*.dat) - Text (Tab delimited) (*.txt) File format saved depends on selection. The appropriate file extension is appended to the filename if it is not supplied by the user. If the SCPI command includes just a file name, the file format is determined by the filename extension, which must be one of the choices above. *.sdf, or an unrecognized extension chooses the SDF fast format. If the optional file format enumerator is included in the command, then this determines the file format and the file extension is ignored. The optional binary parameter determines if file headers are saved. The default is ON. If file headers are not wanted use the optional ",OFF" parameter. The optional Boolean parameter determines whether headers are saved in the file. By default the headers are saved. If you are not licensed to save a particular file type, then error -203.9010 will be returned. If an invalid file format is specified or the file cannot be saved successfully, then error -25x is returned. If the save is successful, then advisory 0.1500 is shown.					
State Saved	Neadback					
No						
(Trace 1\|Trace 2	Trace 3	Trace 4	Trace 5	Trace 6)(with	without) headers	

Trace 1
Selects the Trace 1 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Trace 2

Selects the Trace 2 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Trace 3

Selects the Trace 3 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

Trace 4

Selects the Trace 4 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Trace 5

Selects the Trace 5 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Trace 6

Selects the Trace 6 register as the destination for the imported data

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN

Include Header

Allows you to select whether or not the saved trace data includes header information describing scaling, formatting, etc.

Key Path	Save, Data (Export), Trace
Mode	VSA, LTE, LTETDD, IDEN
State Saved	No

Save As . . .

Key Path	Save, Data (Export)
Mode	VSA, LTE, LTETDD, IDEN

Screen Image . . .

Key Path	Save
Mode	VSA, LTE, LTETDD, IDEN

SPAN X Scale

This menu has softkeys for selecting measurement span and also for scaling of the X axis.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Span

This controls the frequency span of the measurement. This is the full span that is displayed on a spectrum display. The actual IF bandwidth that the time record sees is 1.28 times the span. See the FREQ Channel section for details on how this interacts with start, stop, and center frequencies.

Key Path	SPAN/XScale
Mode	VSA, IDEN
Remote Command	$[$:SENSe] :FREQuency :SPAN <freq> $[: S E N S e]: F R E Q u e n c y: S P A N ? ~$
Example	FREQ:SPAN 10 MHZ FREQ:SPAN?
Couplings	Start Freq and Stop Freq. See narrative under FREQ Channel heading for details.
Preset	depends on span option
State Saved	Saved in instrument state.
Min	2 Hz
Max	depends on span option
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Full Span

This immediate action key changes the span to the maximum available. The center frequency remains unchanged, regardless of whether the Frequency Annotation property is Start/Stop or Center/Span.

Key Path	SPAN/XScale
Mode	VSA, IDEN
Remote Command	[:SENSe] : FREQuency : SPAN : FULL
Example	FREQ:SPAN:FULL

Common Measurement Functions 2

Notes	The label on the softkey gives the full span available, which depends on span option.
Couplings	Changes span to maximum while keeping the center frequency constant. Start and Stop frequency are affected
Readback Text	[25 MHz] If playing back a recording, list the recorded bandwidth here
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A. 02.00

Signal Track

From the point of view of a spectrum display, this function, when turned on, attempts to keep the largest magnitude signal in the center of the screen. It is the equivalent of manually doing a single acquisition, doing a marker to peak search on a spectrum trace, then copying the marker position to the center frequency and repeating. (It is not necessary to be viewing a spectrum display for this function to work.)

Key Path	SPAN/XScale		
Mode	VSA		
Remote Command	$[$:SENSe] : VECTor \mid ADEMod: FREQuency : CENTer : TRACk OFF\|ON	0	1 $[: S E N S e]:$ VECTor \mid ADEMod : FREQuency : CENTer : TRACk?
Example	VECT:FREQ:CENT:TRAC ON VECT:FREQ:CENT:TRAC?		
Couplings	Unavailable if averaging is turned on.		
Preset	0		
State Saved	Saved in instrument state.		
Range	On \| Off		
Initial S/W Revision	Prior to A.02.00		

X Axis Scaling

By default, the X axis of a trace is scaled to show all the available data in the trace. (The exception is that in spectrum displays, the edges of the spectrum that may contain aliases are not shown by default.) However, the X axis can be manually scaled in order to zoom in on a subset of the X values, or to set the X scaling to more convenient numbers. X scaling may be changed even when a measurement is paused or completed, and the display will be updated immediately, using the existing trace data. No measurement parameters are affected and no new measurement is made. X scaling is unique to each trace.

Scaling is based on a reference position, which may be on the left of the grid, in the center, or on the right. The X reference value is assigned to this position. The X Width is the difference between the X value on the right side of the grid and the X value on the left. If the reference is in the center, the right and left are half of the X width away.

If X scaling is set such that the left or right axis boundary falls outside the X range of the available data, the trace is shown correctly on that portion of the display where it belongs.

For Vector displays (I-Q and Constellation) the X axis is actually perpendicular to the screen, and the screen's horizontal axis is used for the real part of the Y values. In this case, the X scaling can still be used to only display a portion of the data. In the case of the X reference position, left means the least positive or most negative X value, and right means the most positive or least negative value. For example, when looking at a 10 ms time record of a QPSK signal, you could set the X reference position to left, the X reference value to 4 ms and the X width to 1 ms in order to see just the portion of the signal between 4 and 5 ms . This same portion would be shown if IQ format were chosen (even though the time axis is not visible in this case).

For Symbol tables, which are not graphed but displayed in alphanumerics, X scaling can also be used to display a portion of the complete data. For example, you can set the X reference position to left, the X reference value to 20 symbols, and the X width to 10 symbols to see symbols 20 through 30 . If then change the X reference position to center, you will see symbols 15 through 25 , and if you change the X reference position to right you will see symbols 10 through 20.

Annotation for the X axis is just below the grid on the left and right side. It is based on whether the X Scaling is Auto or Man. If it is Auto, then the left side is annotated with either "Center" or "Start", and the right side is annotated with either "Span" or "Stop" followed by the appropriate numbers and units. The Center/ Span pair is only used for Spectrum or PSD traces, and only if the Freq Annotation property is Center/Span (see Freq Annotation under the FREQ key).

Start - 1 ms

If X Scaling is Man, the annotation for the left side is "Left|Ctr|Right <x_reference_value> <unit>" (depending on the X reference position), and on the right side the annotation is "Width <x_width> <unit>". Shown below is an illustration of two of these manual X scale annotations:

Common Measurement Functions 2

For Vector displays, the X axis annotation is replaced by annotation for the real part of the Y value, each annotation consisting of number followed by a unit (usually volts).

Key Path	SPAN X Scale
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Select Trace

This function is a duplicate of the same function found on the Trace/Detector menu. See the description there for details. It is placed here to allow you to conveniently choose which trace the X scaling applies.

Key Path	SPAN X Scale, \mathbf{x} Axis Scaling
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00

Modified at S/W Revision	A. 02.00

X Scale

If this function is set to Auto, it causes the trace to display all available trace data. (Exception: the display of the outer edges of a spectrum which may contain aliases is governed by the All Frequency Points function setting - see below.). The annotation is updated as needed, but the X Reference Value and X Width keys are grayed out and not updated. When this function is set to Man, the X Reference Value and X Width softkey readbacks are updated with the current values.

Key Path	SPAN/XScale								
Mode	VSA, LTE, LTETDD, IDEN								
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk	
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:X[:SCALe]:COUPle OFF	ON	0	1 :DISPlay:<meas>:TRACe[1]	2	3	4:X[:SCALe]:COUPle?```
Example	:DISP:VECT:TRAC1:X:COUP ON DISP:VECT:TRAC1:X:COUP?								
Couplings	Forced to Man if X Reference Value or X Width is set by user.								
Preset	1								
State Saved	Saved in instrument state.								
Range	Auto \| Man								
Initial S/W Revision	Prior to A. 02.00								
Modified at S/W Revision	A.02.00								

X Reference Value

This function controls the X value of the selected trace at the chosen X Reference Position (see below). It has no effect on hardware input settings.

Key Path	SPAN/XScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	$:$ DISPlay :<meas> :TRACe[1]\|2	3	4:X[:SCALe] :RLEVel <real> $:$ DISPlay: <meas> :TRACe[1]\|2	3	4:X[:SCALe] :RLEVel?			
Example	DISP:VECT:TRAC:X:RLEV 1e9 DISP:VECT:TRAC:X:RLEV?							

Common Measurement Functions 2

Couplings	If X Scale is set to Auto, the X Reference Value is determined by the trace data and this key is grayed out.
Preset	Depends on trace
State Saved	Saved in instrument state.
Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

X Width

This sets the width of the X axis that is displayed for the selected trace. The X width may be set less than the Span for frequency-domain traces, allowing you to zoom in on just a portion of the measured values. Likewise it may be less than time span covered by time-domain data This plus the X Reference Value and X Reference Position control the range of X values that may be displayed on a trace. For example, if the X Reference position is Center, the X Reference value is 1 GHz and the X Width is 20 MHz .

Key Path	SPAN/XScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	:DISPlay:<meas>:TRACe[1]\|2	3	4:X[:SCALe]:SPAN <real> :DISPlay:<meas>:TRACe[1]\|2	3	4:X[:SCALe]:SPAN?			
Example	DISP:VECT:TRAC:X:SPAN 10e6 DISP:VECT:TRAC:X:SPAN?							
Couplings	If X Scale is set to Auto, the X Width is determined by the trace data and this key is grayed out.							
Preset	Depends on trace							
State Saved	Saved in instrument state.							
Min	$-9.9 \mathrm{E}+37$							
Max	$9.9 \mathrm{E}+37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

X Reference Position

This determines the position from which the X scaling is calculated for the selected trace. It may be set to
the left side, center, or right side of the grid.

Key Path	SPAN/XScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:X[:SCALe]:RPOSition LEFT	CENTer	RIGHt :DISPlay:<meas>:TRACe[1]	2	3	4:X[:SCALe]:RPOSition?```
Example	DISP:VECT:TRAC1:X:RPOS LEFT DISP:VECT:TRAC1:X:RPOS?							
Couplings	If X Scale is set to Auto, the X Reference Position is determined by the trace data and this key is grayed out.							
Preset	CENT							
State Saved	Saved in instrument state.							
Range	Left\|Ctr	Right						
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

All Frequency Points

Spectrum trace data (and PSD) are based on the FFT algorithm. By default, the outer edges of the spectrum are not displayed because they may show spurious results that are aliases of real signals that are not completely filtered out by the IF filter. For example, in the case of a 1024 point FFT only 801 points are displayed. If you want to view the additional FFT points at the edges of spectral displays, turn this function on. It is global to all traces, not specific to a single trace.

Key Path	SPAN/XScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: :DISPeas> : AFPoints OFF\|ON	0	1 $:<$ meas $>:$ AFPoints?					
Example	DISP:VECT:AFP ON DISP:VECT:AFP?							
Notes	ac							
Couplings	Only applies if trace is showing Spectrum or PSD results.							
Preset	OFF							

Common Measurement Functions 2

State Saved	Saved in instrument state.
Range	On \| Off
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Freq Annotation

This controls how Spectrum and PSD traces are annotated when their X Scale is set to Auto. If Freq Annotation is set to Center/Span, the X -axes on windows containing frequency domain traces are labeled with the center frequency on the left and the span on the right. If the Freq Annotation is set to Start/Stop, then the start and stop frequencies appear in place of center and span. If the X Scale is manual, then this annotation style does not apply.

Key Path	SPAN/XScale							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay : <meas> : FANNotation CSPan\|SSTop $:$ DISPlay : <meas $>:$ FANNotation?							
Example	DISP:VECT:FANN CSP DISP:VECT:FANN?							
Preset	CSP							
State Saved	Saved in instrument state.							
Range	Center/Span \mid Start/Stop							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Copy X Scale

This front-panel only function copies the following X scaling information from the selected trace to another:

- X reference Position
- X Reference Value
- X Width
- X Scale (Auto/Man)

Key Path	SPAN X Scale, X Axis Scaling
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Sweep/Control

This key displays a menu allowing you to control time-related measurement parameters, and to pause or resume the measurement.

Key Path	Front Panel
Mode	VSA
Initial S/W Revision	A. 01060 or later

Main Time

This key allows you to control the length of the overall time record used in the measurement. Note that the Gate function (see below) allows you to analyze only a portion of the displayed Main Time. Time length and Res BW are related by the following equation:

Res BW = ENBW / T
where ENBW is the normalized effective noise bandwidth of the Window (see the FFT Window topic under BW for more details). and T is the time record length (in seconds).

Therefore, if you change Main Time, the Resolution bandwidth must also change, and vice versa.
Time record size (in sample points) can vary between 16 points and the full FFT size used for spectrum calculations. The FFT size is indirectly chosen by setting Freq Points (see below) and is equal to (Freq Points - 1)* 1.28.

Main Time length (in seconds) is the time record size times the sample period. The sample period for the Main Time result is $1 /\left(1.28^{*}\right.$ Span).

Limits:
The maximum Main Time length is:
Max FFT size / (1.28 * Span) $=(409600) /$ Span
FFT size $/(1.28 *$ Span $)=($ Freq Points -1$) /$ Span
if Freq points state parameter is set to Auto
if Freq points parameter is manually set

Note that the minimum Res BW is related to maximum Main Time length.
The minimum Main Time length is
16 points / (1.28 * Span) = 12.5/Span

Common Measurement Functions 2

See Res BW and Res BW Coupling sections for details on couplings that can change Main Time length due to Res BW changes.

Key Path	Sweep Control
Mode	VSA
Measurement	<meas>:=VECTor\|ADEMod
Remote Command	$[:$ SENSe $]:<m e a s>: S W E e p: T I M E ~<t i m e>~$ $[: S E N S e]:<m e a s>~: ~ S W E e p: T I M E ? ~$
Example	VECT:SWE:TIME 3 MS VECT:SWE:TIME?
Notes	This key is not available in measurements other than Vector or Analog Demod. The annotation is shown, however. In other measurements the time length is determined by number of symbols.
Couplings	Affected by Res BW, Span, Freq Points, and Window. See Res BW and Res BW coupling sections for details.
Preset	12.75 e -6
State Saved	Saved in instrument state.
Min	$-9.9 e 37$ Max Initial S/W Revision

Pause / Resume

Pauses or resumes acquisition at the end of the current time record acquisition.
For more information see the Measurement Functions, Sweep/Control for a description of this function.

Key Path	Sweep Control
Mode	VSA
Initial S/W Revision	A. 01060 or later

Abort

This key is a duplicate of the Abort key in the Input/Output, Data Source menu.

Gate

This key accesses a menu of time gating control functions. Time gating lets you isolate a portion of a Main Time record to be used for downstream spectrum and statistical analysis (instead of the whole time record). The gate position may be changed during a stopped measurement and the instantaneous gate time and spectrum traces update immediately. Averages are restarted when gate properties change. The windowing function used in gated measurements is the same as non-gated measurements.

For more information see the Measurement Functions, Sweep/Control, Gate for a description of this function.

Key Path	Sweep Control
Mode	VSA
Initial S/W Revision	A.01060 or later

Gate

This Boolean softkey turns time gating on or off

Key Path	Sweep/Control		
Mode	VSA		
Measurement	<meas $>:=$ VECTor\|ADEMod		
Remote Command	$[:$ SENSe $]:<m e a s>:$ SWEep :EGATe:STATe OFF\|ON	0	1 $[:$ SENSe $]:<m e a s>: S W E e p: E G A T e: S T A T e ? ~$
Example	VECT:SWE:EGAT:STAT ON VECT:SWE:EGAT:STAT?		
Preset	0		
State Saved	Saved in instrument state.		
Initial S/W Revision	A.01060 or later		

Gate Length

This adjusts the time between the beginning and the end of the gate.

Key Path	Sweep/Control
Mode	VSA
Measurement	<meas $>:=$ VECTor\|ADEMod
Remote Command	$[:$ SENSe $]:<m e a s>~: S W E e p: E G A T e[: S P A N] ~<t i m e>~$ $[: S E N S e]:<m e a s>~: S W E e p: E G A T e[: S P A N] ? ~$
Example	VECT:SWE:EGAT 2 MS VECT:SWE:EGAT?
Couplings	Gate length and delay are limited so that the gate always falls within the current time record. If the time record length decreases, the gate delay is limited first, then the gate length.
Preset	$1.28125 e-6$
State Saved	Saved in instrument state.

Common Measurement Functions 2

Min	16 time samples
Max	Time record length
Initial S/W Revision	A.01060 or later

Gate Delay

This adjusts the time between the start of the time record and the beginning of the gate .

Key Path	Sweep/Control
Mode	VSA
Measurement	<meas>:=VECTor\|ADEMod
Remote Command	$[:$ SENSe $]:<m e a s>: S W E e p: E G A T e: ~ D E L a y ~<t i m e>~$ $[: S E N S e]:<m e a s>~: ~ S W E e p: E G A T e ~: ~ D E L a y ? ~$
Example	VECT:SWE:EGAT:DEL 500 US VECT:SWE:EGAT:DEL?
Couplings	Gate length and delay are limited so that the gate always falls within the current time record. If the time record length decreases, the gate delay is limited first, then the gate length.
Preset	0
State Saved	Saved in instrument state.
Min	0
Max	Time record length - gate length
Initial S/W Revision	A.01060 or later

Freq Points

By default, the analyzer chooses the number of Freq Points displayed in Spectrum or PSD displays, depending on the Res BW or Main Time length chosen. This softkey allows you to manually enter the number of displayed frequency points. Auto mode is recommended. The number of Freq Points is related to the number of FFT points used in spectrum calculations (which is always a power of 2).

Freq Points $=($ FFT points $) / 1.28+1$
Note that if All Frequency Points is turned on for a selected trace, then all computed FFT points are shown. (See SPAN/X scale, All Frequency Points.)

Key Path	Sweep Control
Mode	VSA
Measurement	<meas>:=VECTor\|ADEMod

| Remote Command | [:SENSe]:<meas>:SWEep:POINts <integer>
 [:SENSe]:<meas>:SWEep:POINts?
 [:SENSe]:<meas>:SWEep:POINts:AUTO OFF\|ON|0|1
 [:SENSe]:<meas>:SWEep:POINts:AUTO? |
| :---: | :---: |
| Example | VECT:SWE:POIN 801
 VECT:SWE:POIN?
 VECT:SWE:POIN:AUTO ON
 VECT:SWE:POIN:AUTO? |
| Notes | Keyboard entry or setting this by SCPI forces state to manual. Any entry other than a valid value is rounded up to the next available value (or limited to the maximum).
 This key is not shown in measurements other than Vector or Analog Demod. |
| Couplings | See Res BW Coupling section See Res BW Coupling section |
| Preset | $\begin{aligned} & 801 \\ & 1 \end{aligned}$ |
| State Saved | Saved in instrument state. |
| Range | $\begin{aligned} & \text { 51\|101\|201\|401\|801\|1601\|3201\|6401\|12801\|25601\|51201\|102401\|204801\|4096 } \\ & 01 \end{aligned}$ |
| Initial S/W Revision | A. 01060 or later |

Trace/Detector

This key accesses a menu allowing you to select various trace parameters for all VSA based measurements.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Select Trace

This softkey brings up a menu that allows you to select the trace that is to receive the action of all successive trace-specific commands like scaling, assignment of trace data, etc. The selected trace is outlined in green and is always made visible. While the Select Trace menu is showing, Each visible trace is annotated in the middle with its own trace number, as shown: below. The trace number annotations disappear when any other menu is showing.

Common Measurement Functions 2

Grid 2x2 layout showing trace annotations when Trace Select dialog is active
This softkey also appears in the X and Y scaling menus. There is only one selected trace at any time. If you change which trace is selected, that change is reflected in this softkey/menu wherever it appears. Other ways to select a trace include use of the Next Window key, clicking within a trace window with a mouse cursor, and issuing a trace-specific SCPI command.

There is no SCPI command associated with this function. Instead, SCPI commands that are trace-specific have an index on the TRACe node that determines the selected trace. Using such a command has the side effect that the trace addressed by the SCPI command becomes the selected trace for any front panel interaction.

Key Path	Trace/Detector (also Span I X Scale or AMPTD ? Y Scale)				
Mode	VSA, LTE, LTETDD, IDEN				
Notes	No SCPI. Front panel only.				
Couplings	Affects any trace-specific commands				
Range	Trace 1\|Trace 2	Trace 3	Trace 4	Trace 5	Trace 6
Readback Text	Trace <n>				

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data

This accesses a menu of Trace data choices for the selected trace. A VSA Measurement may produce many different results from a single scan; either a graph or a table. In addition, the ACP and OBW functions can be enabled on any trace showing a frequency-domain result, and produce Summary table results. Any of these results may be assigned to a trace and displayed. See the individual measurement PDs for a list of all Trace results that are available for each measurement.

The following Trace Data types are available in all measurements:

Soft Key Name	SCPI string form
No Data	"No Data"
Spectrum	"Spectrum1"
Inst Spectrum	"Raw Main Time1"
Raw Main Time	"Obw Summary Trc1"
OBW Summary for Trace	Trc2"
OBW Summary for Trace 2	"Obw Summary
OBW Summary for Trace 3	TObw Summary OBW Summary for Trace 4 "Obw Summary Trc4"
ACP Summary for Trace 1	"Acp Summary Trc1"
ACP Summary for Trace 2	" Acp Summary Trc2"
ACP Summary for Trace 3	" Acp Summary Trc3"
ACP Summary for Trace 4	" Acp Summary Trc4"

The following Data Registers are also available for display if there are traces stored in them (see Trace/Detector, Copy to Data Register and Recall, Data, Trace)
"D1", "D2", "D3", "D4", "D5", and "D6"

Key Path	Trace/Detector, Data							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

Common Measurement Functions 2

| Remote Command | $:$ DISPlay:<meas>:TRACe[1]\|2|3|4:FEED <string>
 $:$ DISPlay: <meas>:TRACe[1]\|2|3|4:FEED? |
| :--- | :--- |
| Example | DISP:VECT:TRAC1:FEED "Spectrum1"
 DISP:VECT:TRAC1:FEED? |
| Preset | Depends on trace number and measurement |
| State Saved | Saved in instrument state. |
| Range | see table above and in individual Measurement PDs |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

The complete list of Trace Data names that may be assigned using the above SCPI can be obtained by using the following SCPI query:

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	:CALCulate:<meas>: DATA[1]\|2	3	4:NAMes?					
Example	CALC:VECT:DATA:NAM?							
Notes	Query only. Returns a comma-separated list of trace data names that may be used in DISPlay:<meas>:TRACe[1]\|2	3	4:FEED "<string>". The list is the same regardless of trace index.					
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Spectrum

This key assigns the selected trace to display the Spectrum data result.
The Spectrum trace data displays the spectrum of the selected channel. The spectrum computation displays frequency on the x axis and amplitude on the y axis.

The following formulas show how the analyzer calculates spectrum information:

```
Key: F = Fast Fourier Transform (FFT)
    AF = Averaged spectra
    AT = Averaged time
        f = Instantaneous spectra
        t = Instantaneous time
    W = Windowing function
        n = Average number
        c = Correction trace (from calibration)
    f[n] }\mp@subsup{}{}{2}=f[n]\times\mathrm{ conjugate(f[n])
        x= multiplication
```

No Average	$f=F(W \times t) \times \mathrm{c}$
rms Average	$A F[n]=\frac{1}{n} \operatorname{sum}\left(f[n]^{2}\right)$
rms Exponential AF[n]Average	$A F[n]=\frac{1}{n}\left(f[n]^{2}\right)+\frac{n-1}{n} A F[n-1]$ where $1 \leq \mathrm{n} \leq$ number of averages
Continuous Peak Hold Average	$A F[n]=\operatorname{MAX}\left(A F[n-1], f[n]^{2}\right)$
Time Average	$\begin{aligned} & A F[n]=F\{W \times A T[n]\} \times c \\ & \text { where } A T[n]=\frac{1}{n} \operatorname{sum}(t[n]) \end{aligned}$
Time Exponential Average	$\begin{aligned} & A F[n]=F\{W \times A T[n]\} \times c \\ & \text { where } A T[n]=\frac{1}{n} t[n]+\frac{n-1}{n} A T[n-1] \end{aligned}$ and $1 \leq n \leq$ number of averages

As shown in the previous formulas, the spectrum may be a linear spectrum or power spectrum as follows:

If the average is...	then the spectrum is...
Averaging OFF	Linear
rms Average	Power
Continuous peak	Power

Linear spectra contain magnitude and phase (real and imaginary) information. Power spectra contain only magnitude (real) information. This occurs with rms averages, for instance, because the results of the

Common Measurement Functions 2

FFT are squared. Remember that the FFT yields both real and imaginary information. When the analyzer squares the results of the FFT, the imaginary part becomes zero.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Inst Spectrum

This key assigns the selected trace to display the Inst. Spectrum data result.
Inst Spectrum trace data displays the instantaneous spectrum for the selected input channel.
Instantaneous spectrum is computed before data is averaged, which allows you see spectrum data before the data is averaged with other spectrum data.

NOTE
 Inst Spectrum is not available when analog or digital demodulation is selected.

The following block diagram shows where, in the block diagram, spectrum and instantaneous spectrum are created.

This measurement calculation is useful for these types of averaged measurements:

- rms
- rms exponential
- Continuous peak hold

If averaging is off, the spectrum and instantaneous spectrum display the same information.
See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Main Time

This key assigns the selected trace to display the Main Time data result.

Main Time versus Gate Time

The term is used to differentiate between the "main" time record and the "gate" time record when time gating is on.

A time record is the basic building block of the Fast Fourier Transform (FFT). The FFT takes the time-domain information in the time record and transforms it into the frequency domain.

When time gating is on, you can identify a portion of the main time-record to be used by the FFT. The term "main time-record" identifies the entire time record; the term "gate time-record" identifies the portion selected by the gate.

Selecting the Main Time trace data displays the entire time record--the main time-record. Selecting the Gate Time trace data displays that portion of the main time-record marked by the gate--the gate time-record.

The following block diagram shows the blocks that create main time and gate time.
Note that the Analog Demodulation block is available only when analog demodulation is enabled

There are many reasons why you may want to view the main time record. Here are just a few:
To verify that there is an input signal.
To see the characteristics of the input signal.
To help in manually setting the input range.

Time Records and Span

If you set the analyzer to full span, the time data you see is the actual input time-record. This is raw input data--the signal from which all subsequent measurements are based.

If you set the instrument to measure a specific bandwidth (something less than full span), the time data you see is the raw input data after it has been filtered (to provide alias protection) and decimated (to obtain the desired span).

Time Records and Averaging

If rms or continuous peak-hold averaging is on, the analyzer displays the most recent time record. The analyzer does not show an averaged time waveform, because all averaging is done after the time data has

Common Measurement Functions 2

been transformed to the frequency domain.
If time averaging is on, the analyzer displays the averaged time-record. In other words, the time record has been averaged with previous time records.

How the Analyzer Displays the Time Record

It is important to remember that although the time record looks like an oscilloscope display, the analyzer is not a digital oscilloscope.

The time record represents samples of a waveform. The samples have enough information to accurately reconstruct the input signal--but the human eye may not properly perform the reconstruction. In fact, for frequencies that are higher than about ten percent of the frequency span, there will be noticeable visible distortion.

The analyzer's anti-alias filters will cause some ringing or distortion of square waves or transients when viewed in the time domain.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Inst Main Time

This key assigns the selected trace to display the Inst Main Time data result.
Inst Main Time trace data displays the instantaneous time-domain data for the selected input channel.
Note that Inst Main Time is not available when analog or digital demodulation is selected.
The following block diagram shows how Instantaneous Main Time is derived.

Notice that Instantaneous Main Time shows you time data before time averaging. If time averaging is off, Instantaneous Main Time is identical to Main Time.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data

Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Gate Time

This key assigns the selected trace to display the Gate Time data result.
Gate Time trace data displays the selected channel's gate time-record.
Note that Gate Time is not available when analog or digital demodulation is selected.
If time gating is on, Gate Time displays the portion of the main time-record marked by the gate-- this portion is called the gate record (if time gating is off, Gate Time displays nothing).

As a reminder, if time gating is on, the Fast Fourier Transform (FFT) uses the gate time-record, which can be all or a portion of the main time-record, to compute frequency information such as spectrum, frequency response, coherence, and correlation.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Raw Main Time

This key assigns the selected trace to display the Raw Main Time data result.
Raw Main Time is the raw data read from the input hardware or playback file. It is similar to "Main Time" on page 963 with the following exceptions:

- This data has not had time corrections applied, so it displays a "CAL?" trace indicator.
- The data has not gone through the analyzer's software resampling filters, so is generally not sampled at the specified sample rate.
- The data has a wider bandwidth than the measurement span would indicate.

Raw Main Time data is useful in the following situations:

- When you use Channel, IF Magnitude, or Magnitude trigger types, the input hardware detects the trigger, so Raw Main Time sometimes gives a better indication of what caused the trigger.
- When you play back a recording, the Raw Main Time measurement data allows you to see exactly the samples that are saved in the recording, with no filtering applied or settling removed.
See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data

Common Measurement Functions 2

Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

PSD (Power Spectral Density)

This key assigns the selected trace to display the Power Spectral Density (PSD) data result.
PSD trace data displays the power spectral density (PSD) of the selected channel.
The definition of PSD yields y-axis units of Vpk2/Hz and x-axis units of frequency:

PSD is used for noise measurements. It shows the power density of a signal as a function of frequency. In general, noise may have any arbitrary frequency content, resulting in a variety of possible PSD shapes. Noise that has equal power density at all frequencies is called white noise:

The definition of PSD is power per Hertz. In other words, power is divided by the measurement bandwidth, which in this analyzer is the resolution bandwidth (ResBW), as follows:

$$
\frac{V_{p k}{ }^{2}}{R B W}=\frac{V p k^{2}}{H z}
$$

Units of Vpk2/Hz assumes the signal is referenced to 1 ohm. That is, because no resistance is specified, the signal is interpreted as a voltage across a one ohm resistor, with the power in the resistor equal to Vpk2.

You can select units of $\mathrm{dBm} / \mathrm{Hz}$ to take into account the analyzer's input impedance. PSD defaults to these units. The analyzer calculates $\mathrm{dBm} / \mathrm{Hz}$ as follows:

$$
\frac{\mathrm{dBm}}{\mathrm{~Hz}}=10 \log \left[\frac{\frac{\mathrm{Vrms}^{2}}{Z} \times 1000}{\text { RBW }}\right]
$$

where:

```
RBW = resolution bandwidth (Hz)
    Z = input impedance
```

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Auto Correlation

This key assigns the selected trace to display the autocorrelation data result.
Auto Correlation trace data displays the autocorrelation for the selected input channel. Autocorrelation is a form of correlation, a measure of the similarity between two signals.

Note that Auto Correlation is not available when digital demodulation is selected.

Tips

Use ac coupling only. Correlation measurements are disturbed by dc offsets in the signal.
Some types of averaging may be useful -- rms averaging does not affect correlation measurements, but you can use time averaging to reduce noise, if you can provide a consistent trigger. However, averaging is usually unnecessary to make good correlation measurements.

Use appropriate triggering and trigger delays. This is especially true for time averaging.
Use a random noise source for delay measurements. Correlation measurements provide the ability to resolve time differences between waveforms that appear to be random.

Waveforms on the correlation trace may not appear as they do in the time trace. This is particularly noticeable when you are using correlation to extract synchronous signals from noise. The different shape of some waveforms is a direct result of the mathematical definition of correlation. For example, a correlated square wave appears as a triangle wave. It's important to remember that the period of the waveform is preserved even if the correlation waveform looks different.

To avoid wrap-around effects, correlation produces a time record one-half the length of the measurement time-record.

Common Measurement Functions 2

Theory of Operation

Autocorrelation is a form of correlation, a measure of the similarity between two signals. Correlation is performed by multiplying two signals together at each instant in time and summing all the products. If the signals are identical, every product is positive and the resulting sum is large.

If, however, the two signals are dissimilar, then some of the products are positive and some are negative. In this case, the final sum is smaller because the products tend to cancel.

Autocorrelation performs a time-shifted, "averaged" correlation on a single signal. The signal is correlated with time-shifted versions of itself. Furthermore, the products from each time-shift are averaged by dividing each final sum by the number of products contributing to it.

$$
\operatorname{Rxx}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \quad \text { intgrl }[\operatorname{conj}[x(t)] \times x(t+\tau)] d t
$$

where: $\mathrm{Rxx}=$ autocorrelation function
$\tau=$ amount of time shift
$\infty=$ infinity
$x(\tau)=$ signal to be correlated
intgrl = integration
conj $=$ conjugation
$\mathrm{T}=$ time
$\times=$ multiplication
That is, the autocorrelation function is found by taking a signal, multiplying it by the same signal displaced (tau) units in time, and averaging the product over all time.

Duality With the Power Spectrum

For simplicity and speed, this analyzer performs the autocorrelation operation by taking advantage of its duality with the power spectrum:
$\operatorname{Rxx}(\tau) \leftrightarrow G x x(f)$
Thus,

```
Rxx(\tau)= I IFFT [Gxx(f)]
=I FFT [conj(F[r < t] ) }\textrm{F}(\textrm{t})
```

```
where: \(I_{\text {FFT }}=\) Inverse FFT
    conj \(=\) conjugation
    \(x=\) multiplication
    \(r=\) half size of the rectangular window
    (thus the result is \(1 / 2\) the original time length)
```


When to use Auto Correlation

Auto correlation is useful for detecting echoes in a signal. For random noise, an echo appears as an impulse -- if there is more than one echo, you will see multiple peaks on the auto correlation trace. Keep in mind that an echo appears as an impulse only if the delayed signal has not been filtered. The impulse broadens as the original random noise signal is filtered -- in fact, the width of each peak is inversely
proportional to the bandwidth of the signal.
To determine the time delay (in seconds) of an echo, you can move the marker to the peak of the echo. Note that there is always a correlated peak at zero lag -- this peak marks the original excitation signal. Any other peaks let you know that the excitation signal also appeared at another time relative to the original signal. The amplitude value at the zero lag point is the total power in the time record.

This function is also useful for isolating low-level periodic signals from noise. A sine wave signal shows up as a sine wave in auto correlation. A square wave signal shows up as a triangular wave of the same frequency.

Auto correlation is a single-channel measurement. If you have the original signal on one channel and the delayed version on another, use cross correlation.

Auto Correlation and Averaging

The following formulas show how the analyzer calculates auto correlation for different averaging functions:

Key: F = Fast Fourier Transform (FFT)
AC = Averaged correlation
AT = Averaged time
$\mathrm{t}=$ Instantaneous time
c = Instantaneous correlation
$r=1 / 2$ width rectangular window
$x=$ multiplication
$\mathrm{n}=$ Average number
No Average $\mathrm{c}=\mathrm{I}(\operatorname{conj}(\mathrm{F}(\mathrm{r} \times \mathrm{t})) \times \mathrm{F}[\mathrm{t}])$
rms Average $\mathrm{c}=\mathrm{I}(\operatorname{conj}(\mathrm{F}(\mathrm{r} \times \mathrm{t})) \times \mathrm{F}[\mathrm{t}])$
rms Expon. c $=I(\operatorname{conj}(F(r \times t)) \times F[t])$
Average
Continuous
Peak Hold c = I (conj $(\mathrm{F}(\mathrm{r} \times \mathrm{t}) \mathrm{)} \times \mathrm{F}[\mathrm{t}])$
Average
Time $\mathrm{AC}[\mathrm{n}]=\mathrm{I}(\operatorname{conj}(\mathrm{F}(\mathrm{r} \times \mathrm{AT}[\mathrm{n}])) \times \mathrm{F}(\mathrm{AT}[\mathrm{n}]))$
Average
where: AT $[n]=\frac{1}{n} \operatorname{sum}(t[n])$
Time
Expon. $A C[n]=I(\operatorname{conj}(F(r \times A T[n])) \times F(A T[n]))$
Average
where: AT $[n]=\frac{1}{n} t[n]+\frac{n-1}{n}$ AT $[n-1]$
and: $1<\mathrm{n}<$ number of averages

Common Measurement Functions 2

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA
Initial S/W Revision	Prior to A.02.00

Statistical

This key accesses the Trace Data choices which show the statistical results: CCDF, CDF and PDF.

Key Path	Trace/Detector, Data
Mode	VSA

CCDF (Complementary, Cumulative Density Function)

This key assigns the selected trace to display the CCDF data result.
CCDF trace data displays the complementary, cumulative density function (CCDF) for the selected input channel.
The complementary, cumulative density function (CCDF) is a statistical-power calculation and can be performed only on time-domain data. As its name suggests, CCDF is the complement of CDF, and is defined as follows:

```
CDF(K) = Probability (x < K)
CCDF(K) = Probability (x }\geq\textrm{K}
```

CCDF provides better resolution than CDF for low probability signals, especially when log format is used for the y-axis.

The analyzer plots CCDF using units of percent (\%) for the y-axis and power (dB) for the x-axis. Power on the x -axis is relative to the signal average power, so 0 dB is the average power of the signal. Therefore, a marker readout of

Trace A Marker 2 dB 12 \%
means there is a 12% probability that the signal power will be 2 dB or more above the average power.

CCDF Calculation:

Calculate the RMS value for all measured samples; this becomes the 0 dB point at the left end of the x -axis.
Normalize all samples to the RMS value in units of dB .
Determine which x-axis bin each sample belongs in between 0 and 20 dB .
Calculate the total number of samples that are greater than or equal to each x -axis bin and plot as a percent of the number of samples measured.

Samples Used in the Power Measurement

For the Demod Off and Analog demod modes, the analyzer computes CCDF using all samples in the current time record (all points in the active trace). Each successive time record adds additional samples to the CCDF measurement.

For WLAN - OFDM and -DSSS demod modes, the analyzer computes CCDF using all samples specified within the measurement interval.

Restarting the Power Measurement

Selecting CCDF, restarting the measurement, or changing most measurement parameters restarts the CCDF measurement. For example, changing the range or center frequency resets the number of samples used in the CCDF measurement to zero and restarts the CCDF measurement.

Tips

Note the following when making CCDF measurements:
For best results, set the analyzer's displayed frequency span to include all the energy of your signal. In other words, make sure the displayed frequency span includes the entire bandwidth of the measured signal.

The CCDF measurement does not restart:
After a calibration
After you continue a paused measurement
Many channel specific changes restart the CCDF measurement on both channels, such as changing the gate delay, or input coupling.

The analyzer displays DATA? if the average power drifts 8 to 10 dB from the average power measured in the first time record. For example, the analyzer would display DATA? if you measured a transmitter signal that was off when the CCDF measurement started but then turned on later in the measurement.

CCDF measurements are disabled during time averaging.
See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

CDF (Cumulative Density Function)

This key assigns the selected trace to display the CDF data result.
CDF trace data displays the Cumulative Density Function (CDF) for the selected input channel. CDF is computed by integrating the PDF (Probability Density Function). CDF is explained in online help for the CCDF trace data for further details, see that topic.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Common Measurement Functions 2

PDF (Probability Density Function)

This key assigns the selected trace to display the PDF data result.
PDF trace data displays the Probability Density Function of the selected channel. PDF indicates the probability that a given level has occurred.

PDF is equivalent to a normalized histogram. A histogram shows how the amplitude of a signal is distributed between its maximum and minimum values. Amplitude is displayed on the X-axis, and number of counts on the Y-axis.

The number of averages for a histogram determines the number of counts in the histogram; in other words, how many records are measured $3 / 4$ the records are not "averaged". If averaging is off or if exponential averaging is selected, the measurement continues indefinitely. Keep in mind that the accuracy of the histogram is dependent on the frequency span, time-record length, and number of averages (if averaging is on).

Histograms are used for such things as determining the statistical properties of noise and monitoring the performance of electromechanical positioning systems.

PDF trace data is normalized by multiplying the number of averages by the number of points in the time record, then dividing this value by the DV spacing on the X -axis. The probability of a signal falling between two points is equal to the integral of the curve between those points.

PDF trace data displays the number of points used in its computation above the trace (Pts:). It also displays the average level (Avg:) above the trace.

See also Trace/Detector, "Data" on page 969.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP (Adjacent Channel Power)

This key provides access to ACP summary table data. These results are available when the ACP function is enabled for particular trace, and allow you to display the results in another trace.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP Summary for Trace 1

This key assigns the selected trace to display trace to display results for ACP function on Trace 1.
See also "ACP Setup" on page 996

Key Path	Trace/Detector, Data, ACP
Mode	VSA, LTE, LTETDD, IDEN

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP Summary for Trace 2

This key assigns the selected trace to display trace to display results for the ACP function on Trace 2.
See also "ACP Setup" on page 996

Key Path	Trace/Detector, Data, ACP
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP Summary for Trace 3

This key assigns the selected trace to display trace to display results for the ACP function on Trace 3.
See also "ACP Setup" on page 996

Key Path	Trace/Detector, Data, ACP
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP Summary for Trace 4

This key assigns the selected trace to display trace to display results for the ACP function on Trace 4.
See also "ACP Setup" on page 996

Key Path	Trace/Detector, Data, ACP
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP Summary for Trace 5

This key assigns the selected trace to display trace to display results for the ACP function on Trace 5.
See also "ACP Setup" on page 996.

Key Path	Trace/Detector, Data, ACP
Mode	VSA

Common Measurement Functions 2

ACP Summary for Trace 6

This key assigns the selected trace to display trace to display results for the ACP function on Trace 6.
See also "ACP Setup" on page 996

Key Path	Trace/Detector, Data, ACP
Mode	VSA

OBW (Occupied Bandwidth)

This key provides access to OBW summary table data. These results are available if the OBW function is enabled for particular trace, and allow you to display the results in another trace.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Summary for Trace 1

This key assigns the selected trace to display trace to display results for the OBW function on Trace 1.
See also: "OBW Setup (Occupied Bandwidth)" on page 1004

Key Path	Trace/Detector, Data, OBW
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Summary for Trace 2

This key assigns the selected trace to display trace to display results for the OBW function on Trace 2.
See also: "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path	Trace/Detector, Data, OBW
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Summary for Trace 3

This key assigns the selected trace to display trace to display results for the OBW function on Trace 3.

See also: "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path	Trace/Detector, Data, OBW
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Summary for Trace 4

This key assigns the selected trace to display trace to display results for the OBW function on Trace 4.
See also: "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path	Trace/Detector, Data, OBW
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Summary for Trace 5

This key assigns the selected trace to display trace to display results for the OBW function on Trace 5.
See also: "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path	Trace/Detector, Data, OBW
Mode	VSA

OBW Summary for Trace 6

This key assigns the selected trace to display trace to display results for the OBW function on Trace 6.
See also: "OBW Setup (Occupied Bandwidth)" on page 1004.

Key Path	Trace/Detector, Data, OBW
Mode	VSA

No Data

This key allows you to turn off trace computations. Measurement results are not computed unless assigned to a trace. No Data lets you increase measurement speed by turning off post-processing calculations that are not needed.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00

Common Measurement Functions 2

Modified at S/W Revision	A. 02.00

Format

This accesses a menu that allows you to choose the format of the selected trace. Any format may be assigned to any trace. For symbol tables and tabular data the format choice is ignored. If the data doesn't have defined symbol times, Constellation format is the same as I-Q, Eye formats are the same as Real or Imaginary, and Trellis format is the same as Unwrapped Phase.

The formats are:

Format name	Description
Log Mag (dB)	Data is converted to decibel units and shown on a linear Y axis
Linear Mag (Abs Value)	Magnitude of the data is shown on a linear Y axis
Real (I)	Real part of data is shown on a linear Y axis
Imaginary (Q)	Imaginary part of data is shown on linear Y axis
I-Q	Real part of data is shown on horizontal axis, imaginary part is shown on vertical axis, Independent variable (X axis) is normal to display
Constellation	Same as I-Q, but for data with symbols defined, only the symbol points are shown as dots with no connecting lines.
Wrap Phase	Phase of complex data, limited to ± 180 deg, is shown on Y axis
Unwrap Phase	Phase of complex data is shown "unwrapped", that is, without discontinuities. Not limited to ± 180 degrees.
I-Eye	Real part of data is shown with X axis segmented (generally into 2 symbol segments) and each segment is overlaid to show signal crossings at symbol boundaries
Q-Eye	Same as I-eye but imaginary part of data is shown
Trellis	Same as I-eye but uses unwrapped phase of data
Group Delay	Useful for frequency response displays. Shows the derivative of phase response with respect to frequency.
Log Mag (Linear Unit)	Displays data with a logarithmic Y axis, but marker read outs are in linear magnitude units.

Key Path	Trace/Detector, Format							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

| Remote Command | :DISPlay:<meas>:TRACe[1]\|2|3|4:FORMat
 MLOG\|MLINear|REAL|IMAGinary|VECTor|CONS|PHASe|UPHase|IE YE|QEYE|TRELlis|GDELay|MLGLinear
 :DISPlay:<meas>:TRACe[1]\|2|3|4:FORMat? |
| :---: | :---: |
| Example | DISP:DDEM:TRAC2:FORM MLIN DISP:DDEM:TRAC2:FORM? |
| Preset | Depends on trace and measurement |
| State Saved | Saved in instrument state. |
| Range | Log Mag (dB)\|Linear Mag (Abs Value)|Real (I) (Lin)|Imaginary (Q) (Lin)|I-Q|Constellation|Wrap Phase|Unwrap
 Phase\|I-Eye|Q-Eye|Trellis-Eye|Group Delay|Log Mag (Linear Unit) |
| Readback Text | Log Mag (dB)\|Linear Mag|Real (I)|Imaginary (Q)|I-Q|Constellation|Wrap Phase|Unwrap Phase|I-Eye|Q-Eye|Trellis-Eye|Group Delay|Log Mag |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Digital Demod Trace Setup

This key accesses a menu of settings that control certain elements of displays of digitally demodulated trace data.

Key Path	Trace/Detector
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Symbol Shape

For all time-domain displays except IQ diagrams, Symbol Shape lets you display dots, bars, or nothing (none) at symbol locations (if the trace contains demodulated time-domain data). This key allows you to select the symbol shape for the selected trace.

If you select bars, vertical lines (bars) are drawn from the baseline to the symbol location on the trace. The baseline is 0 for all traces that have coordinates other than $\log (\mathrm{dB})$. The baseline is the bottom of the trace box for traces that have $\log (\mathrm{dB})$ coordinates.

With IQ diagrams, displaying vertical bars is meaningless. Therefore, selecting bars displays dots in IQ diagrams.

With constellation diagrams, selecting none is the same as selecting bars--you cannot turn off the dots in a constellation diagram.

Key Path	Trace/Detector, Digital Demod Trace Setup
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

| Measurement | <meas>:=VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :DISPlay: <meas> :TRACe[1]\|2|3|4: DDEMod: SYMBol
 BARS\|DOTS|OFF
 $:$ DISPlay: <meas> : TRACe[1]\|2|3|4: DDEMod: SYMBol? |
| Example | DISP:DDEM:TRAC2:DDEM:SYMB DOTS
 DISP:DDEM:TRAC2:DDEM:SYMB? |
| Preset | BARS |
| State Saved | Saved in instrument state. |
| Range | Bars\|Dots|None |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Ideal State Shape

Digital Demodulation shows you the location of all ideal symbol states in an I-Q or constellation diagram. This key lets you choose between a cross, circle, or none to represent the ideal state on the selected trace.

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:DDEMod:SYMBol:SHAPe CIRCle	CROSs	OFF :DISPlay:<meas>:TRACe[1]	2	3	4:DDEMod:SYMBol:SHAPe?```
Example	DISP:DDEM:TRAC2:DDEM:SYMB:SHAP CIRC DISP:DDEM:TRAC2:DDEM:SYMB:SHAP?							
Preset	CIRC							
State Saved	Saved in instrument state.							
Range	Circle\|Cross	None						
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Ideal State Size

Determines the ideal state size, as a percentage of the maximum ideal state distance from the origin (the same way Error Vector Magnitude is defined). Ideal states are shown as circles or crosses in Vector and constellation diagrams, as determined by the Ideal State Shape setting.

The ideal state is where symbols occur if your signal is without error. Showing the ideal states gives a visual indication of the quality of your signal.

You can use this feature to determine if symbols have an EVM above a specified Value. For example, to see if any symbols have an EVM greater than 10%, set the state size to 10% and select Circle as the shape. Any symbols that fall outside of the circle (other than SYNC or PILOT symbols) have an EVM greater than 10%.

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay:<meas> :TRACe[1]\|2	3	4:DDEMod : SYMBol: SIZE <real> :DISPlay : <meas> : TRACe[1]\|2	3	4: DDEMod : SYMBol : SIZE?			
Example	DISP:DDEM:TRAC2:DDEM:SYMB:SIZE 10 DISP:DDEM:TRAC2:DDEM:SYMB:SIZE?							
Notes	Parameter is interpreted as a percent, e.g., if you want the ideal size to be 10\% send 10, not 0.1							
Preset	5							
State Saved	Saved in instrument state.							
Min	0.1							
Max	50							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Symbol Table Format

This allows you to choose the format in which symbol table data is displayed, when the modulation format encodes 4 or more bits per symbol. You may choose binary or hexadecimal. Binary symbol data is padded with leading zeros to make a multiple of 4 bits before conversion to hexadecimal. For example, for 16 QAM format, each 4-bit symbol will be displayed as 2 hex digits.

Binary Format: The symbol data bit format is binary and each character represents a binary digit. The number to the left of each row indicates the bit offset of the first bit in the row.

Hexadecimal Format: The symbol data bit format is hexadecimal and each character represents a hexadecimal digit. The number to the left of each row indicate the symbol offset of the first symbol in the row.

NOTE
There must be at least 4 bits/symbol to use the hexadecimal format, that is, symbols that have less than 4 bits/symbol will only be displayed in binary format regardless of the Symbol Table Format setting.

Common Measurement Functions 2

This parameter is valid only when:

- The active trace is a symbol table, and
- The current demodulation format supports hexadecimal, the demodulation format's bits/symbol is equal to or greater than four.

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:DDEMod:SYMBol:FORMat HEXadecimal	BINary :DISPlay:<meas>:TRACe[1]	2	3	4:DDEMod:SYMBol:FORMat?```	
Example	DISP:DDEM:TRAC2:DDEM:SYMB:FORM BIN DISP:DDEM:TRAC2:DDEM:SYMB:FORM?							
Preset	HEX							
Range	Hex \| Binary							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Eye Length

This property controls how wide (in symbol periods) the eye and trellis diagrams are, for the selected trace.

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas> : TRACe[1]\|2	3	4: DDEMod:EYE:COUNt <real> :DISPlay: <meas> : TRACe[1]\|2	3	4:DDEMod:EYE:COUNt?			
Example	DISP:DDEM:TRAC2:DDEM:EYE:COUN 3 DISP:DDEM:TRAC2:DDEM:EYE:COUN?							
Preset	2							
State Saved	Saved in instrument state.							
Min	0.1							
Max	40							
Initial S/W Revision	Prior to A.02.00							

Modified at S/W Revision	A.02.00

Time Unit

This property lets you select the time units that are applied to x-axis annotations and marker readouts for the selected trace, whenever it is assigned data with (demodulation) symbol information. The available measurement units are sym (symbols) or sec (seconds).

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas> :TRACe[1]\|2	3	4: DDEMod : UNIT:TIME SEC\|SYMBol $:$ DISPlay: $<m e a s>:$ TRACe[1] \|2	3	4: DDEMod : UNIT:TIME?			
Example	DISP:VECT:TRAC2:DDEM:UNIT:TIME SYMB DISP:VECT:TRAC2:DDEM:UNIT:TIME?							
Preset	SYMB							
State Saved	Saved in instrument state.							
Range	sym\|sec							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Freq Unit

This property lets you select the frequency units that are applied to x -axis annotations and marker readouts for the selected trace, whenever it is assigned data with (demodulation) carrier information. The available measurement units are carrier or Hz .

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay: <meas> :TRACe[1]\|2	3	4: DDEMod : UNIT: FREQuency CARRier \|HZ $:$ DISPlay : <meas> :TRACe[1]\|2	3	4: DDEMod : UNIT: FREQuency?			
Example	DISP:VECT:TRAC2:DDEM:UNIT:FREQ CARR DISP:VECT:TRAC2:DDEM:UNIT:FREQ?							
Preset	CARR							

Common Measurement Functions 2

State Saved	Saved in instrument state.
Range	carrier $\mid \mathrm{Hz}$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Avg Line

This controls whether or not the average line is visible on certain demodulation analysis traces such as Error Vector Time and Error Vector Spectrum in OFDM related modulation analysis measurements. These traces have 2-dimensional domains; typically subcarriers (frequency) and symbol times. Since the result can only be shown with one of these dimensions on the x-axis, the other dimension is placed on the z-axis. Since all the z-axis values are overlapped, an average is calculated for all z values at each x value and the average is normally displayed as a line in front of trace. The average line display can be turned on or off using this control.

Key Path	Trace/Detector, Digital Demod Trace Setup							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	: DISPlay : <meas> : TRACe[1]\|2	3	4: DDEMod: ALINe OFF	ON	0	1 :DISPlay: <meas> : TRACe[1]\|2	3	4: DDEMod :ALIN?
Example	DISP:W11A:TRAC:DDEM:ALIN OFF							
Preset	1							
State Saved	Saved in instrument state.							
Initial S/W Revision	A.03.00 or later							

Copy to Data Register

This key accesses a menu of immediate execute keys, each of which copies the selected trace to a particular data register. Data registers can be displayed in any trace. They are measurement global, so you can copy data to a register while in the Digital Demod measurement and view it later while in the Vector measurement. Data registers are cleared when the VSA Application is exited and reentered, but not when you change Modes and return.

Key Path	Trace/Detector							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay:<meas>:TRACe[1]\|2	3	4:COPY D1	D2	D3	D4	D5	D6
Example	DISP:VECT:TRAC:COPY D1							

Readback Text	Last: <date_time>\|Empty
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

The following SCPI provides means to determine if a Data Register is empty, and to erase the data from any or all Data Registers.

Key Path	SCPI only
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	:CALCulate:DATA:REGister [1] $\|2\| 3\|4\| 5 \mid 6:$ EMPTy?
Example	:CALC:DATA:REG2:EMPT?
Notes	Query only: returns 1 if a Data Register has no trace data assigned to it.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Key Path	SCPI only				
Mode	VSA, LTE, LTETDD, IDEN				
Remote Command	:CALCulate: DATA:REGister[1]\|2	3	4	5	6:REMove
Example	:CALC:DATA:REG2:REM				
Notes	Removes trace data assigned to specified Data Register.				
Couplings	If Data Register is assigned to a trace, the trace data is changed to No Data				
Initial S/W Revision	Prior to A.02.00				
Modified at S/W Revision	A.02.00				

Key Path	SCPI only
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	:CALCulate: DATA: REGister : ALL:REMove
Example	:CALC:DATA:REG:ALL:REM
Notes	Removes trace data assigned to all Data Registers.
Couplings	If Data Register is assigned to a trace, the trace data is changed to No Data
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Phase/Delay Properties

This key accesses a menu of properties that affect the selected trace when displayed using phase or delay

Common Measurement Functions 2

formats

Key Path	Trace/Detector
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Phase/Trellis Offset

This is only used if the trace Format is Wrap Phase, Unwrap Phase or Trellis. For Unwrap Phase or Trellis displays, the phase offset value is added to the existing phase at each point. For example, If you are viewing an Unwrapped Phase trace, setting the Phase/Trellis Offset to 5 degrees moves the entire trace up 5 degrees (and changes the value displayed by a marker by the same amount). For Wrap Phase displays the phase offset only affects the phase wrap point, not the underlying data. The point at which the phase wraps is 180 degrees plus the phase offset. For example, suppose you have a marker on a Wrap Phase display whose phase offset is 0 and the marker is showing - 3 degrees. The trace data will all be confined within ($-180,180$] degrees. If you then change the phase offset to 180 degrees, then the Wrap Phase display will show values within the interval (0,360] degrees and the marker value will be displayed as 357 degrees, which is the wrapped equivalent of -3 degrees.

Key Path	Trace/Detector, Phase Delay Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:DISPlay:<meas>:TRACe[1]\|2	3	4:FORMat:PHASe:OFFSet <real> :DISPlay:<meas>:TRACe[1]	2	3	4:FORMat:PHASe:OFFSet?```		
Example	DISP:DDEM:TRAC3:FORM:PHAS:OFFS 31 DISP:DDEM:TRAC3:FORM:PHAS:OFFS?							
Preset	0							
State Saved	Saved in instrument state.							
Min	$-1 \mathrm{E}+8$							
Max	1E+8							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Unwrap Phase Ref

Unwrapped phase lets you designate the point (x-axis) value about which phase values are to be unwrapped. That is, the phase at the designated reference will be within -180 to 180 degrees, and phase
will vary smoothly without jumps around that point.

Key Path	Trace/Detector, Phase Delay Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:DISPlay : <meas> :TRACe[1]\|2	3	4:FORMat : PHASe: UNWRap: REFerence <real> $:$ DISPlay : <meas> : TRACe[1]\|2	3	4:F0RMat : PHASe: UNWRap: REFerence?			
Example	DISP:DDEM:TRAC3:FORM:PHAS:UNWR:REF 24.5E6 DISP:DDEM:TRAC3:FORM:PHAS:UNWR:REF?							
Preset	0							
State Saved	Saved in instrument state.							
Min	$-9.9 e 37$							
Max	$9.9 e 37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Group Delay Aperture

The value of Delay Aperture is used when the trace format is Group Delay. The aperture is specified as a percentage of the current frequency span for frequency-domain data. It is specified as a percentage of the time-record length for time-domain data.

When group delay is calculated for a given point (which can be a time- or frequency-domain point), the aperture is centered at that point. Larger apertures decrease resolution, but they increase the smoothing of the group-delay trace.

The point plotted for group delay is located between the data points used to calculate it. For example, in the frequency domain, the group delay for 100 Hz may be calculated by measuring the change in phase between 90 and 110 Hz . If you had specified a start frequency of $90 \mathrm{~Hz}, 100 \mathrm{~Hz}$ would be the first point with group delay data. This results in a trace that does not extend to the edges of the screen (more noticeable as the delay aperture increases).

Note that the smallest aperture that you can select depends on the number of frequency points. If you select an invalid aperture, the analyzer automatically selects the smallest valid aperture.

Key Path	Trace/Detector, Phase Delay Properties							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	$<$ meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk

Common Measurement Functions 2

| Remote Command | :DISPlay: <meas>:TRACe[1]\|2|3|4:FORMat: DELay:APERture
 <real>
 $:$ DISPlay: <meas>:TRACe[1]\|2|3|4:FORMat: DELay: APERture? |
| :--- | :--- |
| Example | DISP:DDEM:TRAC3:FORM:DEL:APER 1
 DISP:DDEM:TRAC3:FORM:DEL:APER? |
| Notes | Parameter is interpreted as a percent, e.g., if you want the group delay aperture
 to be 1\% send 1, not 0.01 |
| Preset | 0.5 |
| State Saved | Saved in instrument state. |
| Min | 0.00390625 |
| Max | 16 |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

ACP Setup

The adjacent channel power (ACP) function calculates the power in a reference band of frequencies as well as bands of frequencies offset from the reference, and calculates the ratio of each offset band to the reference band power.

The ACP key accesses a menu of functions that allow you to define and turn on the ACP function on the selected trace. One reference channel and up to 5 offset frequencies may be defined, and ACP will be calculated for bands both above and below the reference frequency for each offset.

An ACP measurement may be defined for each trace, although it will only be active on frequency-domain trace data. The reference and offset frequency bands defined by the ACP measurement are shown as gold bars overlaying the trace display. To see tabular data showing power and power ratio results, you may assign the ACP Summary (Trace n) to a different trace. For example, you can assign Spectrum data to trace 1, turn on and define an ACP measurement on trace 1, assign the ACP Summary (Trace 1) to trace 2 , and use a 2×2 display to view both at the same time, as shown below

The summary data may be retrieved programmatically using FETCh? or the CALCulate: <meas $>$:DATA:TABLe commands. See the Data Queries section under Common Functions for more details.

Key Path	Trace/Detector
Mode	VSA, LTE, LTETDD, IDEN
Readback Text	[On\|Off,]
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

ACP On/Off

This softkey turns the ACP function on or off for the selected trace

Key Path	Trace/Detector, ACP
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

| Measurement | <meas>:=VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate $:<m e a s>:$ TRACe[1] \|2|3|4:ACPower : STATe
 OFF\|ON|0|1
 :CALCulate $:<m e a s>:$ TRACe[1] \|2|3|4:ACPower : STATe? |
| Example | CALC:VECT:TRAC1:ACP:STATE ON
 CALC:VECT:TRAC1:ACP:STATE? |
| Preset | 0 |
| State Saved | Saved in instrument state. |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Carrier Freq

This key allows you to enter the carrier frequency of the reference channel for the ACP measurement. The carrier frequency is relative to the center frequency of the measurement. There is only one available reference carrier.

Key Path	Trace/Detector, ACP							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate $:$ <meas> : TRACe[1]\|2	3	4:ACPower : CARRier : FREQuency <freq> :CALCulate : <meas> : TRACe[1]\|2	3	4:ACPower : CARRier : FREQuency?			
Example	CALC:VECT:TRAC1:ACP:CARR:FREQ 100 KHZ CALC:VECT:TRAC1:ACP:CARR:FREQ?							
Preset	0							
State Saved	Saved in instrument state.							
Min	$-9.9 e 37$							
Max	$9.9 e 37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Carrier Meas Noise BW

This key allows you to define the measurement noise bandwidth of the reference channel.

Key Path	Trace/Detector, ACP							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : TRACe[1]\|2	3	4:ACPower : CARRier : BANDwidth\|BWIDth: INTegration <bandwidth> :CALCulate: $:$ <meas> : TRACe[1]\|2	3	4:ACPower : CARRier : BANDwidth\|BWIDth: INTegration?			
Example	CALC:VECT:TRAC1:ACP:CARR:BAND:INT 1 MHZ CALC:VECT:TRAC1:ACP:CARR:BAND:INT?							
Preset	1000000							
State Saved	Saved in instrument state.							
Min	$-9.9 e 37$							
Max	$9.9 e 37$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Carrier RRC Weighting

This key turns on or off RRC weighting for the reference (carrier) power measurement.

Key Path	Trace/Detector, ACP								
Mode	VSA, LTE, LTETDD, IDEN								
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk	
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:ACPower:CARRier: FILTer:RRC:STATe OFF	ON	0	1 :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:CARRier: FILTer:RRC:STATe?```
Example	CALC:VECT:TRAC1:ACP:CARR:FILT:RRC:STAT ON CALC:VECT:TRAC1:ACP:CARR:FILT:RRC:STAT?								
Preset	0								
State Saved	Saved in instrument state.								
Initial S/W Revision	Prior to A.02.00								

Common Measurement Functions 2

Modified at S/W Revision	A.02.00

Carrier Filter Alpha

This key allows you to adjust the alpha of the RRC filter for the reference (carrier) power measurement.

Key Path	Trace/Detector, ACP							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:ACPower:CARRier: FILTer:RRC:ALPHa <real> :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:CARRier: FILTer:RRC:ALPHa?```		
Example	CALC:VECT:TRAC1:ACP:CARR:FILT:RRC:ALPH 0.22 CALC:VECT:TRAC1:ACP:CARR:FILT:RRC:ALPH?							
Preset	0.35							
State Saved	Saved in instrument state.							
Min	0							
Max	1							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Offsets

The ACP measurement compares power in frequency bands offset from the carrier to power in the reference channel (centered on the carrier). Up to 5 offsets may be defined. The offsets are designated by letters A through E. Each offset is defined by an offset frequency, bandwidth, and optional RRC weighting. An offset actually defines two bands, one above the reference frequency and one below. Each band is used individually in the ACP calculation. RRC weighting may only be turned on or off for all offsets, but each offset may have its own RRC filter alpha. A filter alpha of 0 is the same as no RRC weighting.

The Offsets key accesses a menu that has a key for each offset, and also an Offset RRC weighting on/off key. Each offset key shows a summary of its current parameters. Pressing one of the Offset $\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}$ keys accesses a menu for adjusting its parameters

Key Path	Trace/Detector,ACP,Offsets
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Offset Freq

This key turns ACP analysis on or off for a selected offset, and sets the offset frequency (which is relative to the carrier frequency).

Key Path	Trace/Detector,ACP,Offsets,Offset A\|B	C	D	E											
Mode	VSA, LTE, LTETDD, IDEN														
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk							
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:ACPower:OFFSet:LIST: FREQuency <freq>,... :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: FREQuency? :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: STATe OFF	ON	0	1,... :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: STATe?```
Example	```CALC:VECT:TRAC1:ACP:OFFS:LIST:FREQ 1 MHZ, 1 MHz,500 KHZ,500 KHz, 1 MHZ CALC:VECT:TRAC1:ACP:OFFS:LIST:FREQ? :CALC:VECT:TRAC1:ACP:OFFS:LIST:STAT ON,OFF,OFF,ON,OFF```														
Notes	If you send fewer than 5 frequencies in the parameter list, then the remaining offsets frequencies are set to 0 . You may send a single on/off parameter, or a comma-separated list of up to 5 parameters. These enable/disable each of the Offsets in sequence. Any remaining Offsets are disabled														
Preset	$\begin{aligned} & 3000000,0,0,0,0 \\ & 1,0,0,0,0 \end{aligned}$														
State Saved	Saved in instrument state.														
Min	$-9.9 \mathrm{E}+37$														
Max	$9.9 \mathrm{E}+37$														
Initial S/W Revision	Prior to A. 02.00														
Modified at S/W Revision	A.02.00														

Offset Meas Noise BW

This key allows you to set the measurement noise bandwidth for the power measurement of a selected offset band.

| Key Path | Trace/Detector,ACP,Offsets,Offset A\|B|C|D|E |
| :--- | :--- |
| Mode | VSA, LTE, LTETDD, IDEN |

Common Measurement Functions 2

| Measurement | <meas>:=VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate: <meas> : TRACe[1]\|2|3|4:ACPower : OFFSet:LIST:
 BANDwidth\|BWIDth: INTegration <bandwidth>, ...
 :CALCulate: <meas> : TRACe[1]\|2|3|4:ACPower : OFFSet : LIST:
 BANDwidth\|BWIDth: INTegration? |
| Example | CALC:VECT:TRAC1:ACP:OFFS:LIST:BAND:INT 1 MHZ,2 MHZ,3
 MHZ,4 MHZ,5 MHZ
 CALC:VECT:TRAC1:ACP:OFFS:LIST:BAND:INT? |
| Notes | If you send fewer than 5 bandwidth parameters in the list, then Measurement
 Noise Bandwidths for the remaining Offsets are set to 0. |
| Preset | $1000000,0,0,0,0$ |
| State Saved | Saved in instrument state. |
| Min | $-9.9 e 37$ |
| Max | $9.9 e 37$ |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Offset Filter Alpha

This key allows you to adjust the alpha of the RRC filter for the power measurement of the selected offset band.

Key Path	Trace/Detector,ACP,Offsets,Offset A\|B	C	D	E				
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:ACPower:OFFSet:LIST: FILTer:RRC:ALPHa <real>,... :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: FILTer:RRC:ALPHa?```		
Example	CALC:VECT:TRAC1:ACP:OFFS:LIST:FILT:RRC:ALPH 0.22,0.22,0.22,0.22,0.22 CALC:VECT:TRAC1:ACP:OFFS:LIST:FILT:RRC:ALPH?							
Notes	You may send a single Filter Alpha for Offset A, or a comma-separated list of up to 5 Filter Alpha parameters. These are assigned in sequence to the Offsets. Alpha for any remaining Offsets will be set to 0 .							
Preset	0.35,0.35,0.35,0.35,0.35							
State Saved	Saved in instrument state.							
Min	0							

Max	1.0
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Offset Relative Limit

This key enables you to turn on/off a relative limit test and set the limit for the selected offset. The test shows a failure if the power in either the upper or lower band at the selected offset exceeds the reference power plus the relative test limit. For example, if the test limit is -60 , the reference power is -4.5 dBm , a test failure would be shown if the power in the lower or upper band exceeds -64.5 dBm .

Key Path	Trace/Detector,ACP,Offsets														
Mode	VSA, LTE, LTETDD, IDEN														
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk							
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:ACPower:OFFSet:LIST: RCARrier <reall>,... :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: RCARrier? :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: RCARrier:TEST OFF	ON	0	1,... :CALCulate:<meas>:TRACe[1]	2	3	4:ACPower:OFFSet:LIST: RCARrier:TEST?```
Example	CALC:VECT:TRAC1:ACP:OFFS:LIST:RCAR -50, -55, -60, -65, -80 CALC:VECT:TRAC1:ACP:OFFS:LIST:RCAR? CALC:VECT:TRAC1:ACP:OFFS:LIST:RCAR:TEST 1, 1, 1, 1, 1 CALC:VECT:TRAC1:ACP:OFFS:LIST:RCAR:TEST?														
Notes	You may send a single Limit for Offset A, or a comma-separated list of up to 5 limit parameters. These are assigned in sequence to the Offset frequencies, with the remaining limits being set to 0 . You may send a single on/off parameter, or a comma-separated list of up to 5 parameters. These turn the Limit Test on or off for each of the Offsets in sequence. For any remaining Offsets the Limit test will be turned off.														
Preset	$\begin{aligned} & -120,-120,-120,-120,-120 \\ & 0,0,0,0,0 \end{aligned}$														
State Saved	Saved in instrument state.														
Min	50														
Max	-200														
Initial S/W Revision	Prior to A.02.00														
Modified at S/W Revision	A.02.00														

Common Measurement Functions 2

RRC Weighting (All Offsets)

This key turns on or off RRC weighting for the power measurement for all offsets. If RRC weighting is turned on, but you wish to exclude RRC weighting for a particular offset, set its filter alpha to 0 .

Key Path	Trace/Detector,ACP,Offsets							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate $:<m e a s>:$ TRACe[1] \|2	3	4:ACPower : OFFSet : FILTer : RRC:STATe OFF\|ON	0	1 $:$ CALCulate $:<m e a s>~: ~ T R A C e[1]\|2\| 3 \mid 4: A C P o w e r ~: ~ O F F S e t ~: ~ F I L T e r ~: ~$ RRC:STATe?			
Example	CALC:VECT:TRAC1:ACP:OFFS:FILT:RRC:STAT ON CALC:VECT:TRAC1:ACP:OFFS:FILT:RRC:STAT?							
Preset	0							
State Saved	Saved in instrument state.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

OBW Setup (Occupied Bandwidth)

The occupied bandwidth (OBW) function finds and displays the band of frequencies that contain a specified percentage of the total power within the measurement span.

The OBW key accesses a menu of functions that allow you to define and turn on the OBW function on the selected trace.

An OBW measurement may be defined for each trace, although it will only be active on frequency-domain trace data. The band defined by the OBW measurement is shown as a blue bar overlaying the trace display. To see tabular data showing the frequencies of the band limits, the total power, etc. you may assign the OBW Summary (Trace n) to a different trace. For example, you can assign Spectrum data to trace 3, turn on OBW on trace 3, and assign the OBW Summary (Trace 3) to trace 4 , as shown below.

The summary data may be retrieved programmatically using FETCh? or the CALCulate: <meas $>$:DATA:TABLe commands. See the Data Queries section under Common Functions for more details.

Key Path	Trace/Detector
Mode	VSA, LTE, LTETDD, IDEN
Readback Text	[On\|Off, <num>\%]
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

OBW Power

The OBW Power key is used to specify the percentage of power used to determine the occupied BW, and to turn the OBW function on or off for the selected trace.

Key Path	Trace/Detector, OBW
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk							
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:OBWidth:PERCent <real> :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:PERCent? :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:STATe OFF	ON	0	1 :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:STATe?```
Example	CALC:VECT:TRAC1:OBW:PERC 99 CALC:VECT:TRAC1:OBW:PERC? CALC:VECT:TRAC1:OBW:STAT ON CALC:VECT:TRAC1:OBW:STAT?														
Notes	Parameter is interpreted as a percent, e.g., if you want the OBW to be 95% send 95 , not 0.95														
Couplings	None Controls the presence or absence of data in the OBW Summary table for the selected trace														
Preset	$\begin{aligned} & 99.0 \\ & 0 \end{aligned}$														
State Saved	Saved in instrument state.														
Min	0														
Max	100														
Initial S/W Revision	Prior to A. 02.00														
Modified at S/W Revision	A.02.00														

OBW Centroid > CF

This softkey is used to copy the centroid of the occupied bandwidth to the Center Frequency. It only works if the currently selected trace has data compatible with the OBW function, and OBW is turned on.

This is a front-panel function only.
You can read the OBW centroid using the following SCPI-only query and use the result to set the center frequency.

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : TRACe[1]\|2	3	4: OBWidth: CENTroid?					
Example	CALC:VECT:TRAC1:OBW:CENT?							

Notes	Query only. Returns NaN (9.91E+37) if the OBW function is not active for the selected trace, or is not supported for the trace data assigned to the selected trace.
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

BW Limit

This turns on or off limit testing for the Occupied BW test for the selected trace, and allows you to define the limit. Test pass or fail status appears in the OBW Summary table associated with the trace.

Key Path	Trace/Detector, OBW														
Mode	VSA, LTE, LTETDD, IDEN														
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk							
Remote Command	```:CALCulate:<meas>:TRACe[1]\|2	3	4:OBWidth:LIMit:FBLimit <freq> :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:LIMit:FBLimit? :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:LIMit[:TEST] OFF	ON	0	1 :CALCulate:<meas>:TRACe[1]	2	3	4:OBWidth:LIMit[:TEST]?```
Example	CALC:VECT:TRAC1:OBW:LIMIT:FBL 10 MHZ CALC:VECT:TRAC1:OBW:LIMIT:FBL? CALC:VECT:TRAC1:OBW:LIMIT:TEST ON CALC:VECT:TRAC1:OBW:LIMIT:TEST?														
Preset	$\begin{aligned} & 1000000 \\ & 0 \end{aligned}$														
State Saved	Saved in instrument state.														
Min	1 Hz														
Max	9.9e37 (Infinity) Hz														
Initial S/W Revision	Prior to A.02.00														
Modified at S/W Revision	A. 02.00														

Register

Accesses a menu that allows you to select registers for assignment of trace data.

Key Path	Trace/Detector, Data
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 1

Select register 1 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 2

Selects register 2 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 3

Selects register 3 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 4

Selects register 4 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 5

Selects register 5 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Data 6

Selects register 6 for assignment of trace data.

Key Path	Trace/Detector, Data, Register
Mode	VSA
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trace Indicator Info

This softkey allows you to get more information about why a trace indicator is showing. A trace indicator appears in the upper right corner of a trace display to announce exceptional conditions. When such an indicator is showing on the selected trace, pressing this key causes more information about the condition to appear in the message area. This is a front-panel only function. The SCPI commands for querying the Trace Indicator and the Trace Indicator Info for a particular trace are:

CALC: <meas>:DATA[1]|2|3|4:HEAD:STR? "TrcLedStr"
CALC: <meas>:DATA[1]|2|3|4:HEAD:STR? "TrcLedReason"

Key Path	Trace/Detector
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trigger

Triggering is used to determine when a measurement should start taking data. There are several available trigger sources. For each trigger source, there are associated setup parameters. Typically, a trigger event is generated when a signal (or a characteristic of the signal) crosses a defined trigger level (or threshold) on a rising or falling slope. The measurement begins at a specified time delay from the trigger point. The delay may be negative, allowing pre-trigger data to be taken. Each trigger source has associated its own trigger level, slope, and delay settings.

Trigger Holdoff - Some form of trigger holdoff is available for most trigger types. Hold off can be defined in different ways, with possible variations depending on trigger slope setting.

Common Measurement Functions 2

Normal: This is the holdoff type that scopes typically use. After a trigger event, for the duration of the holdoff time, no additional trigger events are recognized.

Below Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Above Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Reference Line

The trigger reference line appears (if enabled) when the trigger source is related to the measured signal. It shows the trigger level relative to the signal. This control allows you to show or hide the trigger reference line.

The trigger reference line, only appears on appropriately formatted time traces. For example, if Video (IF Envelope) trigger is selected, the trigger level line would appear on Main Time, Inst Main Time, or Raw Main Time traces that are formatted as Log Mag or Linear Mag.

Key Path	Trigger		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	$:$ TRIGger [:SEQuence] :RLINe OFF\|ON	0	1 $:$ TRIGger[:SEQuence] :RLINe?
Example	TRIG:RLIN ON TRIG:RLIN?		
Preset	1		
State Saved	Saved in instrument state.		
Range	Show \| Hide		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.02.00		

Hardware Trigger

When the Data Source is Inputs, this trigger menu appears. The menu gives you a choice of trigger sources. Once you select a trigger source, you can branch to the setup parameters for that source.

Key Path	Trigger							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	$:$ TRIGger : <meas> [: SEQuence] : SOURce IMMediate \|VIDeo	EXTernal1 $:$ TRIGger : <meas> [: SEQuence] : SOURce?						
Example	TRIG:VECT:SOUR IMM TRIG:VECT:SOUR?							
Notes	Video triggering is also known by some as IF Envelope or IF Magnitude triggering.							
Preset	IMM							
State Saved	Saved in instrument state.							
Range	Free Run \| Video (IF Envelope)	External 1						
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Free Run

Free Run triggering, means each measurement scan starts as soon as possible, without regard to any signal characteristics or external triggering signal.

Key Path	Trigger
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Video (IF Envelope)

Pressing this key, when it is not selected, selects Video (IF Envelope) triggering. The trigger condition is met when the magnitude of the signal you are measuring crosses the defined trigger level while satisfying the slope and holdoff conditions. (Specifically, the source for the trigger calculation is the IF signal, filtered only by the brickwall filter that defines the information bandwidth of the signal, Signal energy outside the information bandwidth does not affect the triggering.)

NOTE
This is called Video triggering due to its similarity with swept analyzer zero span

Common Measurement Functions 2

measurements being triggered on the video signal. However, in this case there is no video signal. Since the trigger condition applies to the full IF signal, this is also called IF envelope triggering.

If Video triggering is already selected then pressing this softkey accesses the video trigger setup functions, and changes the active function to Video Trigger Level.

Key Path	Trigger
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trigger Level

Sets a level (in volts) that the magnitude of the IF signal must cross (with the correct slope) in order to generate a trigger. (Holdoff conditions must also be met.)

Key Path	Trigger,Video
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] :VIDeo: LEVEl <voltage> $:$ TRIGger [:SEQuence] :VIDeo:LEVel?
Example	TRIG:VID:LEV 10 MV TRIG:VID:LEV?
Notes	$:$ TRIGger[:SEQuence]:IF:LEVel <voltage> may be used as an alias
Preset	10 mV
State Saved	Saved in instrument state.
Min	0
Max	$9.9 E+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Slope

Controls the trigger polarity. Positive means the trigger occurs when the rising magnitude crosses the trigger level. Negative means the trigger occurs when the falling magnitude crosses the trigger level.

Key Path	Trigger,Video
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger[:SEQuence]:VIDeo:SLOPe POSitive\|NEGative
	$:$ TRIGger[:SEQuence]:VIDeo:SLOPe?

Example	TRIG:VID:SLOP POS TRIG:VID:SLOP?
Notes	:TRIGger[:SEQuence]:IF:SLOPe POSitive\|NEGative may also be used
Preset	POS
State Saved	Saved in instrument state.
Range	Pos \mid Neg
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Delay

Controls the time delay from the trigger point to the actual start of the measurement data. This can be negative to get pre-trigger data.

Key Path	Trigger, Video		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	:TRIGger[:SEQuence]:VIDeo:DELay <time> :TRIGger[:SEQuence]:VIDeo:DELay? :TRIGger[:SEQuence]:VIDeo:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:VIDeo:DELay:STATe?
Example	TRIG:VID:DEL 10 MS TRIG:VID:DEL? TRIG:VID:DEL:STAT ON TRIG:VID:DEL:STAT?		
Notes	:TRIGger[:SEQuence]:IF:DELay <time> may be used as an alias :TRIGger[:SEQuence]:IF:DELay:STATe may also be used as an alias		
Preset	0 OFF		
State Saved	Saved in instrument state.		
Min	$-9.9 \mathrm{E}+37$		
Max	$9.9 \mathrm{E}+37$		
Initial S/W Revision	Prior to A.02.00		
Modified at S/W Revision	A.02.00		

Trig Holdoff

Sets the trigger holdoff time.

Common Measurement Functions 2

Key Path	Trigger,Video		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	```:TRIGger[:SEQuence]:VIDeo:HOLDoff <time> :TRIGger[:SEQuence]:VIDeo:HOLDoff? :TRIGger[:SEQuence]:VIDeo:HOLDoff:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:VIDeo:HOLDoff:STATe?```
Example	TRIG:VID:HOLD 1 US TRIG:VID:HOLD? TRIG:VID:HOLD:STAT ON TRIG:VID:HOLD:STAT?		
Notes	:TRIGger[:SEQuence]:IF:HOLDoff may be used as an alias :TRIGger[:SEQuence]:IF:HOLDoff:STATe may be used as an alias		
Preset	0 OFF		
State Saved	Saved in instrument state.		
Min	$-9.9 \mathrm{E}+37$		
Max	$9.9 \mathrm{E}+37$		
Initial S/W Revision	Prior to A. 02.00		
Modified at S/W Revision	A.02.00		

Holdoff Type

Sets the trigger holdoff type.
Some form of trigger holdoff is available for most trigger types. Hold off can be defined in different ways, with possible variations depending on trigger slope setting.

Below Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Above Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Trigger,Video

Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] :VIDeo:HOLDoff:TYPE BELow\|ABOVe $:$ TRIGger[:SEQuence] :VIDeo:HOLDoff:TYPE?
Example	TRIG:VID:HOLD:TYPE BEL TRIG:VID:HOLD:TYPE?
Notes	:TRIGger[:SEQuence]:IF:HOLDoff:TYPE can be used as an alias
Preset	BEL
State Saved	Saved in instrument state.
Range	Below Level \| Above Level
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

External 1

Pressing this key, when it is not selected, selects the signal on the Trigger 1 input as the trigger signal. The trigger condition is met when the level of the external trigger signal crosses the defined trigger level while satisfying the slope and holdoff conditions.

Note that currently, the VSA based measurements do not support External 2 triggering.
If External 1 triggering is already selected then pressing this softkey accesses the external 1 trigger setup functions, and changes the active function to Ext 1 Trigger Level.

Key Path	Trigger
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trigger Level

Sets a level (in volts) that the Trigger signal must cross (with the correct slope) in order to generate a trigger. (Holdoff conditions must also be met.)

Key Path	Trigger, External 1
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] : EXTernal1:LEVel <voltage> $: T R I G g e r[: S E Q u e n c e]: E X T e r n a l 1: L E V e l ? ~$
Example	TRIG:EXT1:LEV 10 MV TRIG:EXT1:LEV?
Preset	1 V

Common Measurement Functions 2

State Saved	Saved in instrument state.
Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Slope

Controls the trigger polarity. Positive means the trigger occurs on a rising edge. Negative means the trigger occurs on a falling edge.

Key Path	Trigger, External 1
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] : EXTernal1:SLOPe POSitive \|NEGative $:$ TRIGger [:SEQuence] :EXTernal1:SLOPe?
Example	TRIG:EXT1:SLOP POS TRIG:EXT1:SLOP?
Preset	POS
State Saved	Saved in instrument state.
Range	Pos \| Neg
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Delay

Controls the time delay from the trigger point to the actual start of the measurement data. This can be negative to get pre-trigger data.

Key Path	Trigger, External 1		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	:TRIGger[:SEQuence]:EXTernal1:DELay <time> :TRIGger[:SEQuence]:EXTernal1:DELay? :TRIGger[:SEQuence]:EXTernal1:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:EXTernal1:DELay:STATe?
Example	TRIG:EXT1:DEL 10 MS TRIG:EXT1:DEL? TRIG:EXT1:DEL:STAT ON TRIG:EXT1:DEL:STAT?		

Preset	0
	0
State Saved	Saved in instrument state.
Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Trig Holdoff

Sets the trigger holdoff time.

Key Path	Trigger, External 1		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	:TRIGger[:SEQuence]:EXTernal1:HOLDoff <time> :TRIGger[:SEQuence]:EXTernal1:HOLDoff? :TRIGger[:SEQuence]:EXTernal1:HOLDoff:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:EXTernal1:HOLDoff:STATe?
Example	TRIG:EXT1:HOLD 1 US TRIG:EXT1:HOLD? TRIG:EXT1:HOLD:STAT ON TRIG:EXT1:HOLD:STAT?		
Preset	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
State Saved	Saved in instrument state.		
Min	$-9.9 \mathrm{E}+37$		
Max	$9.9 \mathrm{E}+37$		
Initial S/W Revision	Prior to A. 02.00		
Modified at S/W Revision	A.02.00		

Holdoff Type

Sets the trigger holdoff type.
Some form of trigger holdoff is available for most trigger types. Hold off can be defined in different ways, with possible variations depending on trigger slope setting.

Below Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with

Common Measurement Functions 2

negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Above Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Trigger, External 1
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	:TRIGger[:SEQuence] :EXTernal1:HOLDoff:TYPE BELow\|ABOVe :TRIGger [:SEQuence]: EXTernal1:HOLDoff:TYPE?
Example	TRIG:EXT1:HOLD:TYPE BEL TRIG:EXT1:HOLD:TYPE?
Preset	BEL
State Saved	Saved in instrument state.
Range	Below Level \| Above Level
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Free Run

Selecting this trigger source means the measurement immediately begins taking data starting at the next available point in the recording.

Key Path	Trigger, Playback Trigger
Mode	VSA, LTE, LTETDD, IDEN

IF Envelope

Pressing this key selects IF Envelope triggering. The trigger condition is met when the calculated magnitude of the data in the recording. (i.e., the absolute value of real data, or the vector magnitude of complex data) crosses the defined trigger level while satisfying the slope and holdoff conditions.. There is no filtering or smoothing of the magnitude data.

Note: Although analysis of recorded data allows you to chose a different span and center frequency within the bandwidth limits of the original recording, the original bandwidth of the recorded data is used for trigger calculations,

If IF Envelope triggering is already selected then pressing this softkey accesses the IF Envelope trigger setup functions, and changes the active function to IF Envelope Trigger Level.

Key Path	Trigger
Mode	VSA, LTE, LTETDD, IDEN

Trigger Level

Sets a level (in volts) that the magnitude of the IF signal must cross (with the correct slope) in order to generate a trigger.

NOTE Holdoff conditions must also be met.

Key Path	Trigger, IF Envelope
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger[:SEQuence] :RECording:VIDeo:LEVel <voltage> $:$ TRIGger[:SEQuence]:RECording:VIDeo:LEVel?
Example	TRIG:REC:VID:LEV 10 MV TRIG:REC:VID:LEV?
Notes	$:$ TRIGger[:SEQuence]:RECording:IF:LEVel <voltage> may be used as an alias
Preset	1 V
State Saved	Saved in instrument state.
Min	0
Max	$9.9 E+37$

Trig Slope

Controls the trigger polarity. Positive means the trigger occurs when the rising magnitude crosses the trigger level. Negative means the trigger occurs when the falling magnitude crosses the trigger level.

Key Path	Trigger,Video
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger[:SEQuence] : RECording:VIDeo:SLOPe POSitive\|NEGative $:$ TRIGger[:SEQuence] : RECording:VIDeo: SLOPe?
Example	TRIG:REC:VID:SLOP POS TRIG:REC:VID:SLOP?
Notes	:TRIGger[:SEQuence]:RECording:IF:SLOPe may be used as an alias
Preset	POS
State Saved	Saved in instrument state.
Range	Pos \mid Neg

Common Measurement Functions 2

Trig Delay

Controls the time delay from the trigger point to the actual start of the measurement data. This can be negative to get pre-trigger data.

Key Path	Trigger,Video		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	```:TRIGger[:SEQuence]:RECording:VIDeo:DELay <time> :TRIGger[:SEQuence]:RECording:VIDeo:DELay? :TRIGger[:SEQuence]:RECording:VIDeo:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:RECording:VIDeo:DELay:STATe?```
Example	TRIG:REC:VID:DEL 10 MS TRIG:REC:VID:DEL? TRIG:REC:VID:DEL:STAT ON TRIG:REC:VID:DEL:STAT?		
Notes	:TRIGger[:SEQuence]:RECording:IF:DELay <time> may be used as an alias :TRIGger[:SEQuence]:RECording:IF:DELay:STATe may be used as an alias		
Preset	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
State Saved	Saved in instrument state.		
Min	$-9.9 \mathrm{E}+37$		
Max	$9.9 \mathrm{E}+37$		

Trig Holdoff

Sets the trigger holdoff time.

Key Path	Trigger,Video		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	$:$ TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff <time>		
	$:$ TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff?		
	$:$ TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:STATe		
	OFF\|ON	0	1
	$:$ TRIGger[:SEQuence]:RECording:VIDeo:HOLDoff:STATe?		

Example	TRIG:REC:VID:HOLD 1 US TRIG:REC:VID:HOLD? TRIG:REC:VID:HOLD:STAT ON TRIG:REC:VID:HOLD :STAT?
Notes	:TRIGger[:SEQuence]:RECording:IF:HOLDoff may be used as an alias $:$:TRIGger[:SEQuence]:RECording:IF:HOLDoff:STATe may be used as an alias
Preset	0 0
State Saved	Saved in instrument state.
Min	$-9.9 E+37$
Max	$9.9 E+37$

Holdoff Type

Sets the trigger holdoff type.
Some form of trigger holdoff is available for most trigger types. Hold off can be defined in different ways, with possible variations depending on trigger slope setting.

Below Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Above Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Trigger,Video
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] :RECording:VIDeo:HOLDoff:TYPE BELow\|ABOVe $:$ TRIGger [:SEQuence] :RECording:VIDeo:HOLDoff:TYPE?
Example	TRIG:REC:VID:HOLD:TYPE BEL TRIG:REC:VID:HOLD:TYPE?
Notes	:TRIGger[:SEQuence]:RECording:IF:HOLDoff:TYPE can be used as an alias
Preset	BEL
State Saved	Saved in instrument state.

Common Measurement Functions 2

Range	Below Level \| Above Level

Baseband

Pressing this key, when it is not selected, selects Baseband triggering. It is equivalent to oscilloscope triggering.

NOTE

This trigger type is most useful with recorded data that is real (baseband). It is allowed (though not very useful) when the data is complex. In this case the only the real part of the data is used to calculate the trigger condition.

The trigger condition is met when the signal (or the real part of the complex signal) crosses the defined trigger level while satisfying the slope and holdoff conditions. The measurement starts at the trigger point plus the Trigger Delay. Note that the trigger delay may be negative, causing the measurement to start before the trigger point.

If Level triggering is already selected then pressing this softkey accesses the trigger setup functions, and changes the active function to Level Trigger Level.

Key Path	Trigger
Mode	VSA, LTE, LTETDD, IDEN

Trigger Level

Sets a level (in volts) that the trigger signal must cross (with the correct slope) in order to generate a trigger. (Holdoff conditions must also be met.)

Key Path	Trigger, Threshold
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] : RECording: BASeband: LEVel <voltage> $:$ TRIGger [:SEQuence] : RECording : BASeband : LEVel?
Example	TRIG:REC:BAS:LEV 10 MV TRIG:REC:BAS:LEV?
Preset	0 V
State Saved	Saved in instrument state.
Min	$-9.9 E+37$
Max	$9.9 E+37$

Trig Slope

Controls the trigger polarity. Positive means the trigger occurs on a rising edge. Negative means the trigger occurs on a falling edge.

Key Path	Trigger, Threshold

Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger[:SEQuence]:RECording:BASeband:SLOPe POSitive\|NEGative $:$ TRIGger[:SEQuence]:RECording:BASeband:SLOPe?
Example	TRIG:REC:BAS:SLOP POS TRIG:REC:BAS:SLOP?
Preset	POS
State Saved	Saved in instrument state.
Range	Pos \mid Neg

Trig Delay

Controls the time delay from the trigger point to the actual start of the measurement data. This can be negative to get pre-trigger data.

Key Path	Trigger, Threshold		
Mode	VSA, LTE, LTETDD, IDEN		
Remote Command	:TRIGger[:SEQuence]:RECording:BASeband:DELay <time> :TRIGger[:SEQuence]:RECording:BASeband:DELay? :TRIGger[:SEQuence]:RECording:BASeband:DELay:STATe OFF\|ON	0	1 :TRIGger[:SEQuence]:RECording:BASeband:DELay:STATe?
Example	TRIG:REC:BAS:DEL 10 MS TRIG:REC:BAS:DEL? TRIG:REC:BAS:DEL:STAT ON TRIG:REC:BAS:DEL:STAT?		
Preset	0		
State Saved	Saved in instrument state.		
Min	$-9.9 \mathrm{E}+37$		
Max	$9.9 \mathrm{E}+37$		

Trig Holdoff

Sets the trigger holdoff time.

Key Path	Trigger, Threshold
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

Remote Command	:TRIGger[:SEQuence]:RECording:BASeband:HOLDoff <time> :TRIGger[:SEQuence]:RECording:BASeband:HOLDoff?
Example	TRIG:REC:BAS:HOLD 1 US TRIG:REC:BAS:HOLD? TRIG:REC:BAS:HOLD:STAT ON TRIG:REC:BAS:HOLD:STAT?
Preset	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
State Saved	Saved in instrument state.
Min	$-9.9 \mathrm{E}+37$
Max	$9.9 \mathrm{E}+37$

Holdoff Type

Sets the trigger holdoff type.
Some form of trigger holdoff is available for most trigger types. Hold off can be defined in different ways, with possible variations depending on trigger slope setting.

Below Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) after having been below the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) and then remains below the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Above Level: If the trigger slope is positive, a trigger event is generated only if the signal characteristic of interest crosses the trigger threshold (with positive slope) and then remains above the threshold for at least the holdoff time. For negative slope, the trigger event is generated if the signal characteristic crosses the threshold (with negative slope) after having been above the threshold for at least the holdoff time. In either case, the trigger event is associated with the time the level was crossed.

Key Path	Trigger, Threshold
Mode	VSA, LTE, LTETDD, IDEN
Remote Command	$:$ TRIGger [:SEQuence] :RECording: BASeband: HOLDoff:TYPE BELOW\|ABOVe $:$ TRIGger [:SEQuence] :RECording: BASeband: HOLDoff:TYPE?
Example	TRIG:REC:BAS:HOLD:TYPE BEL TRIG:REC:BAS:HOLD:TYPE?
Preset	BEL
State Saved	Saved in instrument state.
Range	Below Level \| Above Level

View/Display

The View/Display menu contains the Display branch key, which allows you to set many display properties. Many View Preset softkeys appear under this menu. These set up measurement-specific views, which are described in individual measurements. A view in this application is simply a preset; i.e., a choice of layout, trace data assignment, and trace formatting and scaling. After a view preset is performed, the resulting arrangement can then be changed by any available trace manipulation functions or by changing the layout. All measurements have a default view that is used when they are first started, and the first listed preset view will restore that arrangement without otherwise affecting the measurement.

This menu contains keys that allow control over the way data is displayed. The Layout key is described here. Other keys specific to measurements will be described in their own descriptions.

Key Path	Front Panel
Mode	VSA, LTE, LTETDD, IDEN
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Layout

This key allows you to choose the number and position of windows on the screen. Each window contains one trace. The selected trace is always visible and its window outlined in green. The Window zoom key toggles between multiple windows and a single window mode without changing the setting for Layout.

Single layout has one window.
Stack 2 layout has two windows, one on top of the other, that display either traces 1 (top) and 2 (bottom) or traces 3 and 4. The pair that is showing always includes the selected trace.

Stack 3 layout has three windows that display, top to bottom, traces 1, 2, 3 or traces $2,3,4$.
Grid 2x2 layout has 4 windows, arranged 2×2.They display (in order top to bottom, left to right) traces 1 , 2,3 , and 4.

Common Measurement Functions 2

Grid 2x2 layout with Trace 2 selected
There are two other layouts that are available for iDEN Power, iDEN Demod and MOTOTalk measurements, since these allow 6 traces.

Grid 2x3 layout has 2 rows of 3 windows that display all 6 traces in order, top to bottom, them left to right.

Grid 3x2 layout has 3 rows of 2 windows that display all 6 traces in order, top to bottom, them left to right.

Key Path	View/Display								
Mode	VSA, LTE, LTETDD, IDEN								
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk	
Remote Command	:DISPlay: <meas> :WINDow: FORMat SINGle\|TWO	TRI	QUAD :DISPlay: <meas> :WINDow: FORMat? For iDEN Power, iDEN Demod and MotoTalk measurements : :DISPlay: <meas> :WINDow: FORMat SINGle\|TWO	TRI	QUAD	GR2X3	GR3X2 $:$ DISPlay: <meas> :WINDow: FORMat?		
Example	DISP:VECT:WIND:FORM TWO DISP:IPOW:WIND:FORM GR2X3 DISP:VECT:WIND:FORM?								
Couplings	If the window is currently zoomed, selecting a layout (even the current one) will switch it to tiled mode.								
Preset	TWO\|QUAD	QUAD	QUAD	QUAD	QUAD	QUAD	QUAD	GR2X3	TRI
State Saved	Saved in instrument state.								
Range	Single \| Stack 2	Stack 3	Grid 2x2	Grid 2x2	Grid 2x3	Stack 3			

Common Measurement Functions 2

Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Remote SCPI Commands and Data Queries

Remote SCPI Results described in this section include:
":READ and :FETCh Commands" on page 1028
":CALCulate:DATA" on page 1032
":CALCulate:DATA:RAW" on page 1033
":CALCulate:DATA:RAW:COMPlex" on page 1034
":CALCulate:DATA:POINts commands" on page 1034
":CALCulate:DATA:TABL commands" on page 1035
":CALCulate:DATA:HEADer commands" on page 1039
"IQ Data Transfers" on page 1042
VSA based Measurements produce a rich variety of results which may be displayed in any of 4 traces. A result may consist of an array of X, Y trace data that is typically shown as a graph, or scalar results that are displayed as a table. The Symbol/Error result that is part of many demodulation measurements actually displays both a trace table (the error statistics) and trace data (the symbol information, which is not graphed but listed). The CALC: $<$ meas $>$:DATA $<\mathrm{n}>$ commands allow you to retrieve any trace data or trace table. This family of commands also allow you to get information about the names of data results available and the units associated with them, as well as names and results of meta-data associated with traces.

Selected results are available via the FETCh and READ SCPI interfaces. These commands refer to data results by arbitrary index number rather than by trace number.

:READ and :FETCh Commands

The SCPI MEASure, READ, and FETCh are typically offered by applications with focus on manufacturing test, where a fixed set of desired results is known in advance and seldom changes. The VSA based measurements are many, due to a focus on development. Thus, for most VSA based measurements there is no standard configuration that will yield a useful measurement 90% of the time. Thus, the MEASure function will not be offered for most measurements in the VSA Application. However, READ and FETCh may be implemented for select results. Note that these results will also still be available using the CALC:<meas $>:$ DATA:TABLe family of commands.

ACP and OBW are available in all VSA based measurements. To retrieve the ACP or OBW data, the function must be enabled on a frequency-domain trace and the associated summary data table must be assigned to another trace. Note however, the index n in the following commands is not trace number, but an index picked out of the tables shown below.
:FETCh: <meas>[n]?
:READ: <meas>[n]?

The results available for various values of n are shown below:

Condition	N	Results Returned
Mode = VSA \| LTE \mid IDEN	Not specified or n=1	Reserved for selected results of VSA measurements. If not used for a particular measurement, no result is returned and error -114 Header suffix out of range is generated
Mode = VSA \| LTE \mid IDEN	$2-50$	Reserved for selected results of VSA measurements. If not used for a particular measurement, no result is returned and error -114 Header suffix out of range is generated

Common Measurement Functions 2

Mode $=$ VSA \mid LTE \| IDEN, ACP on trace 1	51	ACP Summary for trace 1 Returns 28 comma-separated scalar results, corresponding to the swept ACP results where possible; n / a elsewhere: Returns 28 comma-separated scalar results, in the following order. 1. 0.0 2. Total carrier power (dBm) (same as item 4, because only 1 carrier supported) 3. 0.0 4. Reference carrier power (dBm) 5. Lower offset A - relative power (dB) 6. Lower offset A - absolute power (dBm) 7. Upper offset A - relative power (dB) 8. Upper offset A - absolute power (dBm) 9. Lower offset B - relative power (dB) 10. Lower offset B - absolute power (dBm) 11. Upper offset B - relative power (dB) 12. Upper offset B - absolute power (dBm) 21. Lower offset E - relative power (dB) 22. Lower offset E-absolute power (dBm) 23. Upper offset E-relative power (dB) 24. Upper offset E-absolute power (dBm) 25. n/a 26. n/a 27. n/a 28. n/a 29. Overall ACP test result summary (0 indicates at least 1 failure, 1 indicates all passed) If any result is not available, NaN (9.91 E 37) is returned. This can happen if ACP is turned off (all results unavailable), or when an offset is entirely off-screen. In the case where it is partially off-screen, the measured result is returned, even though its validity is questionable.
Mode $=$ VSA \mid LTE \| IDEN, ACP on trace 2	52	ACP Summary for trace 2 see list for trace 1 summary
Mode $=$ VSA LTE \| IDEN, ACP on trace 3	53	ACP Summary for trace 3 see list for trace 1 summary

Mode $=$ VSA \mid LTE \| IDEN, ACP on trace 4	54	ACP Summary for trace 4 see list for trace 1 summary
Mode $=$ VSA \mid LTE \| IDEN, ACP on trace 5	55	ACP Summary for trace 5 see list for trace 1 summary
Mode $=$ VSA \mid LTE \| IDEN, ACP on trace 6	56	ACP Summary for trace 6 see list for trace 1 summary
	57-60	no result returned; error -114 , Header suffix out of range generated
Mode = VSA LTE \| IDEN, OBW on trace 1	61	OBW Summary for trace 1 Returns 9 comma-separated scalar results, corresponding exactly to the items in the OBW Summary trace: 1. OBW (Hz) 2. Pwr (dBm) 3. Total Pwr (dBm) 4. Pwr Ratio (no unit, E.g. 0.99) 5. OBW upper freq (Hz) 6. OBW lower freq (Hz) 7. Centroid freq (Hz) 8. Offset freq (Hz) 9. OBW Test Result (0 for fail, 1 for pass) If the results are not available, NaN (9.91 E 37) is returned.
Mode = VSA LTE \| IDEN, OBW on trace 2	62	OBW Summary for trace 2 see list for trace 1 summary
Mode = VSA LTE \| IDEN, OBW on trace 3	63	OBW Summary for trace 3 see list for trace 1 summary
Mode $=$ VSA \mid LTE \| IDEN, OBW on trace 4	64	OBW Summary for trace 4 see list for trace 1 summary
Mode $=$ VSA \mid LTE \| IDEN, OBW on trace 5	65	OBW Summary for trace 5 see list for trace 1 summary

Common Measurement Functions 2

Mode $=$ VSA \|	66	OBW Summary for trace 6
LTE \mid IDEN,		see list for trace 1 summary
OBW on trace 6		

Key Path	Remote Command Only
Mode	LTE, LTETDD, IDEN, VSA

:CALCulate:DATA

Once measurement data result is assigned to a trace, the data can be retrieved by using one of the following commands (where $<\mathrm{n}>$ is the trace number and $<$ meas $>$ is the current VSA based measurement).
:CALC: <meas $>:$ DATA $<\mathrm{n}>$?
:CALC: $<$ meas $>:$ DATA $<\mathrm{n}>:$ RAW?
The first form of the command retrieves the data as formatted on the display. For example, if (in a vector measurement) you have the Spectrum result in LogMag format on trace 1, then
:CALC:VECT:DATA1?
will return an array of spectrum amplitude (Y data) in units of dBm , and

:CALC:VECT:DATA1:RAW?

will return the Y data in its underlying units of Volts (peak) squared.
(To get data from displayed tables, see CALCulate:DATA:TABLe commands below.)
The CALC: $<$ meas $>$:DATA commands get data from traces. There are many results available from a VSA based measurement, and only 4 traces in which to view them. View Preset commands are one way of displaying frequently-used results in standard trace locations. Or you may assign any measurement result to any trace using the softkeys under Trace/Detector, Data. The SCPI command for doing this is:
:DISP:<meas>:TRAC<n>:FEED "<data_name>"
For example, if (in a vector measurement) you wish to view the CCDF result in trace 4, you send:
:DISP:VECT:TRAC4:FEED "CCDF1"
(If the measurement has not run yet, use INIT:IMM to run it.) Then the CCDF data may be retrieved using

CALC:VECT:DATA4?

or

CALC:VECT:DATA4:RAW?

See the Data command (under Trace/Detector) and the View Preset commands (under View/Display) in this document as well as the PDs for each VSA based measurement for more details on assigning data to traces.

Key Path	SCPI only

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	:CALCulate:<meas>: DATA[1]\|2	3	4? [Y	X	XY[,OFF	ON	0	1]]
Example	CALC:VECT:DATA1? CALC:VECT:DATA1? Y,ON CALC:VECT:DATA1? X CALC:VECT:DATA1? XY							
Notes	Query only. This retrieves the data in the designated trace as displayed. E.g., if Trace 1 is assigned Spectrum data and formatted as LogMag, then :CALC:VECT:DATA1? will return the Y data in dBm. If the X axis is scaled to show only a portion of the trace data, only the data shown will be returned. The numeric format of the returned data is controlled by FORMat[:TRACe][:DATA] command The optional parameters control what data is returned. :CALC:VECT:DATA1? Y is the same as :CALC:VECT:DATA1? with no parameter. It returns an array of Y values. :CALC:VECT:DATA1? X returns an array of X values that correspond to the Y values above. :CALC:VECT:DATA1? XY returns interleaved X and Y data. I.e.: <x1><y1><x2><y2>... Normally, this command only returns the data between the current X scale limits. If the optional ",OFF" or ",0" switch is included at the end of the command, then all data is returned (regardless of X scaling or the state of All Frequency Points). Note: the X and Y parameters in this command refer to the display's horizontal and vertical axes. Normally the X axis is the independent variable, but if the display format is Constellation or IQ, then CALC: $<$ meas $>:$ DATA $<\mathrm{n}>$? [Y] returns the imaginary part of the data, and CALC: $<$ meas $>:$ DATA $<n>$? X returns the real part of the data. If you want the values of the independent variable, change to a non-vector format (such as Log Mag) and use CALC: $<$ meas $>:$ DATA $<n>$? X							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

:CALCulate:DATA:RAW

Retrieves trace data in its underlying units, before the formatting calculation that converts it to displayed units. Underlying units are typically Volts peak (for signal results) or Volts peak squared (for power results). All data points are returned, whether or not they are displayed.

Key Path	SCPI only

Common Measurement Functions 2

Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : DATA[1]\|2	3	4:RAW?					
Example	CALC:VECT:DATA1:RAW?							
Notes	Query only. This retrieves the unformatted Y data in the designated trace. If Y data is complex, it is returned as $<y _$real1 $><y _i m a g 1><y _r e a l 2><y _i m a g 2>~$ etc.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

:CALCulate:DATA:RAW:COMPlex

This command is used to determine if the data retrieved by CALC: $<$ meas $>$:DATA:RAW $<\mathrm{n}>$? is complex.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : DATA[1]\|2	3	4:RAW:COMPlex?					
Example	CALC:VECT:DATA1:RAW:COMP?							
Notes	Query only. Returns 1 if the trace data is complex, 0 if it is real.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

:CALCulate:DATA:POINts commands

This query returns the number of points that will be returned by
CALCulate: $<$ meas $>:$ DATA $<\mathrm{n}>$?
X axis scaling and whether All Frequency Points is on or off can affect this number.

| NOTEFor the CALCulate: $<$ meas $>:$ DATA $<\mathrm{n}>$? XY command there are 2 numbers
 returned per data point. |
| :--- | | Key Path | SCPI only |
| :--- | :--- |
| Mode | VSA, LTE, LTETDD, IDEN |

| Measurement | <meas>:=VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod| MOTotalk |
| :---: | :---: |
| Remote Command | :CALCulate:<meas>:DATA[1]\|2|3|4:POINts? [OFF|ON|0|1] |
| Example | CALC:VECT:DATA1:POINts? |
| Notes | Query only.
 Use the optional "OFF\|0" parameter to determine the number of points that will be returned by the optional command form: :CALCulate:<meas>:DATA<n>? Y\|X|XY,OFF|0
 Note that this is points, not array size. If the XY parameter is included, there are 2 numbers returned per point.
 (ON or 0, which means use the X -scaled version, is the default and the result is the same as if the parameter is omitted). |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

This query returns the number of points that will be returned by
CALCulate:<meas>:DATA:RAW<n>?

NOTE
For complex trace data, there are 2 numbers returned per data point.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : DATA[1]\|2	3	4:RAW:POINts?					
Example	CALC:VECT:DATA1:RAW:POINts?							
Notes	Query only.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

:CALCulate:DATA:TABL commands

Some traces have tabular data is associated with them. In fact, there may be only a table and no trace data. Each entry in the table consists of a name, a measured value, and units. The units are sometimes not shown. You can programmatically retrieve arrays of all the names, all the values, and all the units of a table. These arrays are all ordered so that corresponding indices have associated values, e.g., the 4th name in the names array corresponds to the 4th value in the results array. (Note that the array order may not be the same as the displayed order.) You can also get a particular result from the table by name. Here

Common Measurement Functions 2

is a summary of the remote table data commands.

Command	Returns	Example
CALCulate:<meas $>:$ DATA $<n>:$ TABLe?	All table data results (as an array)	CALC:DDEM:DATA4:TABL?
CALCulate $:<$ meas $>:$ DATA $<n>:$ TABLe? "	Thame table data result referred to by name	CALC:DDEM:DATA4:TABL? "EvmPeak"
CALCulate:<meas $>:$ DATA<n>:TABLe:NAMes?	Comma-separate d list of all table data names	CALC:DDEM:DATA4:TABL:NAM?
CALCulate:<meas $>:$ DATA<n>:TABLe:UNIT?	Comma-separate d list of all table data units	CALC:DDEM:DATA4:TABL:UNIT?

For example, if within the Vector Analysis measurement, you have an OBW Summary Table displayed in trace 2, CALC:DDEM:DATA2:TABL:NAM? would return the table names as follows:
"Obw,Pwr,TotalPwr,PwrRatio,ObwUpper,ObwLower,Centroid,Offset"
and CALC:DDEM:DATA2:TABL:UNIT? would return the units. (A null string means the result is unitless.)
"Hz,Vrms^2, Vrms^2,,Hz,Hz,Hz,Hz"
You can then get all the table results by sending
CALC:DDEM:DATA2:TABL?
Result number 1 is Obw and has units of Hz , result number 2 is Pwr with units of Vrms $\wedge 2$, and so on.
You can also get individual table entries by asking for them by name. Any name returned from the CALC:DDEM:DATA2:TABL:NAM? query may be used. For example, to get TotalPwr you can send the following query:

CALC:DDEM:DATA2:TABL? "TotalPwr"

Query Table Data as Number

The following query gets data from a table shown in the designated trace. Tables shown on the display typically have the name of a parameter followed by its measured value

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate $:<m e a s>:$: DATA[1] [<string>]							

Example	CALC:DDEM:DATA2:TABL? "Obw"
Notes	Query only. If sent without a string specifier, this returns the entire table for the designated trace.If sent with a string specifier, returns a specific table entry in the designated trace. The string specifier must be delimited by single or double quotes. A list of valid strings can be obtained using CALC: $<$ meas $>:$ DATA:TABL:NAM? If an invalid string is sent, an error is generated. The returned results are in numeric format, under control of the FORMat[:TRACe][:DATA] command. For table data that is non-numeric, NaN is returned. To get the value of these data, use the CALC: $<$ meas $>:$ DATA2:TABL:STR? command
Initial S/W Revision	Prior to A.02.00
Modified at S/W Revision	A.02.00

Query Table Data as String
Some tables have string data. The above Trace Table Data query cannot return it, and sends NaN in its place. Here is a form of Trace Table Data query that can return string data from tables.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	$:$ CALCulate $:<m e a s>:$ DATA[1] \|2	3	4:TABLe : STRing? $[<$ string $>]$					
Example	CALC:DDEM:DATA2:TABL:STR? "Obw"							
Notes	Query only. If sent without a string specifier, this returns the entire table for the designated trace, in comma-separated format. If sent with a string specifier, returns a specific table entry in the designated trace. The string specifier must be delimited by single or double quotes. A list of valid strings can be obtained using CALC: $<$ meas $>:$ DATA:TABL:NAM? If an invalid string is sent, an error is generated.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Query Table Names

The following query returns a comma-separated list of names of the table data entries for the designated trace. Each of names may be used (surrounded by quotes or double quotes) as a parameter in the Trace Table Data commands. The names appear in the same order as the corresponding data values returned by the CALC: $<$ meas $>:$ DATA $<n>:$ TABL[:NUMB|STR]? query.

Key Path	SCPI only
Mode	VSA, LTE, LTETDD, IDEN

Common Measurement Functions 2

| Measurement | <meas $>:=$ VECTor\|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod|
 MOTotalk |
| :--- | :--- |
| Remote Command | :CALCulate: <meas> : DATA[1]\|2|3|4:TABLe: NAMes? |
| Example | CALC:VECT:DATA1:TABL:NAM? |
| Notes | Query only. This retrieves the names of the table entries for the designated
 trace. Each of these names may be used in the CALC: $<$ meas $>:$ DATA:TABL?
 '<name $>$ ' command to access a single table entry. |
| Initial S/W Revision | Prior to A.02.00 |
| Modified at S/W Revision | A.02.00 |

Query Table Units

The following query returns a comma-separated list of all the units for the table data entries for the designated trace. If a data result is unitless, an empty string appears in the list for that result. The units appear in the same order as the corresponding data values returned by the CALC: $<$ meas $>:$ DATA $<\mathrm{n}>:$ TABL[:NUMB|STR]? query.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas $>:=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : DATA[1]\|2	3	4:TABLe : UNIT?					
Example	CALC:VECT:DATA1:TABL:UNIT?							
Notes	Query only. This retrieves a list of units for table entries for the designated trace. The units are given in the order that the entries are sent from the $: C A L C:<m e a s>: D A T A: T A B L ? ~ c o m m a n d . ~$							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

The following table data is available in all measurements when the ACP function is turned on and the associated summary table is shown in a trace:

Result name	Displayed Unit	Remote Name	Remote Unit
Reference Bandwidth	Hz	RefBw	Hz
Reference Alpha		RefAlpha	
Reference Power	dBm	RefPwr	Vrms^2
Offset	Hz	Offset1, Offset2, Offset3, Offset4, Offset5	Hz

Result name	Displayed Unit	Remote Name	Remote Unit
BW	Hz	Bw1, Bw2, Bw3, Bw4, Bw5	Hz
Alpha	dBm	Alpha1, Alpha2, Alpha3, Alpha4, Alpha5	
Lower Pwr	dB	LowPwr1, LowPwr2, LowPwr3, LowPwr4, LowPwr5	Vrms^2
Lower ACPR	dBm	LowRatio1, LowRatio2, LowRatio3, LowRatio4, LowRatio5	
Upper Pwr	dB	HiPwr1, HiPwr2, HiPwr3, HiPwr4, HiPwr5	Vrms^2
Upper ACPR	dB	HiRatio1, HiRatio2, HiRatio3, HiRatio4,	
Max ACPR		MiRatio5	

The following table data is available in all measurements when the OBW function is turned on and the associated summary table is shown in a trace:

Result name	Displayed Unit	Remote Name	Remote Unit
Occupied Bandwidth	Hz	Obw	Hz
Power	dBm	Pwr	$\mathrm{Vrms}^{\wedge} 2$
Total Power	dBm	TotalPwr	$\mathrm{Vrms} \wedge 2$
Power Ratio	$\%$	PwrRatio	
Upper Freq	Hz	ObwUpper	Hz
Lower Freq	Hz	ObwLower	Hz
Centroid Freq	Hz	Centroid	Hz
Offset Freq	Hz	Offset	Hz

:CALCulate:DATA:HEADer commands

Trace data also has meta-data associated with it, called headers, which is visible if you export trace data in text format. The headers have a name and a value that can be obtained from any trace by using the CALCulate:<meas>:DATA:HEADer commands described in this section.

The following Remote Commands are described in this section:

[^0]
Common Measurement Functions 2

"Query Header Type" on page 1040
"Query Header as String" on page 1041
"Query Numeric Header" on page 1041
":CALC:CLIMits:FAIL?" on page 1042

Query Header Names

The following query returns a comma-separated list of all the header names associated with the designated trace. Each of the names may be used (surrounded by quotes or double quotes) as a parameter in the other CALC: $<$ meas $>:$ DATA $<\mathrm{n}>:$ HEAD queries.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>: $=$ VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate : <meas> : DATA[1]\|2	3	4:HEADer : NAMes?					
Example	CALC:VECT:DATA1:HEAD:NAM?							
Notes	Query only. Returns a comma-separated list of header names.							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Query Header Type

This query returns whether the designated header on the designated trace may be queried as a number, or by a string only.
$\left.\begin{array}{|l|l|}\hline \text { Key Path } & \text { SCPI only } \\ \hline \text { Mode } & \text { VSA, LTE, LTETDD, IDEN } \\ \hline \text { Measurement } & \begin{array}{l}\text { <meas>: }=\text { VECTor|ADEMod|DDEMod|W11A|W11B|EVM|IPOWer|IDEMod| } \\ \text { MOTotalk }\end{array} \\ \hline \text { Remote Command } & \text { :CALCulate : <meas> : DATA[1]|2|3|4:HEADer : TYPE? <string> } \\ \hline \text { Example } & \text { CALC:VECT:DATA1:HEAD:TYPE? 'XDelta' } \\ \hline \text { Notes } & \begin{array}{l}\text { Query only. This retrieves the type of the named header for the designated } \\ \text { trace. The name (delimited by single or double quotes) is one of the names } \\ \text { returned by the CALC: }<\text { meas }>: \text { DATA:HEAD:NAMes? }\end{array} \\ \hline \text { If a valid header name is passed in, the return value from this query is either } \\ \text { STR or NUMB. NONE is returned if there is no such header. }\end{array}\right\}$

Query Header as String

This query gets a header by name from the designated trace and returns its value as a string.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	 MOTotalk
Remote Command	:CALCulate: <meas> : DATA[1] \|2	3	4:HEADer : STRing? <string>					
Example	CALC:VECT:DATA1:HEAD:STR? 'WindowType'							
Notes	Query only. This retrieves the named header for the designated trace. The name (delimited by single or double quotes) is one of the names returned by the CALC: $<m e a s>: D A T A: H E A D: N A M e s ? ~ T h e ~ r e t u r n ~ v a l u e ~ i s ~ a ~ s t r i n g . ~ I f ~ t h e ~$							
requested header value is a numeric, or if there is no such header, an empty								
string is returned..								

Query Numeric Header

This query gets a numeric header by name from the designated trace and returns its value in a format determined by the last FORM command.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	:CALCulate:<meas>:DATA[1]\|2	3	4:HEADer[:NUMBer]? <string>					
Example	CALC:VECT:DATA1:HEAD? 'XDelta'							
Notes	Query only. This retrieves the named header for the designated trace. This form of the HEAD? query is for headers whose type is NUMB (as determined by :CALC:<meas>:DATA:HEAD:TYPE?) The name parameter (delimited by single or double quotes) is one of the names returned by the CALC: <meas>:DATA:HEAD:NAMes? The format of the return data is determined by the FORMat[:TRACe][:DATA] command. If used to query a header whose type is STR, or there is no such header, NaN (9.91e37) is returned							
Initial S/W Revision	Prior to A.02.00							
Modified at S/W Revision	A.02.00							

Common Measurement Functions 2

:CALC:CLIMits:FAIL?

If one or more ACP or OBW limit tests are active, then the CALC:CLIMits:FAIL? command will return the aggregate pass or fail status.

IQ Data Transfers

Fast capture/transfer of a large amount of IQ data is supported over SCPI. To do this, first set up the desired measurement range, center frequency, span, triggering, etc. Use a time length that is convenient for setting up the measurement. The time length for the captured data will be set indirectly as shown below.

To perform the capture, a typical SCPI sequence is as follows:
FCAP:LENG <num_samples>
This command sets the length for the next capture in samples. The sample rate is proportional to the current span, and can be determined by a SCPI query, e.g., in the Vector measurement the query:

VECT:SWE:ISR?

returns the input sample rate. Multiply the time length desired for the captured data by this sample rate to get the number of samples to needed.

INIT:FCAP

will pause the current measurement and start capturing IQ data using the current setup and trigger conditions. (The instrument front panel display will not change nor show the captured data.)

To read the captured data via SCPI in blocks, set the read block size using the command:
FCAP:BLOC <num_points_per_read_block>
The maximum read block size is typically less than the total fast capture buffer size, and can be determined by the query "FCAP:BLOC? MAX". Now you can repeatedly use the following query to read out successive blocks of data:

FETC:FCAP?

The returned data is formatted according to the most recent :FORMat[:DATA] and :FORMat:BORDer commands. A read pointer that indicates the next sample to be transferred is advanced automatically following each FETC:FCAP? query. This pointer position can be read or manually set via the SCPI commands

FCAP:POIN?
FCAP:POIN <read_pointer_position>
The fast capture data may be read as long as you use only the commands to set read block size and pointer position, or queries that return the state of the current measurement. The capture data is cleared by any command that changes the measurement state or initiates a new measurement, or via SCPI device clear or :ABORT commands.

Fast capture data word size may be set to either 32 bit or 64 bit via the FCAP:WLEN command. This allows you to trade off precision for total capture length.

Note: when the word size is 32 bit, points can only be retrieved on even sample number boundaries, i.e., the pointer and block length should be even numbers. Therefore, when the word size is set to auto, it is
recommended that the pointer and block size be only set to even numbers.

Fast Capture Length

Sets the length of the SCPI Fast Capture in samples (points). This is constrained to be an even number.
Query returns the most recent length setting.

Mode	VSA
Remote Command	[:SENSe] : FCAPture: LENGth <integer> [:SENSe] : FCAPture: LENGth?
Example	FCAP:LENG 1000 FCAP:LENG?
Notes	This is affected by the IF path currently used, which may in turn be affected by span. It is also affected by the internal Fast Capture Word Length. The current maximum fast capture length may be found by using the query: FCAP:LENG? MAX Changing the Capture Length after initiating a fast capture clears the capture memory in preparation for a new fast capture of a different length. No Front panel access; SCPI only
Preset	1048576 Samples
Min	2
Max	536870 908 Samples for internal 40 MHz and 140 MHz options with FCAP:WLEN BIT32
Initial S/W Revision	A.04.00

Fast Capture Word Length

Allows choice of internal fast capture word length. Shorter word length allows twice the time length to be captured, at the cost of quantization noise. Note that this does not affect the format of data returned by FETCh:FCAPture, only the internal representation.

Mode	VSA	
Remote Command	$[:$ SENSe]:FCAPture:WLENgth AUTO\|BIT32	BIT64 [:SENSe]:FCAPture:WLENgth?
Example	FCAP:WLEN AUTO FCAP:WLEN?	
Notes	No Front panel access; SCPI only.	
Preset	AUTO	

Common Measurement Functions 2

Initial S/W Revision	A.04.00

Initiate Fast Capture

Waits for the sweep to trigger and then captures the fast capture data. Sweep is then set to pause. The amount of data captured is controlled by the Fast Capture Length command (FCAP:LENG).

Mode	VSA
Remote Command	: INITiate: FCAPture
Example	INIT:FCAP
Notes	Returns when the capture is complete.
Notes	No Front panel access; SCPI only This command resets the Fast Capture Pointer to 0
Initial S/W Revision	A.04.00

Fast Capture Block

Sets the block size for the Fast Capture transfer in samples (points). This is the number of points that will be returned from the Capture buffer by the FETC:FCAP? command. This is constrained to be an even number.

Query returns most recent block size setting.

Mode	VSA
Remote Command	$[:$ SENSe]:FCAPture:BLOCk <integer> $[: S E N S e]:$ FCAPture:BLOCk?
Example	FCAP:BLOC 100 FCAP:BLOC?
Notes	No Front panel access. SCPI only.
Preset	1024 Samples
Min	0
Max	131072 or Fast Capture Length, whichever is smaller
Initial S/W Revision	A.04.00

Fast Capture Pointer

Sets the pointer position for the Fast Capture transfer in samples (points). The pointer is incremented by the block size each time the fetch is performed. Preset value (0) is the first sample in the record. Thus repetitive fetches will result in contiguous data without needing to increment the pointer over SCPI. This
is constrained to be an even number. Query returns most recent pointer setting.

Mode	VSA
Remote Command	$[:$ SENSe] :FCAPture:POINter <integer> [:SENSe] : FCAPture:POINter?
Example	FCAP:POIN 100 FCAP:POIN?
Notes	INIT:FCAP or FCAP:ABOR resets the pointer to 0. No front panel access; SCPI only.
Preset	0 Samples
Min	0
Max	Must be less than the Fast Capture length
Initial S/W Revision	A.04.00

Fetch Fast Capture

Transfers the block of data starting at the pointer. The number of samples transferred is set with the block size. The pointer is incremented by the block size after the fetch.

Mode	VSA
Remote Command	:FETCh: FCAPture?
Example	FETC:FCAP?
Notes	The returned data is formatted according to the most recent :FORMat[:DATA] and :FORMat:BORDer commands. If the read pointer position plus read block size exceeds the Fast Capture Length, only the data between the pointer and the end of the fast capture buffer are returned, and error -200 is reported.. If Fetch is attempted before an INIT:FCAP (or if the captured data is cleared by some other operation ,e.g. REC; error -230 is reported and no data is returned. No front panel access; SCPI only.
Initial S/W Revision	A.04.00

Input Sample Rate Query

This SCPI only query returns the complex sample rate in Hz for the current VXA measurement setup conditions. The sample rate can be used to convert between time and number of sample points when using the Fast Capture feature.

Sample rate depends on the settings for FREQ:SPAN and IFPath. You need to set these before making this query. Though the measurement name is specified in the query, you can only query the currently

Common Measurement Functions 2

configured measurement. That is, if you have sent CONF:VECT, the query ADEM:SWE:ISR? will generate an error.

Mode	VSA			
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B
Remote Command	[:SENSe]: <meas> : SWEep: ISRate?			
Example	VECT:SWE:ISR?			
Notes	Query returns the complex sample rate in Hz for the current VXA Vector measurement setup conditions. If the measurement in the query is not the active measurement, error -230 is reported and no data is returned. This query is SCPI only, no Front Panel softkey.			
Preset	Depends on the licensed IF path			
Initial S/W Revision	A.04.00			

Parameter Update Enable

This command refers only to measurements that use the VSA measurement engine. These are all the measurements in the Vector Signal Analyzer (VXA) Application, and the EVM measurement in the LTE Applications.

When a measurement parameter is changed, the new value is used to update any dependent parameters and measurement results. This update process is normally done after every parameter change. This allows visual feedback during interactive GUI operation. However, with SCPI controlled measurements, typically a lot of parameter changes are done at once with the measurement stopped and then the measurement is run once and data retrieved. Here, is not necessary, and the accumulated update time for each parameter change can become significant. The Parameter Update Enable command allows you to postpone update while sending setup commands, and then allow one update to occur just before the measurement.

For example, if you are programmatically setting up a complex LTE measurement, you could save some setup time by first sending EVM:PUPD:ENAB OFF, then sending the whole group of measurement setup commands. When you are done with the setup, send EVM:PUPD:ENAB:ON. This causes the measurement state to be updated with all dependencies resolved. After this, you can read back the parameters' actual values. As a convenience, starting or continuing a measurement (INITiate:RESTart, INITiate:IMMediate, INITiate: $<$ meas $>$ or INITiate:RESume) will automatically set <meas>:PUPD:ENAB to ON. So will CONFigure:<meas>, or any of the reset and recall state commands.

This command should be used with caution.
It is only valid to turn <meas>:PUPD:ENAB OFF when <meas> is the currently active measurement and the measurement is paused (i.e., INIT:CONT is OFF).

If you try to set and then read back a parameter value while Parameter Update Enable is off, you are not guaranteed to get back true value that will be used in the measurement, because no parameter limiting is being done nor are any dependencies between parameters being resolved.

If you try to set coupled parameters independently when Parameter Update Enable is off, then when it is turned on, at most one of the parameter settings will remain the same and the others will change due to dependency resolution.

Key Path	SCPI only							
Mode	VSA, LTE, LTETDD, IDEN							
Measurement	<meas>:=VECTor\|ADEMod	DDEMod	W11A	W11B	EVM	IPOWer	IDEMod	MOTotalk
Remote Command	[:SENSe]:<meas>:PUPDate:ENABle OFF\|ON	0	1 [:SENSe]:<meas>:PUPDate:ENABle?					
Example	EVM:PUPD:ENAB OFF							
Notes	Commands that cause a measurement to run, that switch measurements, or that preset or recall measurement state will set Parameter Update state to ON. These include INIT:IMM, INIT:REST, INIT:RES, INIT:<meas>, and CONF: <meas>.							
Preset	1							
State Saved	No							
Initial S/W Revision	A.03.00							

[^0]: "Query Header Names" on page 1040

